首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antidepressant mechanism of Hypericum perforatum   总被引:7,自引:0,他引:7  
Mennini T  Gobbi M 《Life sciences》2004,75(9):1021-1027
Clinical data indicate that hydroalcoholic extracts of Hypericum perforatum might be as valuable as conventional antidepressants in mild-to-moderate depression, with fewer side effects. One clinical trial using two extracts with different hyperforin contents indicated it as the main active principle responsible for the antidepressant activity. Behavioural models in rodents confirm the antidepressant-like effect of Hypericum extracts and also of pure hyperforin and hypericin. A hydroalcoholic extract lacking hyperforin also lacks the antidepressant-like effect. According to pharmacokinetic data and binding studies, it appears that the antidepressant effect of Hypericum extract is unlikely be due to an interaction of hypericin with central neurotransmitter receptors. The main in vitro effects of hyperforin (at concentrations of 0.1-1 microM) are non-specific presynaptic effects, resulting in the non-selective inhibition of the uptake of many neurotransmitters, and the interaction with dopamine D1 and opioid receptors. However, it is still not clear whether these mechanisms can be activated in vivo, since after administration of Hypericum extract brain concentrations of hyperforin are well below those active in vitro. In the rat, Hypericum extract might indirectly activate sigma receptors in vivo (through the formation of an unknown metabolite or production of an endogenous ligand), suggesting a new target for its antidepressant effects.  相似文献   

2.
Hypericum perforatum L. (St. John’s wort) and Hypericum sampsonii Hance are medicinal plants used in China in the treatment of viruses and other disorders. In the current study, we investigated the effects of cytokinins 6-benzylaminopurin (BA), zeatin (ZT) and thidiazuron (TDZ) on plant growth and production of hypericins (pseudohypericin and hypericin) and hyperforin. Our data suggested that culture of H. perforatum in modified MS (Murashige and Skoog) medium, with a 50% reduction in ammonium nitrate and potassium nitrate, and supplemented with BA (0.44 μM) and indolebutyric acid (IBA, 0.049 μM), resulted in increased production of hypericins. Similar results were noted with H. sampsonii with minor changes to the medium (0.46 μM ZT and 0.049 μM IBA). There were approximately 2.95-, 2.62-fold increases in H. perforatum pseudohypericin and hypericin production by TDZ (0.45 μM) induction compared to the controls. No enhancement of hypericins and hyperforin production was elicited by TDZ in H. sampsonii. The elicitor methyl jasmonate (MJA, 50 μM) and its analog, 2,3-dihydroxypropyl jasmonate (DHPJA, 50 μM), were also used in H. perforatum and H. sampsonii shoot culture to increase secondary metabolite production, eliciting an increase in the production of hypericins and hyperforin. While leaf senescence and biomass inhibition were observed in cultures induced by MJA, no such effects were observed with DHPJA.  相似文献   

3.
Two previously uncharacterized cDNAs encoding for polyketide synthases (PKSs), designated as HpPKS1 and HpPKS2, were isolated from Hypericum perforatum. The full-length HpPKS1 was 1573bp containing an open reading frame (ORF) of 1161bp encoding for a 386 amino acid protein. The full-length cDNA of HpPKS2 was 1559bp with an ORF of 1182bp encoding for a 393 amino acid protein. The highly conserved catalytic amino acid residues common to plant-specific PKSs were preserved in both genes. HpPKS1 and HpPKS2 exhibited distinct tissue-specific expression patterns in H. perforatum. The HpPKS1 expression was highest in flower buds and lowest in root tissues. The expression of HpPKS2 was found to be high in flower buds and leaf margins and low in leaf interior parts, stems and roots. The expression of the HpPKS1 was found to correlate with the concentrations of hyperforin and adhyperforin while the expression of HpPKS2 showed correlation with the concentrations of hypericins and pseudohypericins in H. perforatum tissues.  相似文献   

4.
Hyperforin     
Beerhues L 《Phytochemistry》2006,67(20):2201-2207
Hyperforin is a polyprenylated acylphloroglucinol derivative from Hypericum perforatum (St. John's wort). It exhibits antidepressant activity by a novel mechanism of action, antibiotic activity against gram-positive bacteria, and antitumoral activity in vivo. However, it also produces drug-drug interactions by activation of the pregnan X receptor. No total synthesis has been described. Some natural and semisynthetic analogues are available to study structure-activity relationships. Enzymatically, the skeleton of hyperforin is formed by isobutyrophenone synthase from isobutyryl-CoA and three molecules of malonyl-CoA. The first prenylation step is catalyzed by a soluble and ion-dependent dimethylallyltransferase. Hyperforin mainly accumulates in pistils and fruits where it probably serves as defensive compound.  相似文献   

