首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schizosaccharomyces pombe Ddb1 is homologous to the mammalian DDB1 protein, which has been implicated in damaged-DNA recognition and global genomic repair. However, a recent study suggested that the S. pombe Ddb1 is involved in cell division and chromosomal segregation. Here, we provide evidence that the S. pombe Ddb1 is functionally linked to the replication checkpoint control gene cds1. We show that the S. pombe strain lacking ddb1 has slow growth due to delayed replication progression. Flow cytometric analysis shows an extensive heterogeneity in DNA content. Furthermore, the Deltaddb1 strain is hypersensitive to UV irradiation in S phase and is unable to tolerate a prolonged replication block imposed by hydroxyurea. Interestingly, the Deltaddb1 strain exhibits a high level of the Cds1 kinase activity during passage through S phase. Moreover, mutation of the cds1 gene relieves the defects observed in Deltaddb1 strain. The results suggest that many of the defects observed in Deltaddb1 cells are linked to an aberrant activation of Cds1, and that Ddb1 is functionally linked to Cds1.  相似文献   

2.
The COP9/signalosome complex is highly conserved in evolution and possesses significant structural similarity to the 19S regulatory lid complex of the proteasome. It also shares limited similarity to the translation initiation factor eIF3. The signalosome interacts with multiple cullins in mammalian cells. In the fission yeast Schizosaccharomyces pombe, the Csn1 subunit is required for the removal of covalently attached Nedd8 from Pcu1, one of three S. pombe cullins. It remains unclear whether this activity is required for all the functions ascribed to the signalosome. We previously identified Csn1 and Csn2 as signalosome subunits in S. pombe. csn1 and csn2 null mutants are DNA damage sensitive and exhibit slow DNA replication. Two further putative subunits, Csn4 and Csn5, were identified from the S. pombe genome database. Herein, we characterize null mutations of csn4 and csn5 and demonstrate that both genes are required for removal of Nedd8 from the S. pombe cullin Pcu1 and that their protein products associate with Csn1 and Csn2. However, neither csn4 nor csn5 null mutants share the csn1 and csn2 mutant phenotypes. Our data suggest that the subunits of the signalosome cannot be considered as a distinct functional unit and imply that different subunits of the signalosome mediate distinct functions.  相似文献   

3.
4.
Ralph E  Boye E  Kearsey SE 《EMBO reports》2006,7(11):1134-1139
Cdt1 is an essential protein required for licensing of replication origins. Here, we show that in Schizosaccharomyces pombe, Cdt1 is proteolysed in M and G1 phases in response to DNA damage and that this mechanism seems to be conserved from yeast to Metazoa. This degradation does not require Rad3 and Cds1, indicating that it is independent of classic DNA damage and replication checkpoint pathways. Damage-induced degradation of Cdt1 is dependent on Cdt2 and Ddb1, which are components of a Cul4 ubiquitin ligase. We also show that Cdt2 and Ddb1 are needed for cell-cycle changes in Cdt1 levels in the absence of DNA damage. Cdt2 and Ddb1 have been shown to be involved in the degradation of the Spd1 inhibitor of ribonucleotide reductase after DNA damage, and we speculate that Cdt1 downregulation might contribute to genome stability by reducing demand on dNTP pools during DNA repair.  相似文献   

5.
Proteins belonging to the Tel2/Rad-5/Clk-2 family are conserved among eukaryotes and are involved in various cellular processes, such as cell proliferation, telomere maintenance, the biological clock, and the DNA damage checkpoint. However, the molecular mechanisms underlying the functions of these molecules remain largely unclear. Here we report that in the fission yeast, Schizosaccharomyces pombe, Tel2 is required for efficient phosphorylation of Mrc1, a mediator of DNA replication checkpoint signaling, and for activation of Cds1, a replication checkpoint kinase, when DNA replication is blocked by hydroxyurea. In fact, Tel2 is required for survival of replication fork arrest and for the replication checkpoint in cells lacking Chk1, another checkpoint kinase the role of which overlaps that of Cds1 in cell cycle arrest by replication block. In addition, Tel2 plays important roles in entry into S phase and in genome stability. Tel2 is essential for vegetative cell growth, and the tel2Delta strain accumulated cells with 1C DNA content after germination. In the absence of hydroxyurea, Tel2 is vital in the mutant lacking Swi1, a component of the replication fork protection complex, and multiple Rad22 DNA repair foci were frequently observed in Tel2-repressed swi1Delta cells especially at S phase. In contrast, the cds1Deltaswi1Delta mutant did not show such lethality. These results indicate that S. pombe Tel2 plays important roles in the Mrc1-mediated replication checkpoint as well as in the Cds1-independent regulation of genome integrity.  相似文献   

