首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asperigillus fumigatus spores or conidia are quickly eliminated from the airways of nonsensitized individuals but persist in individuals with allergic pulmonary responsiveness to fungus. A. fumigatus-induced allergic airway disease is characterized by persistent airway hyperreactivity, inflammation, and fibrosis. The present study explored the role of CCR2 ligands in the murine airway response to A. fumigatus conidia. Nonsensitized and A. fumigatus-sensitized CBA/J mice received an intratracheal challenge of A. fumigatus conidia, and pulmonary changes were analyzed at various times after conidia. Whole lung levels of monocyte chemoattractant protein-1 (MCP-1/CCL2), but neither MCP-3/CCL7 nor MCP-5/CCL12, were significantly elevated at days 3 and 7 after conidia in nonsensitized mice. MCP-1/CCL2 was significantly increased in lung samples from A. fumigatus-sensitized mice at days 14 and 30 after a conidia challenge. Administration of anti-MCP-1/CCL2 antiserum to nonsensitized mice for14 days after the conidia challenge attenuated the clearance of conidia and significantly increased airway hyperreactivity, eosinophilia, and peribronchial fibrosis compared with nonsensitized mice that received conidia and normal serum. Adenovirus-directed overexpression of MCP-1/CCL2 in A. fumigatus-sensitized mice markedly reduced the number of conidia, airway inflammation, and airway hyperresponsiveness at day 7 after the conidia challenge in these mice. Immunoneutralization of MCP-1/CCL2 levels in A. fumigatus-sensitized mice during days14-30 after the conidia challenge did not affect the conidia burden but significantly reduced airway hyperreactivity, lung IL-4 levels, and lymphocyte recruitment into the airways compared with the control group. These data suggest that MCP-1/CCL2 participates in the pulmonary antifungal and allergic responses to A. fumigatus conidia.  相似文献   

2.
BackgroundAsthma is characterized by type 2 T-helper cell (Th2) inflammation, goblet cell hyperplasia, airway hyperreactivity, and airway fibrosis. Monocyte chemoattractant protein-1 (MCP-1 or CCL2) and its receptor, CCR2, have been shown to play important roles in the development of Th2 inflammation. CCR2-deficient mice have been found to have altered inflammatory and physiologic responses in some models of experimental allergic asthma, but the role of CCR2 in contributing to inflammation and airway hyperreactivity appears to vary considerably between models. Furthermore, MCP-1-deficient mice have not previously been studied in models of experimental allergic asthma.MethodsTo test whether MCP-1 and CCR2 are each required for the development of experimental allergic asthma, we applied an Aspergillus antigen-induced model of Th2 cytokine-driven allergic asthma associated with airway fibrosis to mice deficient in either MCP-1 or CCR2. Previous studies with live Aspergillus conidia instilled into the lung revealed that MCP-1 and CCR2 play a role in anti-fungal responses; in contrast, we used a non-viable Aspergillus antigen preparation known to induce a robust eosinophilic inflammatory response.ResultsWe found that wild-type C57BL/6 mice developed eosinophilic airway inflammation, goblet cell hyperplasia, airway hyperreactivity, elevations in serum IgE, and airway fibrosis in response to airway challenge with Aspergillus antigen. Surprisingly, mice deficient in either MCP-1 or CCR2 had responses to Aspergillus antigen similar to those seen in wild-type mice, including production of Th2 cytokines.ConclusionWe conclude that robust Th2-mediated lung pathology can occur even in the complete absence of MCP-1 or CCR2.  相似文献   

3.

Background

Asthma is characterized by type 2 T-helper cell (Th2) inflammation, goblet cell hyperplasia, airway hyperreactivity, and airway fibrosis. Monocyte chemoattractant protein-1 (MCP-1 or CCL2) and its receptor, CCR2, have been shown to play important roles in the development of Th2 inflammation. CCR2-deficient mice have been found to have altered inflammatory and physiologic responses in some models of experimental allergic asthma, but the role of CCR2 in contributing to inflammation and airway hyperreactivity appears to vary considerably between models. Furthermore, MCP-1-deficient mice have not previously been studied in models of experimental allergic asthma.

Methods

To test whether MCP-1 and CCR2 are each required for the development of experimental allergic asthma, we applied an Aspergillus antigen-induced model of Th2 cytokine-driven allergic asthma associated with airway fibrosis to mice deficient in either MCP-1 or CCR2. Previous studies with live Aspergillus conidia instilled into the lung revealed that MCP-1 and CCR2 play a role in anti-fungal responses; in contrast, we used a non-viable Aspergillus antigen preparation known to induce a robust eosinophilic inflammatory response.

