首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mononuclear phagocytes regulate the generation of plasmin by secreting urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor-2 (PAI-2). We investigated the production of plasminogen activator (PA) and PA inhibitor by the human monocytic leukemia cell line, THP-1. Similar to U937 monoblast-like cells and peripheral blood monocytes (PBM), THP-1 cells produce a PA that is specifically neutralized by anti-uPA antibody and comigrates with human high molecular mass uPA (54 kDa) on casein-plasminogen zymogaphy. PA activity could be dissociated from intact THP-1 cells by brief treatment with a weak acid-glycine buffer, indicating that the uPA is secreted and bound to receptors on the plasma membrane. Regulation of uPA proceeds normally in THP-1 cells, with cell-associated PA activity increasing from 77 +/- 20 to 163 +/- 26 and 325 +/- 30 mPU/10(6) cells in response to PMA and LPS, respectively; parallel increases in steady state levels of uPA mRNA were observed. In contrast to normal expression of uPA activity, functional PAI-2 could not be demonstrated in either the conditioned media or cell lysates of THP-1 under basal or stimulated conditions. Both U937 and PBM secrete low levels of PA inhibitor activity that increase substantially in response to stimulation with PMA and LPS. Immunoreactive PAI-2, measured by ELISA, was undetectable in THP-1 lysates or conditioned medium, but was consistently present in U937 and PBM, paralleling the presence of PA inhibitor activity. THP-1 cells express low levels of an abnormally sized mRNA for PAI-2 and demonstrate a regulatory defect whereby steady state levels of PAI-2 mRNA are markedly reduced upon stimulation with PMA or LPS. By contrast, U937 and PBM respond to identical stimulation with increases in PAI-2 mRNA. We conclude that THP-1 cells express a structurally abnormal species of PAI-2 mRNA, with complete loss of inhibitory activity as well as altered function of PMA- and LPS-responsive regulatory elements.  相似文献   

2.
Cell extracts and conditioned media (CM) from cultured bovine aortic endothelial cells (BAEs) were fractionated by PAGE in the presence SDS, and plasminogen activator (PA) activity was localized by fibrin autography. Multiple molecular weight forms of PA were detected in both preparations. Cell-associated PAs had Mr of 48,000, 74,000, and 100,000 while secreted PAs showed Mr of 52,000, 74,000, and 100,000. A broad zone of activity (Mr 80,000-100,000) also was present in both cellular fractions. In addition, PAs of Mr 41,000 and 30,000 appeared upon prolonged incubation or repeated freezing and thawing of the samples, and probably represent degradation products of higher molecular weight forms. This complex lysis pattern was not observed when CM was subjected to isoelectric focusing. Instead, only two classes of activator were resolved, one at pH 8.5, the other at 7.6. Analysis of focused samples by SDS PAGE revealed that the activity at pH 8.5 resulted exclusively from the Mr 52,000 form; all other forms were recovered at pH 7.6. The activity of the Mr 52,000 form was neutralized by anti-urokinase IgG but was not affected by antitissue activator IgG indicating that it is a urokinaselike PA. The activities of the Mr 74,000-100,000 forms were not affected by anti-urokinase. They were blocked by antitissue activator suggesting that all the forms in this group were tissue-type PAs. The multiple forms of PA were differentially sensitive to inactivation by diisopropylfluorophosphate (DFP). Treatment of CM with 10 mM DFP for 2 h at 37 degrees C only partially inhibited the 52,000-dalton form. However, it completely inactivated the 74,000-dalton partially inhibited the 52,000-dalton form. However, it completely inactivated the 74,000-dalton PA. The activity of the Mr 100,000 form was not affected by this treatment, or by treatment with 40 mM DFP. Thus, cultured BAEs produce multiple, immunologically distinct forms of PA which differ in size, charge, and sensitivity to DFP. These forms include both urokinaselike and tissue-activator-like PAs. The possibility that one of these forms is a zymogen is discussed.  相似文献   