6.
Human damaged DNA-binding protein (DDB) is a heterodimer of p48/DDB2 and p127/DDB1 subunits. Mutations in DDB2 are responsible for Xeroderma Pigmentosum group E, but no mutants of mammalian DDB1 have been described. To study DDB1, the Schizosaccharomyces pombe DDB1 sequence homologue (ddb1(+)) was cloned, and a ddb1 deletion strain was constructed. The gene is not essential; however, mutant cells showed a 37% impairment in colony-forming ability, an elongated phenotype, and abnormal nuclei. The ddb1Delta strain was sensitive to UV irradiation, X-rays, methylmethane sulfonate, and thiabendazole, and these sensitivities were compared with those of the well characterized rad13Delta, rhp51Delta, and cds1Delta mutant strains. Ddb1p showed nuclear and nucleolar localization, and the aberrant nuclear structures observed in the ddb1Delta strain suggest a role for Ddb1p in chromosome segregation.  相似文献   

7.
Cul4 E3 ubiquitin ligases contain the cullin 4 scaffold and the triple beta propeller Ddb1 adaptor protein, but few substrate receptors have been identified. Here, we identify 18 Ddb1- and Cul4-associated factors (DCAFs), including 14 containing WD40 repeats. DCAFs interact with multiple surfaces on Ddb1, and the interaction of WD40-containing DCAFs with Ddb1 requires a conserved "WDXR" motif. DCAF2/Cdt2, which is related to S. pombe Cdt2, functions in Xenopus egg extracts and human cells to destroy the replication licensing protein Cdt1 in S phase and after DNA damage. Depletion of human Cdt2 causes rereplication and checkpoint activation. In Xenopus, Cdt2 is recruited to replication forks via Cdt1 and PCNA, where Cdt1 ubiquitylation occurs. These studies uncover diverse substrate receptors for Cul4 and identify Cdt2 as a conserved component of the Cul4-Ddb1 E3 that is essential to destroy Cdt1 and ensure proper cell cycle regulation of DNA replication.  相似文献   

8.
Eukaryotic cells respond to DNA damage and S phase replication blocks by arresting cell-cycle progression through the DNA structure checkpoint pathways. In Schizosaccharomyces pombe, the Chk1 kinase is essential for mitotic arrest and is phosphorylated after DNA damage. During S phase, the Cds1 kinase is activated in response to DNA damage and DNA replication blocks. The response of both Chk1 and Cds1 requires the six 'checkpoint Rad' proteins (Rad1, Rad3, Rad9, Rad17, Rad26 and Hus1). We demonstrate that DNA damage-dependent phosphorylation of Chk1 is also cell-cycle specific, occurring primarily in late S phase and G2, but not during M/G1 or early S phase. We have also isolated and characterized a temperature-sensitive allele of rad3. Rad3 functions differently depending on which checkpoint pathway is activated. Following DNA damage, rad3 is required to initiate but not maintain the Chk1 response. When DNA replication is inhibited, rad3 is required for both initiation and maintenance of the Cds1 response. We have identified a strong genetic interaction between rad3 and cds1, and biochemical evidence shows a physical interaction is possible between Rad3 and Cds1, and between Rad3 and Chk1 in vitro. Together, our results highlight the cell-cycle specificity of the DNA structure-dependent checkpoint response and identify distinct roles for Rad3 in the different checkpoint responses. Keywords: ATM/ATR/cell-cycle checkpoints/Chk1/Rad3  相似文献   

9.
DDB1, a subunit of the damaged-DNA binding protein DDB, has been shown to function also as an adaptor for Cul4A, a member of the cullin family of E3 ubiquitin ligase. The Cul4A-DDB1 complex remains associated with the COP9 signalosome, and that interaction is conserved from fission yeast to human. Studies with fission yeast suggested a role of the Pcu4-Ddb1-signalosome complex in the proteolysis of the replication inhibitor Spd1. Here we provide evidence that the function of replication inhibitor proteolysis is conserved in the mammalian DDB1-Cul4A-signalosome complex. We show that small interfering RNA-mediated knockdown of DDB1, CSN1 (a subunit of the signalosome), and Cul4A in mammalian cells causes an accumulation of p27Kip1. Moreover, expression of DDB1 reduces the level of p27Kip1 by increasing its decay rate. The DDB1-induced proteolysis of p27Kip1 requires signalosome and Cul4A, because DDB1 failed to increase the decay rate of p27Kip1 in cells deficient in CSN1 or Cul4A. Surprisingly, the DDB1-induced proteolysis of p27Kip1 also involves Skp2, an F-box protein that allows targeting of p27Kip1 for ubiquitination by the Skp1-Cul1-F-box complex. Moreover, we provide evidence for a physical association between Cul4A, DDB1, and Skp2. We speculate that the F-box protein Skp2, in addition to utilizing Cul1-Skp1, utilizes Cul4A-DDB1 to induce proteolysis of p27Kip1.  相似文献   