5.
The main biologically active constituents of Hypericum species are flavonoids (quercetin, isoquercitrin, hyperoside, rutin), biflavonoids and naphthodianthrones (hypericin, pseudohypericin). Lipoxygenase is the key enzyme in the biosynthesis of leukotriens, which have been postulated to play an important role in the pathophysiology of several inflammatory and allergic diseases. This work deals with the investigation of potential antilipoxygenase activity of different compounds and extracts isolated from Hypericum perforatum L. The highest inhibitory effect was exhibited by flavonoid derivative hyperoside (IC50 5.768 × 10−6 M). Acetone and ethanolic extracts caused also an inhibition of lipoxygenase. On the basis of inhibitory effect of compounds tested we assume that the most of them may be involved in the antiinflammatory principles of Hypericum perforatum L.  相似文献   

6.
Free radical scavenging and antioxidant activities of a standardized extract of Hypericum perforatum (SHP) were examined for inhibition of lipid peroxidation, for hydroxyl radical scavenging activity and interaction with 1,1-diphenyl-2-picrylhydrazyl stable free radical (DPPH). Concentrations between 1 and 50 microg/ml of SHP effectively inhibited lipid peroxidation of rat brain cortex mitochondria induced by Fe2+/ascorbate or NADPH system. The results showed that SHP scavenged DPPH radical in a dose-dependent manner and also presented inhibitory effects on the activity of xanthine oxidase. In contrast, hydroxyl radical scavenging occurs at high doses. The protective effect of the standardized extract against H2O2-induced oxidative damage on the pheochromocytoma cell line PC 12 was investigated by measuring cell viability via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) assays, caspase-3-enzyme activity and accumulation of reactive oxygen species [2',7'-dichlorofluorescin (DCF) assay]. Following 8-h cell exposure to H2O2 (300 microM), a marked reduction in cell survival was observed, which was significantly prevented by SHP (pre-incubated for 24 h) at 1-100 microg/ml. In a separate experiment, different concentrations of the standardized extract (0.1-100 microg/ml) also attenuated the increase in caspase-3 activity and suppressed the H2O2 -induced reactive oxygen species generation. Taken together, these results suggest that SHP shows relevant antioxidant activity both in vitro and in a cell system, by means of inhibiting free radical generation and lipid peroxidation.  相似文献   

7.
Changes in phenolic metabolism after elicitation with Colletotrichum gloeosporioides (CG) has been studied in Hypericum perforatum L. (HP) cell suspension cultures. Soluble phenolics were analysed by HPLC-DAD and HPLC-DAD-MS/MS. HP cultures elicited with the CG elicitor showed a significant increase in xanthone accumulation. Xanthone accumulation increased twelve fold when the cells were primed with methyl-jasmonate (MeJ) or salicylic acid (SA), before elicitation. HP cultures exposed only to MeJ produced a set of flavonoids, the flavones which represent a substantial part (approx. 40%) of the total flavonoids accumulated in these cells. The possible importance of xanthones as a component of defence mechanism of HP against biotic stress is discussed.  相似文献   

8.
We studied the effects of elicitors, such as mannan, gβ-1,3-glucan, ancymidol, and cork crumbs, on morphogenetic and biosynthetic potencies of shoot cultures of Hypericum perforatum L. In the presence of these elicitors, different morphogenetic structures of H. perforatum callus cultures were formed. A correlation was found between the morphogenetic processes and induction of hypericin and pseudohypericin biosynthesis in the callus cultures.  相似文献   

9.
Hypericum perforatum L. (St. John's wort) is an herbal remedy widely used in the treatment of mild to moderate depression. Hypericin, a photosensitive napthodianthrone, is believed to be the compound responsible for reversing the depression symptoms. In this study, novel in vitro cell culture systems of H. perforatum were used to monitor the effect of elicitation on cell growth and production of hypericin. A dramatic increase in cell growth and hypericin production was observed after exposure to jasmonic acid (JA). However, other elicitors such as salicylic acid (SA) and fungal cell wall elicitors failed to show any stimulatory effect on either cell growth or hypericin production. Cell cultures treated with JA and incubated in the dark showed increased growth and hypericin production as compared to the cultures grown under light conditions. Jasmonate induction in dark conditions played an important role in growth and hypericin production in cell suspension cultures, to our knowledge an undocumented observation.  相似文献   