Results

We found that wild-type C57BL/6 mice developed eosinophilic airway inflammation, goblet cell hyperplasia, airway hyperreactivity, elevations in serum IgE, and airway fibrosis in response to airway challenge with Aspergillus antigen. Surprisingly, mice deficient in either MCP-1 or CCR2 had responses to Aspergillus antigen similar to those seen in wild-type mice, including production of Th2 cytokines.

Conclusion

We conclude that robust Th2-mediated lung pathology can occur even in the complete absence of MCP-1 or CCR2.  相似文献   

4.
Asthmatic-like reactions characterized by elevated IgE, Th2 cytokines, C-C chemokines, eosinophilic inflammation, and persistent airway hyperresponsiveness follow pulmonary exposure to the spores or conidia from Aspergillus fumigatus fungus in sensitized individuals. In addition to these features, subepithelial fibrosis and goblet cell hyperplasia characterizes fungal-induced allergic airway disease in mice. Because lung concentrations of macrophage inflammatory protein-1alpha and RANTES were significantly elevated after A. fumigatus-sensitized mice received an intrapulmonary challenge with A. fumigatus spores or conidia, the present study addressed the role of their receptor, C-C chemokine receptor 1 (CCR1), in this model. A. fumigatus-sensitized CCR1 wild-type (+/+) and CCR1 knockout (-/-) mice exhibited similar increases in serum IgE and polymorphonuclear leukocyte numbers in the bronchoalveolar lavage. Airway hyperresponsiveness was prominent in both groups of mice at 30 days after an intrapulmonary challenge with A. fumigatus spores or conidia. However, whole lung levels of IFN-gamma were significantly higher whereas IL-4, IL-13, and Th2-inducible chemokines such as C10, eotaxin, and macrophage-derived chemokine were significantly lower in whole lung samples from CCR1-/- mice compared with CCR1+/+ mice at 30 days after the conidia challenge. Likewise, significantly fewer goblet cells and less subepithelial fibrosis were observed around large airways in CCR1-/- mice at the same time after the conidia challenge. Thus, these findings demonstrate that CCR1 is a major contributor to the airway remodeling responses that arise from A. fumigatus-induced allergic airway disease.  相似文献   

5.
Bronchoconstriction responses in the airway are caused by multiple insults and are the hallmark symptom in asthma. In an acute lung injury model in mice, IgG immune complex deposition elicited severe airway hyperreactivity that peaked by 1 h, was maintained at 4 h, and was resolved by 24 h. The depletion of complement with cobra venom factor (CVF) markedly reduced the hyperreactive airway responses, suggesting that complement played an important role in the response. Blockade of C5a with specific antisera also significantly reduced airway hyperreactivity in this acute lung model. Complement depletion by CVF treatment significantly reduced tumor necrosis factor and histamine levels in bronchoalveolar lavage fluids, correlating with reductions in airway hyperreactivity. To further examine the role of specific complement requirement, we initiated the immune complex response in C5-sufficient and C5-deficient congenic animals. The airway hyperreactivity response was partially reduced in the C5-deficient mice. Complement depletion with CVF attenuated airway hyperreactivity in the C5-sufficient mice but had a lesser effect on the airway hyperreactive response and histamine release in bronchoalveolar lavage fluids in C5-deficient mice. These data indicate that acute lung injury in mice after deposition of IgG immune complexes induced airway hyperreactivity that is C5 and C5a dependent.  相似文献   

6.
Asthma is an allergic disease characterized by chronic airway eosinophilia and pulmonary infiltration of lymphocytes, particularly of the Th2 subtype, macrophages and mast cells. Previous studies have shown a pivotal role for sphingosine kinase (SphK) on various proinflammatory cells, such as lymphocyte and eosinophil migration and mast cell degranulation. We therefore examined the roles of SphK in a murine model of allergic asthma. In mice previously sensitized to OVA, i.p. administration of N,N-dimethylsphingosine (DMS), a potent SphK inhibitor, significantly reduced the total inflammatory cell infiltrate and eosinophilia and the IL-4, IL-5, and eotaxin levels in bronchoalveolar lavage fluid in response to inhaled OVA challenge. In addition, DMS significantly suppressed OVA-induced inflammatory infiltrates and mucus production in the lungs, and airway hyperresponsiveness to methacholine in a dose-dependent manner. OVA-induced lymphocyte proliferation and IL-4 and IL-5 secretion were reduced in thoracic lymph node cultures from DMS-treated mice. Moreover, similar reduction in inflammatory infiltrates, bronchoalveolar lavage, IL-4, IL-5, eotaxin, and serum OVA-specific IgE levels was observed in mice with SphK1 knock-down via small interfering RNA approach. Together, these data demonstrate the therapeutic potential of SphK modulation in allergic airways disease.  相似文献   