10.
The COP9 signalosome (CSN), the lid subcomplex of the proteasome and translational initiation factor 3 (eIF3) share structural similarities and are often referred to as the PCI family of complexes. In multicellular eukaryotes, the CSN is highly conserved as an 8-subunit complex but in Saccharomyces cerevisiae the complex is rather divergent. We further characterize the composition and properties of the CSN in budding yeast and its interactions with these related complexes. Using the generalized profile method we identified CSN candidates, four with PCI domains: Csn9, Csn10, Pci8/Csn11, and Csn12, and one with an MPN domain, Csn5/Rri1. These proteins and an additional interactor, Csi1, were tested for pairwise interactions by yeast two-hybrid and were found to form a cluster surrounding Csn12. Csn5 and Csn12 cofractionate in a complexed form with an apparent molecular weight of roughly 250kDa. However, Csn5 migrates as a monomer in Deltacsn12 supporting the pivotal role of Csn12 in stabilizing the complex. Confocal fluorescence microscopy detects GFP-tagged Csn5 preferentially in the nucleus, whereas in absence of Csn12, Csn10, Pci8/Csn11, or Csi1, Csn5 is delocalized throughout the cell, indicating that multiple subunits are required for nuclear localization of Csn5. Two CSN subunits, Csn9 and Csi1, interact with the proteasome lid subunit Rpn5. Pci8/Csn11 has previously been shown to interact with eIF3. Together, these results point to a network of interactions between these three structurally similar, yet functionally diverse, complexes.  相似文献   

11.
The Cdc14p-like phosphatase Flp1p (also known as Clp1p) is regulated by cell cycle-dependent changes in its subcellular localization. Flp1p is restricted to the nucleolus and spindle pole body until prophase, when it is dispersed throughout the nucleus, mitotic spindle, and medial ring. Once released, Flp1p antagonizes Cdc2p/cyclin activity by reverting Cdc2p-phosphorylation sites on Cdc25p. On replication stress, ataxia-telangiectasia mutated/ATM/Rad3-related kinase Rad3p activates Cds1p, which phosphorylates key proteins ensuring the stability of stalled DNA replication forks. Here, we show that replication stress induces changes in the subcellular localization of Flp1p in a checkpoint-dependent manner. Active Cds1p checkpoint kinase is required to release Flp1p into the nucleus. Consistently, a Flp1p mutant (flp1-9A) lacking all potential Cds1p phosphorylation sites fails to relocate in response to replication blocks and, similarly to cells lacking flp1 (Deltaflp1), presents defects in checkpoint response to replication stress. Deltaflp1 cells accumulate reduced levels of a less active Cds1p kinase in hydroxyurea (HU), indicating that nuclear Flp1p regulates Cds1p full activation. Consistently, Deltaflp1 and flp1-9A have an increased percentage of Rad22p-recombination foci during HU treatment. Together, our data show that by releasing Flp1p into the nucleus Cds1p checkpoint kinase modulates its own full activation during replication stress.  相似文献   

12.
Six checkpoint Rad proteins (Rad1, Rad3, Rad9, Rad17, Rad26, and Hus1) are needed to regulate checkpoint protein kinases Chk1 and Cds1 in fission yeast. Chk1 is required to prevent mitosis when DNA is damaged by ionizing radiation (IR), whereas either kinase is sufficient to prevent mitosis when DNA replication is inhibited by hydroxyurea (HU). Checkpoint Rad proteins are required for IR-induced phosphorylation of Chk1 and HU-induced activation of Cds1. IR activates Cds1 only during the DNA synthesis (S) phase, whereas HU induces Chk1 phosphorylation only in cds1 mutants. Here, we investigate the basis of the checkpoint signal specificity of Chk1 phosphorylation and Cds1 activation. We show that IR fails to induce Chk1 phosphorylation in HU-arrested cells. Release from the HU arrest following IR causes substantial Chk1 phosphorylation. These and other data indicate that Cds1 prevents Chk1 phosphorylation in HU-arrested cells, which suggests that Cds1 actively suppresses a repair process that leads to Chk1 phosphorylation. Cds1 becomes more highly concentrated in the nucleus only during the S phase of the cell cycle. This finding correlates with S-phase specificity of IR-induced activation of Cds1. However, constitutive nuclear localization of Cds1 does not enhance IR-induced activation of Cds1. This result suggests that Cds1 activation requires DNA structures or protein activities that are present only during S phase. These findings help to explain how Chk1 and Cds1 respond to different checkpoint signals.  相似文献   