10.
The secondary metabolite contents and genetic profiles of six Hypericum species (H. barbatum Jacq., H. hirsutum L., H. linarioides Bosse, H. maculatum Crantz, H. rumeliacum Boiss. and H. tetrapterum Fries), collected from different locations in Serbia, have been analyzed. Methanol extracts of the aerial parts of the plants were obtained by accelerated solvent extraction (ASE) at 40 degrees C and 100 bar, and analyzed for five pharmacologically important standard constituents (hyperoside, quercitrin, pseudohypericin, hyperforin and hypericin) by LC-MS/MS. The highest content of hypericin and pseudohypericin was observed in the H. barbatum extract, while the highest content of hyperforin and quercitrin was found in the H. tetrapterum extract and the highest content of hyperoside in the H. maculatum extract. A literature survey shows that the above six Hypericum species, with the exception of H. maculatum, have not been previously genetically profiled. In order to correlate the chemical constituents of the species under investigation with their genetic factors, genetic profiling of these species was undertaken using the random amplification of polymorphic DNA (RAPD) and single sequence repeat (SSR) profiles of the above selected plants. Among the 52 random primers used for the initial screening, only 10 yielded polymorphic RAPD profiles. A total of 111 polymorphic markers were generated using these primers. The SSR analysis shows that 8 out of the 10 primers used were polymorphic. The correlation among the species under investigation using the two genetic markers was performed using Jaccuard's coefficients of similarity and a high correlation (r=0.99) was obtained. The main conclusion from the above data is that there exists a stronger correlation for secondary metabolite contents with RAPD data than with SSR data among the six Hypericum species from Serbia.  相似文献   

11.
金丝桃素是贯叶连翘的主要药理活性成分。本文概述了金丝桃素的化学与生物合成途径,介绍了金丝桃素在贯叶连翘个体发育过程中的积累以及利用贯叶连翘的细胞和组织培养技术生产与积累金丝桃素的研究进展。最后,指出分子生物学和电子显微镜技术的发展为深入研究金丝桃素的产生和积累提供了有利工具。  相似文献   

12.
Hypericum perforatum (St. John’s wort) is an herb widely used as supplement for mild to moderate depression. Our prior studies established synergistic anti-inflammatory activity associated with 4 bioactive compounds in a fraction of a H. perforatum ethanol extract. Whether these 4 compounds also contributed to the ethanol extract activity was addressed in the research reported here. Despite the popularity of H. perforatum, other Hypericum species with different phytochemical profiles could have their anti-inflammatory potentials attributed to these or other compounds. In the current study, ethanol extracts of different Hypericum species were compared for their inhibitory effect on LPS-induced prostaglandin E2 (PGE2) and nitric oxide (NO) production in RAW 264.7 mouse macrophages. Among these extracts, those made from H. perforatum and H. gentianoides demonstrated stronger overall efficacy. LC–MS analysis established the 4 compounds were present in the H. perforatum extract and pseudohypericin in all active fractions. The 4 compounds accounted for a significant part of the extract’s inhibitory activity on PGE2, NO, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in RAW 264.7 as well as peritoneal macrophages. Pseudohypericin was the most important contributor of the anti-inflammatory potential among the 4 compounds. The lipophilic fractions of H. gentianoides extract, which did not contain the previously identified active constituents, decreased PGE2 and NO potently. These fractions were rich in acylphloroglucinols, including uliginosin A that accounted for a proportion of the anti-inflammatory activity observed with the active fractions. Overall, the current study established that a different group of major anti-inflammatory constituents were present in H. gentianoides, while showing that the previously identified 4 compound combination was important for H. perforatum’s anti-inflammatory potential.  相似文献   