7.
Stem cell factor (SCF) is directly involved in the induction of airway hyperreactivity during allergen-induced pulmonary responses in mouse models. In these studies, we examined the specific mediators and mechanisms by which SCF can directly induce airway hyperreactivity via mast cell activation. Initial in vitro studies with bone marrow-derived mast cells indicated that SCF was able to induce the production of bronchospastic leukotrienes, LTC(4) and LTE(4). Subsequently, when SCF was instilled in the airways of naive mice, we were able to observe a similar induction of LTC(4) and LTE(4) in the bronchoalveolar lavage (BAL) fluid and lungs of treated mice. These in vivo studies clearly suggested that the previously observed SCF-induced airway hyperreactivity may be related to the leukotriene production after SCF stimulation. To further investigate whether the released leukotrienes were the mediators of the SCF-induced airway hyperreactivity, an inhibitor of 5-lipoxygenase (5-LO) binding to the 5-LO activating protein (FLAP) was utilized. The FLAP inhibitor MK-886, given to the animals before intratracheal SCF administration, significantly inhibited the release of LTC(4) and LTE(4) into the BAL fluid. More importantly, use of the FLAP inhibitor nearly abrogated the SCF-induced airway hyperreactivity. In addition, blocking the LTD(4)/E(4), but not LTB(4), receptor attenuated the SCF-induced airway hyperreactivity. In addition, the FLAP inhibitor reduced other mast-derived mediators, including histamine and tumor necrosis factor. Altogether, these studies indicate that SCF-induced airway hyperreactivity is dependent upon leukotriene-mediated pathways.  相似文献   

8.
The action of histamine in oleic acid (OA)-induced injury was investigated using the isolated guinea pig lung perfused with blood-free media. OA infusion caused a significant increase in pulmonary arterial pressure, airway inspiratory pressure, lung weight, and protein flux across the alveolar-capillary barrier. These changes were dose dependent and caused injury regardless of the chemical form of OA (salt or free acid). Triolein (a neutral fat) infused at comparable emulsion particle size did not alter lung weight or bronchoalveolar lavage protein concentration in the perfused lung, suggesting that mechanical obstruction or emboli per se is not responsible for initiating early events in OA-induced injury. Infusion of OA caused a significant early histamine release into the venous effluent in the presence of aminoguanidine, a histamine catabolism inhibitor. Pretreatment with H1-receptor antagonists significantly attenuated OA-induced increase in lung weight and protein leak. These data support the link between OA-induced mast cell degranulation, histamine release, and OA-induced edema.  相似文献   

9.
Trypsin and mast cell tryptase can signal to epithelial cells, myocytes, and nerve fibers of the respiratory tract by cleaving proteinase-activated receptor 2 (PAR2). Since tryptase inhibitors are under development to treat asthma, a precise understanding of the contribution of PAR2 to airway inflammation is required. We examined the role of PAR2 in allergic inflammation of the airway by comparing OVA-sensitized and -challenged mice lacking or overexpressing PAR2. In wild-type mice, immunoreactive PAR2 was detected in airway epithelial cells and myocytes, and intranasal administration of a PAR2 agonist stimulated macrophage infiltration into bronchoalveolar lavage fluid. OVA challenge of immunized wild-type mice stimulated infiltration of leukocytes into bronchoalveolar lavage and induced airway hyperreactivity to inhaled methacholine. Compared with wild-type animals, eosinophil infiltration was inhibited by 73% in mice lacking PAR2 and increased by 88% in mice overexpressing PAR2. Similarly, compared with wild-type animals, airway hyperreactivity to inhaled methacholine (40 micro g/ml) was diminished 38% in mice lacking PAR2 and increased by 52% in mice overexpressing PAR2. PAR2 deletion also reduced IgE levels to OVA sensitization by 4-fold compared with those of wild-type animals. Thus, PAR2 contributes to the development of immunity and to allergic inflammation of the airway. Our results support the proposal that tryptase inhibitors and PAR2 antagonists may be useful therapies for inflammatory airway disease.  相似文献   