13.
Cds1, a serine/threonine kinase, enforces the S-M checkpoint in the fission yeast Schizosaccharomyces pombe. Cds1 is required for survival of replicational stress caused by agents that stall replication forks, but how Cds1 performs these functions is largely unknown. Here we report that the forkhead-associated-1 (FHA1) protein-docking domain of Cds1 interacts with Mus81, an evolutionarily conserved damage tolerance protein. Mus81 has an endonuclease homology domain found in the XPF nucleotide excision repair protein. Inactivation of mus81 reveals a unique spectrum of phenotypes. Mus81 enables survival of deoxynucleotide triphosphate starvation, UV radiation, and DNA polymerase impairment. Mus81 is essential in the absence of Bloom's syndrome Rqh1 helicase and is required for productive meiosis. Genetic epistasis studies suggest that Mus81 works with recombination enzymes to properly replicate damaged DNA. Inactivation of Mus81 triggers a checkpoint-dependent delay of mitosis. We propose that Mus81 is involved in the recruitment of Cds1 to aberrant DNA structures where Cds1 modulates the activity of damage tolerance enzymes.  相似文献   

14.
The replication checkpoint is activated when replication forks are obstructed by DNA lesions or protein complexes bound to DNA or when DNA synthesis is restrained by the limited availability of deoxyribonucleotides. This checkpoint preserves genome integrity by stabilizing stalled forks and delaying the onset of mitosis. In the fission yeast Schizosaccharomyces pombe, Mrc1 is a replication checkpoint adaptor protein that allows the sensor kinase Rad3-Rad26 to activate the effector kinase Cds1. In Saccharomyces cerevisiae, Mrc1 associates with replication forks and co-precipitates with the DNA replication protein Cdc45. Whether or not Mrc1 interacts directly with DNA is unknown. Here we define a approximately 150 amino acid DNA binding domain (DBD) in the N-terminal region of S. pombe Mrc1. The DBD interacts preferentially with branched DNA structures in vitro. Deletion of the DBD or point mutations that diminish its DNA binding activity render cells sensitive to the replication inhibitor hydroxyurea. These mutations also impair the replication checkpoint arrest. The DBD has a helix-loop-helix motif that is predicted to bind DNA. This motif is conserved in the recently identified N-terminal DBD of human Claspin, a presumptive homolog of yeast Mrc1 proteins.  相似文献   

15.
Hsk1, Saccharomyces cerevisiae Cdc7-related kinase in Shizosaccharomyces pombe, is required for G1/S transition and its kinase activity is controlled by the regulatory subunit Dfp1/Him1. Analyses of a newly isolated temperature-sensitive mutant, hsk1-89, reveal that Hsk1 plays crucial roles in DNA replication checkpoint signaling and maintenance of proper chromatin structures during mitotic S phase through regulating the functions of Rad3 (ATM)-Cds1 and Rad21 (cohesin), respectively, in addition to expected essential roles for initiation of mitotic DNA replication through phosphorylating Cdc19 (Mcm2). Checkpoint defect in hsk1-89 is indicated by accumulation of cut cells at 30 degrees C. hsk1-89 displays synthetic lethality in combination with rad3 deletion, indicating that survival of hsk1-89 depends on Rad3-dependent checkpoint pathway. Cds1 kinase activation, which normally occurs in response to early S phase arrest by nucleotide deprivation, is largely impaired in hsk1-89. Furthermore, Cds1-dependent hyperphosphorylation of Dfp1 in response to hydroxyurea arrest is eliminated in hsk1-89, suggesting that sufficient activation of Hsk1-Dfp1 kinase is required for S phase entry and replication checkpoint signaling. hsk1-89 displays apparent defect in mitosis at 37 degrees C leading to accumulation of cells with near 2C DNA content and with aberrant nuclear structures. These phenotypes are similar to those of rad21-K1 and are significantly enhanced in a hsk1-89 rad21-K1 double mutant. Consistent with essential roles of Rad21 as a component for the cohesin complex, sister chromatid cohesion is partially impaired in hsk1-89, suggesting a possibility that infrequent origin firing of the mutant may affect the cohesin functions during S phase.  相似文献   