3.
Electrophoresis of cornified cell extracts of 2-day-old rats, using SDS polyacrylamide gels copolymerized with alpha-casein or gelatin with or without plasminogen, was performed. Both Tris-HCl buffer soluble protein and KSCN solubilized protein contained a number of hydrolases for alpha-casein and/or gelatin, but PA (mol. wts 57 and 50K) was found only in the KSCN extract. The pH dependency, substrate specificity and mol. wt of plasminogen-independent proteinases were comparatively determined and DFP inhibition tested. This simple technique helped to identify the presence of several proteinases and to characterize them in partially purified epidermal extracts.  相似文献   

4.
The dependence of urokinase-type plasminogen activator (uPA) induction on endogenous basic fibroblast growth factor (bFGF) activity during endothelial cell migration was investigated utilizing a combination of wounded endothelial cell monolayers and substrate overlay techniques. Purified polyclonal rabbit immunoglobulin G (IgG) against bFGF blocked the appearance of uPA-dependent lytic activity normally observed at the edge of a wounded bovine aortic endothelial (BAE) cell monolayer. Additionally, the migration of cells into the denuded area was inhibited 30-50% by antibodies either to bFGF or to bovine uPA. Incubation of wounded monolayers with either purified bovine uPA or agents able to induce PA activity, such as phorbol myristate acetate (PMA), vanadate, or bFGF, resulted in enhanced migration of cells (28-50%). Anti-bovine uPA IgG blocked a significant fraction (25%) of BAE cell migration induced by exposure to exogenous bFGF. The role of uPA in migration of wounded BAE cells was not dependent on plasmin generation. Furthermore, the amino terminal fragment (ATF) of human recombinant (hr) uPA, which is enzymatically inactive, stimulated endothelial cell movement in the presence of anti-bFGF IgG. These results suggest that BAE cell migration from the edge of a wounded monolayer is dependent upon local increases of uPA mediated by endogenous bFGF. Moreover, the data support the conclusion that migration is stimulated via a signalling mechanism dependent upon occupancy of the uPA receptor but independent of uPA-mediated proteolysis.  相似文献   

5.
This study evaluates the contribution of two types of plasminogen activators (PAs; tissue-type PA (tPA) versus urokinase-type PA (uPA) toward the invasiveness of human melanoma cells in a novel in vitro assay. We identified two human melanoma cell lines, MelJuso and MeWo, expressing uPA or tPA as shown at mRNA, protein, and enzyme activity level. MelJuso cells produced uPA as well as plasminogen activator inhibitor-1 (PAI-1). The latter was, however, not sufficient to neutralize the cell-associated or secreted uPA activity. MeWo cells secreted tPA, but the enzyme was not found to be cell-associated. PAI-1 production by these cells was not detectable. Plasminogen activation and fibrinolytic capacity of both cell lines were reduced by anticatalytic monoclonal antibodies specific for the respective type of PA or by aprotinin. In a novel in vitro invasion assay, antibodies to PA as well as aprotinin decreased the invasiveness of both cell lines into a fibrin gel, Matrigel, or intact extracellular matrix. Our results confirm the importance of uPA-catalyzed plasminogen activation in tumor cell invasiveness. Furthermore, we provide evidence that tPA, beyond its key role in thrombolysis, can also be involved in in vitro invasion of human melanoma cells.  相似文献   

6.
When F9 teratocarcinoma cells are treated with retinoic acid plus cyclic AMP (RACF9) they differentiate into parietal endoderm. Differentiation is accompanied by the acquisition of substrate adhesion sites and a change in the pattern of gene expression, including the synthesis of tissue-type plasminogen activator (tPA). We demonstrate here that dihydrocytochalasin B (DHCB) treatment of differentiating F9 cells prevents the assembly of a structured actin cytoskeleton and generates a more rounded and stellate cell morphology. This morphological change is accompanied by the accumulation of the usually visceral endoderm-specific marker urokinase-type plasminogen activator (uPA) and an increase in tPA levels in comparison to untreated RACF9 controls. The increase in tPA accumulation is preceded by an increase in tPA mRNA levels. These effects are reversible, with a lag, when DHCB is removed, and PA accumulation can be stimulated within 24 h when differentiated cells are exposed to DHCB. Exposure to the microtubule disrupting agent colchicine has no effect on uPA or tPA accumulation. In addition, antibody directed against the beta 1 integrin subunit can also specifically elicit increased PA production. Thus disturbing the cytoskeleton and cytoskeleton associated substrate adhesions promotes PA accumulation.  相似文献   