10.
CpG oligodeoxynucleotides (CpG-ODN) administered during Ag sensitization or before Ag challenge can inhibit allergic pulmonary inflammation and airway hyperreactivity in murine models of asthma. In this study, we investigated whether CpG-ODN can reverse an ongoing allergic pulmonary reaction in a mouse model of asthma. AKR mice were sensitized with conalbumin followed by two intratracheal challenges at weekly intervals. CpG-ODN was administered 24 h after the first Ag challenge. CpG-ODN administration reduced Ag-specific IgE levels, bronchoalveolar lavage fluid eosinophils, mucus production, and airway hyperreactivity. We found that postchallenge CpG-ODN treatment significantly increased IFN-gamma concentrations and decreased IL-13, IL-4, and IL-5 concentrations in bronchoalveolar lavage fluids and spleen cell culture supernatants. Postchallenge CpG-ODN treatment also increased B7.1 mRNA expression and decreased B7.2 mRNA expression in lung tissues. These results suggest that CpG-ODN may have potential for treatment of allergic asthma by suppressing Th2 responses during IgE-dependent allergic airway reactions. The down-regulation of Th2 responses by CPG-ODN may be associated with regulation of the costimulatory factors B7.1 and B7.2.  相似文献   

11.
Allergic responses to Aspergillus species exacerbate asthma and cystic fibrosis. The natural defense against live Aspergillus fumigatus spores or conidia depends on the recruitment and activation of mononuclear and polymorphonuclear leukocytes, events that are dependent on chemotactic cytokines. In this study, we explored the relative contribution of the monocyte chemoattractant protein-1 receptor, CCR2, in the pulmonary response to A. fumigatus conidia. Following sensitization to soluble A. fumigatus Ags, mice lacking CCR2 due to targeted deletion were markedly more susceptible to the injurious effects of an intrapulmonary challenge with live conidia compared with mice that expressed CCR2 or CCR2+/+. CCR2-/- mice exhibited a major defect in the recruitment of polymorphonuclear cells, but these mice also had significantly more eosinophils and lymphocytes in bronchoalveolar lavage samples. CCR2-/- mice also had significant increases in serum levels of total IgE and whole lung levels of IL-5, IL-13, eotaxin, and RANTES compared with CCR2+/+ mice. Airway inflammation, hyper-responsiveness to spasmogens, and subepithelial fibrosis were significantly enhanced in CCR2-/- mice compared with CCR2+/+ mice after the conidia challenge. Thus, these findings demonstrate that CCR2 plays an important role in the immune response against A. fumigatus, thereby limiting the allergic airway inflammatory and remodeling responses to this fungus.  相似文献   

12.
To evaluate the role of CCR2 in allergic asthma, mutant mice deficient in CCR2 (CCR2(-/-)) and intact mice were sensitized with i.p. OVA with alum on days 0 and 7, and challenged by inhalation with nebulization of either OVA or saline. Airway hyperreactivity, measured by the methacholine-provoked increase in enhanced pause, was significantly increased (p < 0.05) in OVA-challenged CCR2(-/-) mutant mice, compared with comparably challenged CCR2(+/+) mice. OVA-challenged CCR2(-/-) mutants also were also found to have enhanced bronchoalveolar lavage fluid eosinophilia, peribronchiolar cellular cuffing, and Ig subclass switching, with increase in OVA-specific IgG(1) and IgE. In addition, RNase protection assay revealed increased whole lung expression of IL-13 in OVA-challenged CCR2(-/-) mutants. Unexpectedly, serum monocyte chemotactic protein-1 levels were 8-fold higher in CCR2(-/-) mutants than in CCR2(+/+) mice sensitized to OVA, but OVA challenge had no additional effect on circulating monocyte chemotactic protein-1 in either genotype. Ag stimulation of lymphocytes isolated from OVA-sensitized CCR2 mutants revealed a significant increase (p < 0.05) in IL-5 production, which differed from OVA-stimulated lymphocytes from sensitized CCR2(+/+) mice. These experiments demonstrate an enhanced response in airway reactivity and in lung inflammation in CCR2(-/-) mutant mice compared with comparably sensitized and challenged CCR2(+/+) mice. These observations suggest that CC chemokines and their receptors are involved in immunomodulation of atopic asthma.  相似文献   