16.
Synthesis of deoxynucleoside triphosphates (dNTPs) is required for both DNA replication and DNA repair and is catalyzed by ribonucleotide reductases (RNR), which convert ribonucleotides to their deoxy forms [1, 2]. Maintaining the correct levels of dNTPs for DNA synthesis is important for minimizing the mutation rate [3-7], and this is achieved by tight regulation of RNR [2, 8, 9]. In fission yeast, RNR is regulated in part by a small protein inhibitor, Spd1, which is degraded in S phase and after DNA damage to allow upregulation of dNTP supply [10-12]. Spd1 degradation is mediated by the activity of the CRL4(Cdt2) ubiquitin ligase complex [5, 13, 14]. This has been reported to be dependent on modulation of Cdt2 levels, which are cell cycle regulated, peaking in S phase, and which also increase after DNA damage in a checkpoint-dependent manner [7, 13]. We show here that Cdt2 level fluctuations are not sufficient to regulate Spd1 proteolysis and that the key step in this event is the interaction of Spd1 with the polymerase processivity factor proliferating cell nuclear antigen (PCNA), complexed onto DNA. This mechanism thus provides a direct link between DNA synthesis and RNR regulation.  相似文献   

17.
To investigate the checkpoint response to aberrant initiation, we analyzed the cell cycle checkpoint response induced by mutations of Schizosaccharomyces pombe DNA primase. DNA primase has two subunits, Spp1 and Spp2 (S. pombe primases 1 and 2). Spp1 is the catalytic subunit that synthesizes the RNA primer, which is then extended by DNA polymerase alpha (Polalpha) to synthesize an initiation DNA structure, and this catalytic function of Polalpha is a prerequisite for generating the S-M phase checkpoint. Here we show that Spp2 is required for coupling the function of Spp1 to Polalpha. Thermosensitive mutations of spp2(+) destabilize the Polalpha-primase complex, resulting in an allele-specific S phase checkpoint defect. The mutant exhibiting a more severe checkpoint defect also has a higher extent of Polalpha-primase complex instability and deficiency in the hydroxyurea-induced Cds1-mediated intra-S phase checkpoint response. However, this mutant is able to activate the Cds1 response to S phase arrest induced by temperature. These findings suggest that the Cds1 response to the S-phase arrest signal(s) induced by a initiation mutant is different from that induced by hydroxyurea. Interestingly, a polalphats mutant with a defective S-M phase checkpoint and an spp2 mutant with an intact checkpoint have a similar Polalpha-primase complex stability, and the Cds1 response induced by hydroxyurea or by the mutant arrests at the restrictive temperature. Thus, the Cds1-mediated intra-S phase checkpoint response induced by hydroxyurea can also be distinguished from the S-M phase checkpoint response that requires the initiation DNA synthesis by Polalpha.  相似文献   

18.
Frazer C  Young PG 《PloS one》2011,6(6):e21348
Following replication arrest the Cdc25 phosphatase is phosphorylated and inhibited by Cds1. It has previously been reported that expressing Cdc25 where 9 putative amino-terminal Cds1 phosphorylation sites have been substituted to alanine results in bypass of the DNA replication checkpoint. However, these results were acquired by expression of the phosphorylation mutant using a multicopy expression vector in a genetic background where the DNA replication checkpoint is intact. In order to clarify these results we constructed a Cdc25(9A)-GFP native promoter integrant and examined its effect on the replication checkpoint at endogenous expression levels. In this strain the replication checkpoint operates normally, conditional on the presence of the Mik1 kinase. In response to replication arrest the Cdc25(9A)-GFP protein is degraded, suggesting the presence of a backup mechanism to eliminate the phosphatase when it cannot be inhibited through phosphorylation.  相似文献   

19.
20.
Noguchi C  Noguchi E 《Genetics》2007,175(2):553-566
Sap1 is involved in replication fork pausing at rDNA repeats and functions during mating-type switching in Schizosaccharomyces pombe. These two roles are dependent on the ability of Sap1 to bind specific DNA sequences at the rDNA and mating-type loci, respectively. In S. pombe, Swi1 and Swi3 form the replication fork protection complex (FPC) and play important roles in the activation of the replication checkpoint and the stabilization of stalled replication forks. Here we describe the roles of Sap1 in the replication checkpoint. We show that Sap1 is involved in the activation of the replication checkpoint kinase Cds1 and that sap1 mutant cells accumulate spontaneous DNA damage during the S- and G2-phases, which is indicative of fork damage. We also show that sap1 mutants have a defect in the resumption of DNA replication after fork arrest. Sap1 is localized at the replication origin ori2004 and this localization is required for the association of the FPC with chromatin. We propose that Sap1 is required to recruit the FPC to chromatin, thereby contributing to the activation of the replication checkpoint and the stabilization of replication forks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号