13.
Little is known about the effective role of Hypericum perforatum on hepatic ischemia–reperfusion (I/R) injury in rats. Hence, albino rats were subjected to 45 min of hepatic ischemia followed by 60 min of reperfusion period. Hypericum perforatum extract (HPE) at the dose of 50 mg/kg body weight (HPE50) was intraperitonally injected as a single dose, 15 min prior to ischemia. Rats were sacrificed at the end of reperfusion period and then, biochemical investigations were made in serum and liver tissue. Liver tissue homogenates were used for the measurement of malondialdehyde (MDA), catalase (CAT) and glutathione peroxidase (GPx) levels. At the same time alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were assayed in serum samples and compared statistically. While the ALT, AST, LDH activities and MDA levels were significantly increased, CAT and GPx activities significantly decreased in only I/R-induced control rats compared to normal control rats (p < 0.05). Treatment with HPE50 significantly decreased the ALT, AST, LDH activities and MDA levels, and markedly increased activities of CAT and GPx in tissue homogenates compared to I/R-induced rats without treatment–control group (p < 0.05). In oxidative stress generated by hepatic ischemia–reperfusion, H. perforatum L. as an antioxidant agent contributes an alteration in the delicate balance between the scavenging capacity of antioxidant defence systems and free radicals in favour of the antioxidant defence systems in the body.  相似文献   

14.

Background and Aims Hypericum perforatum

(St. John''s wort) is a widespread Eurasian perennial plant species with remarkable variation in its morphology, ploidy and breeding system, which ranges from sex to apomixis. Here, hypotheses on the evolutionary origin of St. John''s wort are tested and contrasted with the subsequent history of interspecific gene flow.

Methods

Extensive field collections were analysed for quantitative morphological variation, ploidy, chromosome numbers and genetic diversity using nuclear (amplified fragment length polymorphism) and plastid (trnL-trnF) markers. The mode of reproduction was analysed by FCSS (flow cytometric seed screen).

Key Results

It is demonstrated that H. perforatum is not of hybrid origin, and for the first time wild diploid populations are documented. Pseudogamous facultative apomictic reproduction is prevalent in the polyploids, whereas diploids are predominantly sexual, a phenomenon which also characterizes its sister species H. maculatum. Both molecular markers characterize identical major gene pools, distinguishing H. perforatum from H. maculatum and two genetic groups in H. perforatum. All three gene pools are in close geographical contact. Extensive gene flow and hybridization throughout Europe within and between gene pools and species is exemplified by the molecular data and confirmed by morphometric analyses.

Conclusions Hypericum perforatum

is of a single evolutionary origin and later split into two major gene pools. Subsequently, independent and recurrent polyploidization occurred in all lineages and was accompanied by substantial gene flow within and between H. perforatum and H. maculatum. These processes are highly influenced by the reproductive system in both species, with a switch to predominantly apomictic reproduction in polyploids, irrespective of their origin.  相似文献   

15.
Hypericum perforatum (Hp) has been used medicinally to treat a variety of conditions including mild-to-moderate depression. Recently, several anti-inflammatory activities of Hp have been reported. An ethanol extract of Hp was fractionated with the guidance of an anti-inflammatory bioassay (lipopolysaccharide (LPS)-induced prostaglandin E2 production (PGE2)), and four constituents were identified. When combined together at concentrations detected in the Hp fraction to make a 4 component system, these constituents (0.1 μM chlorogenic acid (compound 1), 0.08 μM amentoflavone (compound 2), 0.07 μM quercetin (compound 3), and 0.03 μM pseudohypericin (compound 4)) explained the majority of the activity of the fraction when activated by light, but only partially explained the activity of this Hp fraction in dark conditions. One of the constituents, light-activated pseudohypericin, was necessary, but not sufficient to explain the reduction in LPS-induced PGE2 of the 4 component system. The Hp fraction and the 4 component system inhibited lipoxygenase and cytosolic phospholipase A2, two enzymes in the PGE2-mediated inflammatory response. The 4 component system inhibited the production of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α), and the Hp fraction inhibited the anti-inflammatory cytokine interleukin-10 (IL-10). Thus, the Hp fraction and selected constituents from this fraction showed evidence of blocking pro-inflammatory mediators but not enhancing inflammation-suppressing mediators.  相似文献   

16.
Tanaka N  Takaishi Y 《Phytochemistry》2006,67(19):2146-2151
Six xanthones, 1,3,7-trihydroxy-2-(2-hydroxy-3-methyl-3-butenyl)-xanthone (1), 1,7-dihydroxy-2,3-[2'-(1-hydroxy-1-methylethyl)-dihydrofurano]-xanthone (2), 1,3,7-trihydroxy-5-methoxyxanthone (3), 1,7-dihydroxy-5,6-dimethoxyxanthone (4), 4,5-dihydroxy-2,3-dimethoxyxanthone (5), 1,3-dihydroxy-2,4-dimethoxyxanthone (6) and 21 known xanthones were isolated from the leaves and stems of Hypericum chinense. Their structures were established based on spectroscopic studies.  相似文献   