13.
The Tec family tyrosine kinase, IL-2-inducible T cell kinase (Itk), is expressed in T cells and mast cells. Mice lacking Itk exhibit impaired Th2 cytokine secretion; however, they have increased circulating serum IgE, but exhibit few immunological symptoms of allergic airway responses. We have examined the role of Itk in mast cell function and FcepsilonRI signaling. We report in this study that Itk null mice have reduced allergen/IgE-induced histamine release, as well as early airway hyperresponsiveness in vivo. This is due to the increased levels of IgE in the serum of these mice, because the transfer of Itk null bone marrow-derived cultured mast cells into mast cell-deficient W/W(v) animals is able to fully rescue histamine release in the W/W(v) mice. Further analysis of Itk null bone marrow-derived cultured mast cells in vitro revealed that whereas they have normal degranulation responses, they secrete elevated levels of cytokines, including IL-13 and TNF-alpha, particularly in response to unliganded IgE. Analysis of biochemical events downstream of the FcepsilonRI revealed little difference in overall tyrosine phosphorylation of specific substrates or calcium responses; however, these cells express elevated levels of NFAT, which was largely nuclear. Our results suggest that the reduced mast cell response in vivo in Itk null mice is due to elevated levels of IgE in these mice. Our results also suggest that Itk differentially modulates mast cell degranulation and cytokine production in part by regulating expression and activation of NFAT proteins in these cells.  相似文献   

14.
Anaphylaxis represents an extreme form of allergic reaction. This acute-phase component of allergy and asthma is triggered by allergen-induced degranulation of mast cells following the cross-linking of cell surface-bound, allergen-specific IgE, resulting in the liberation of inflammatory mediators and the development of bronchoconstriction. We used IL-13 transgenic mice to investigate the role of this Th2 cell-derived cytokine in the onset of allergic disease. Strikingly, IL-13-transgenic mice were highly predisposed to fatal anaphylaxis following Ag sensitization. This response correlated with substantially elevated levels of circulating Ag-specific IgE, mast cell degranulation, and histamine release. Furthermore, allergen exposure also induced phenotypic changes typical of asthma, including pulmonary fibrosis, goblet cell hyperplasia, elevated Th2 cytokines, eosinophilia, and airways occluded by mucus and Charcot-Leyden crystals. Expression of IL-4 was not required for the induction of IgE-mediated responses. These data represent the first characterization of a functional role for IL-13-induced IgE in the generation of immediate hypersensitivity reactions and highlight the importance of IL-13 in the development of the symptoms of atopy. The systemic regulation of this response makes these mice an important resource for studying atopic responses.  相似文献   

15.
Activation of the adenosine A(2A) receptor has been postulated as a possible treatment for lung inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD). In this report, we have studied the anti-inflammatory properties of the reference A(2A) agonist CGS-21680, given intranasally at doses of 10 and 100 microg/kg, in a variety of murine models of asthma and COPD. After an acute ovalbumin challenge of sensitized mice, prophylactic administration of CGS-21680 inhibited the bronchoalveolar lavage fluid inflammatory cell influx but not the airway hyperreactivity to aerosolized methacholine. After repeated ovalbumin challenges, CGS-21680 given therapeutically inhibited the bronchoalveolar lavage fluid inflammatory cell influx but had no effect on the allergen-induced bronchoconstriction, the airway hyperreactivity, or the bronchoalveolar lavage fluid mucin levels. As a comparator, budesonide given intranasally at doses of 0.1-1 mg/kg fully inhibited all the parameters measured in the latter model. In a lipopolysaccharide-driven model, CGS-21680 had no effect on the bronchoalveolar lavage fluid inflammatory cell influx or TNF-alpha, keratinocyte chemoattractant, and macrophage inflammatory protein-2 levels, but potently inhibited neutrophil activation, as measured by bronchoalveolar lavage fluid elastase levels. With the use of a cigarette smoke model of lung inflammation, CGS-21680 did not significantly inhibit bronchoalveolar lavage fluid neutrophil infiltration but reversed the cigarette smoke-induced decrease in macrophage number. Together, these results suggest that activation of the A(2A) receptor would have a beneficial effect by inhibiting inflammatory cell influx and downregulating inflammatory cell activation in asthma and COPD, respectively.  相似文献   

16.
17.
Multidrug resistance-associated protein 1 (MRP1) is a cysteinyl leukotriene (CysLT) export pump expressed on mast cells. CysLTs are crucial mediators in allergic airway disease. However, biological significance of MRP1 in allergic airway inflammation has not yet been elucidated. In this study, we sensitized wild-type control mice (mrp1(+/+)) and MRP1-deficient mice (mrp1(-/-)) to ovalbumin (OVA) and challenged them with OVA by aerosol. Airway inflammation and goblet cell hyperplasia after OVA exposure were reduced in mrp1(-/-) mice compared with mrp1(+/+) mice. Furthermore, CysLT levels in bronchoalveolar lavage fluid (BALF) from OVA-exposed mrp1(-/-) mice were significantly lower than those from OVA-exposed mrp1(+/+) mice. Levels of OVA-specific IgE, IL-4, and IL-13 in BALF were also decreased in OVA-exposed mrp1(-/-) mice. IgE-mediated release of CysLTs from murine bone marrow-derived mast cells was markedly impaired by MRP1 deficiency. Our results indicate that MRP1 plays an important role in the development of allergic airway inflammation through regulation of IgE-mediated CysLT export from mast cells.  相似文献   

18.
Paradigms of eosinophil effector function in the lungs of asthma patients invariably depend on activities mediated by cationic proteins released from secondary granules during a process collectively referred to as degranulation. In this study, we generated knockout mice deficient for eosinophil peroxidase (EPO) to assess the role(s) of this abundant secondary granule protein in an OVA-challenge model. The loss of EPO had no effect on the development of OVA-induced pathologies in the mouse. The absence of phenotypic consequences in these knockout animals extended beyond pulmonary histopathologies and airway changes, as EPO-deficient animals also displayed OVA-induced airway hyperresponsiveness after provocation with methacholine. In addition, EPO-mediated oxidative damage of proteins (e.g., bromination of tyrosine residues) recovered in bronchoalveolar lavage from OVA-treated wild-type mice was <10% of the levels observed in bronchoalveolar lavage recovered from asthma patients. These data demonstrate that EPO activities are inconsequential to the development of allergic pulmonary pathologies in the mouse and suggest that degranulation of eosinophils recruited to the lung in this model does not occur at levels comparable to those observed in humans with asthma.  相似文献   

19.
Bronchoalveolar lavage performed in 10 patients with extrinsic asthma and 14 controls yielded similar recoveries of fluid and cells. Mast cells and eosinophils, however, formed a greater proportion of the cells recovered from the asthmatic subjects (p less than 0.001 for mast cells; p less than 0.01 for eosinophils), the histamine content of the lavage cells being correspondingly increased (p less than 0.01). Both the percentage of mast cells and the histamine content of lavage cells were significantly inversely correlated with the forced expiratory volume in one second (FEV1; expressed as percentage of predicted) and with the ratio of FEV1 to forced vital capacity before lavage. There was also a significant inverse correlation between the concentration of histamine required to produce a 20% fall in FEV1 and the percentage of mast cells recovered (p less than 0.05). When incubated with antihuman IgE bronchoalveolar mast cells from asthmatic subjects released a significantly increased proportion of total cellular histamine than cells from control subjects at all effective doses of anti-IgE. By contrast, dose response curves for IgE dependent histamine release from peripheral blood leucocytes were similar in asthmatics and controls. Specific antigen led to release of histamine from bronchoalveolar cells and peripheral blood leucocytes of asthmatic subjects but not controls. Lying superficially within the airways, bronchoalveolar mast cells would be readily exposed to inhaled antigen and would release mediators directly on to the airway surface. Their immunological response suggests that they are likely to be important in the pathogenesis of airflow obstruction in asthma.  相似文献   

20.
Carnosine (beta-alanyl-histidine) is a naturally occurring dipeptide that has been characterized as a putative hydrophilic antioxidant. The protective function of carnosine has been demonstrated in neuronal cells under ischemic injury. The purpose of this study was to investigate the effects of carnosine on oxygen-glucose deprivation (OGD)-induced degranulation and histamine release from mast cells. Cultured mast cells were exposed to OGD for 4 h, and then the degranulation was observed immediately by microscopy. Histamine release was analyzed by high-performance liquid chromatography (HPLC). OGD caused degranulation of mast cells, and increased histamine and lactate dehydrogenase (LDH) release. Carnosine (at a concentration of 5 mM) alone did not produce any appreciable effect on degranulation, histamine, and LDH release from mast cells under normal condition, but significantly inhibited the degranulation, histamine, and LDH release of mast cells induced by OGD. These results indicate that carnosine can protect mast cells from degranulation and histamine release and it may be an endogenous mast cell stabilizer in the pathological processes induced by ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号