17.
As immunocompetent cells of the brain, microglia are able to counteract the damaging effects of amyloid-beta in Alzheimer's disease by phagocytosis-mediated clearance of protein aggregates. The survival and health of microglia are therefore critical for attenuating and preventing neurodegenerative diseases. In a microglial cell line pretreated with St. John's wort (Hypericum perforatum L.) extract (HPE), the cell death evoked by treatment with amyloid-beta (25-35) and (1-40) was attenuated significantly in a dose-dependent manner. Investigation of the single compounds in the extract revealed that the flavanols (+)-catechin and (-)-epicatechin increase cell viability slightly, whereas the flavonol quercetin and its glycosides rutin, hyperosid and quercitrin showed no effect on cell viability. In contrast, at the same concentration, the flavonoids reduced the formation of amyloid-induced reactive oxygen species in microglia, indicating that improvement of cell viability by the catechins is not correlated to the antioxidant activity. No influence of HPE on the capacity of microglia to phagocytose sub-toxic concentrations of fibrillar amyloid-beta (1-40) was observed. Other experiments showed that HPE, (+)-catechin and (-)-epicatechin can alter cellular membrane fluidity and thereby may have a beneficial effect on cell health. Our findings provide in vitro evidence that treatment especially with the complex plant extract HPE may restore or improve microglial viability and thereby attenuate amyloid-beta mediated toxicity in Alzheimer's disease.  相似文献   

18.
The essential oils of the aerial parts of nine species of Hypericum (Hypericum barbatum, Hypericum hirsutum, Hypericum linarioides, Hypericum maculatum, Hypericum olympicum, Hypericum perforatum, Hypericum richeri, Hypericum rumeliacum and Hypericum tetrapterum), collected from different locations in Southeast Serbia, were obtained by steam distillation and analyzed by GC and GC–MS. The essential oils investigated were characterized by a high content of non-terpene compounds and a low content of monoterpenes. The contents of non-terpenes, monoterpenes and sesquiterpenes in oils of the species H. barbatum, H. richeri and H. rumeliacum (section Drosocaprium) were similar and these oils were characterized by high contents of fatty acids. The oils of H. hirsutum and H. linarioides (section Taeniocarpium) contained a high percentage of n-nonane. There were similarities in contents of non-terpenes and sesquiterpenes in oils of species that belong to the section Hypericum (H. maculatum, H. perforatum and H. tetrapterum). The oil of H. olympicum differed from others by higher terpene content. A comparison was also carried out of the chemical composition of the essential oils from flower, leaf and stem of H. perforatum and it revealed that the highest concentration of non-terpene compounds was found in the flower and stem oil, while a high concentration of sesquiterpenes was characteristic for leaf oil. There were significant differences in the concentrations of the same compounds in the essential oils of H. maculatum, H. olympicum and H. perforatum, collected in different years from the same location which could be explained by seasonal differences. All data were statistically processed with principal component analysis and cluster analysis. The main conclusion from the above data is that genetic and environmental factors both play a role in determining the composition of essential oils of the Hypericum species studied.  相似文献   

19.
An acylphloroglucinol, elliptophenone A, and two xanthones, elliptoxanthone A and elliptoxanthone B, were isolated from the aerial portions of Hypericum ellipticum together with three known xanthones, 1,3,7-trihydroxy-8-(3-methyl-2-butenyl)-9H-xanthen-9-one, 1,6-dihydroxy-4-methoxy-9H-xanthen-9-one, and 1,4,5-trihydroxy-9H-xanthen-9-one. Their structures were determined by spectroscopic analyses. The acylphloroglucinol and xanthones were evaluated for cytotoxicity using three human colon cancer cell lines cell lines (HT-29, HCT-116 and Caco-2) and a normal human colon cell line (CCD-18Co).  相似文献   

20.
Sulfonated xanthones from Hypericum sampsonii   总被引:3,自引:0,他引:3  
Hong D  Yin F  Hu LH  Lu P 《Phytochemistry》2004,65(18):2595-2598
Xanthones, 1,3-dihydroxy-5-methoxyxanthone-4-sulfonate and 1,3-dihydroxy-5-O-beta-D-glycopyranosylxanthone-4-sulfonate, together with nine known compounds were obtained from H. sampsonii. This is the first report of sulfonated xanthonoids. Furthermore, compounds 1 and 2 exhibited significant cytotoxicity against the P388 cancer cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号