7.
8.
High molecular weight urokinase-type plasminogen activator (uPA) in which proteolytic activity was inactivated (diisopropyl fluorophosphate (DFP)-uPA), its amino-terminal fragment (ATF, amino acids (aa) 1-143), and fucosylated and defucosylated growth factor domains (GFD, aa 4-43) were tested for growth-promoting effects and binding in human SaOS-2 osteosarcoma cells and U-937 lymphoma cells. DFP-uPA, ATF, and both the fucosylated and defucosylated GFD were capable of competing with 125I-ATF for binding to both SaOS-2 and U-937 cells. DFP-uPA, ATF, and fucosylated GFD were also mitogenic in SaOS-2 cells and increased cell numbers. However, defucosylated GFD was nonmitogenic in SaOS-2 cells and did not stimulate cell proliferation, even though it bound to these cells in a manner equivalent to the fucosylated GFD. A nonglycosylated high molecular weight uPA expressed and purified from Escherichia coli inhibited 125I-ATF binding to SaOS-2 cells but was also nonmitogenic. No mitogenic activity was observed in U-937 cells treated with the uPA forms capable of eliciting a mitogenic response in SaOS-2 cells. Proteolytically prepared kringle domain (aa 47-135) and low molecular weight uPA (aa 144-411) did not compete for 125I-ATF binding and did not elicit any mitogenic response in either of the cell lines tested. In addition, tissue plasminogen activator (tPA), which has been shown to be homologous to uPA in its growth factor domain and is also fucosylated, did not inhibit 125I-ATF binding nor elicit any mitogenic response. These results demonstrate that the GFD, implicated in binding to the uPA receptor, is also responsible for growth factor like activity in SaOS-2 cells and that the fucosylation at Thr18 within this domain may serve as a molecular trigger in eliciting this response.  相似文献   

9.
蚯蚓体内一种纤溶酶原激活剂(e-PA)的部分性质研究   总被引:15,自引:0,他引:15  
从赤子爱胜蚓(Eiseniafaetida)中纯化出的一种纤溶酶原激活剂(e-PA)在纤维蛋白平板上可表现出三种活性,分别记为:CFPg,uCFPg和uCF.为更好了解各种活性与e-PA的纤溶能力的关系,考察了在SDS和不同抑制剂存在下各种活性的变化.结果表明,SDS可以增强CFPg活性且使得e-PA变得对一些抑制剂更敏感;leupeptin,chymostatin,pepstatin,apro-tinin,phenylmethylsulfonylfluoride(PMSF)和dithiothreitol(DTT)对uCF没有影响;pep-statin能增强CFPg和uCFPg活性,E-64(一种巯基抑制剂)能增强uCFPg和uCF活性.这些现象说明不能简单将e-PA归结为丝氨酸蛋白酶或巯基蛋白酶.此外又以纤溶酶原为底物,分析了e-PA在体外降解天然蛋白质的肽键特异性,结果表明:e-PA可以切割碱性氨基酸,小的中性氨基酸及Met的羧基端,同时e-PA确能将纤溶酶原切割为纤溶酶;这一结论为e-PA有可能成为新型溶栓药物提供了生化基础.  相似文献   

10.
The highly specific plasminogen activator inhibitor of placental type, PAI-2, occurs in the placenta in a low molecular mass form of 46.6 kDa, and in pregnancy plasma in a (possibly glycosylated) high molecular mass form of 60 kDa. Extensive knowledge is available about the functional properties of PAI-2 as a plasminogen activator inhibitor and about its molecular biology and regulation. Of the several placenta proteins (PP) isolated, one of them, PP10, has a molecular mass of 48 kDa and its occurrence in malignancy and in complications during pregnancy has been the topic of a number of studies, though its properties and physiological significance are unknown. The present findings constitute evidence of immunological identity between PP10 and PAI-2. The sections of the amino acid sequence of PP10 analysed here were found to have identical counterparts in the sequence of the low molecular mass form of PA1-2, but in several preparations PP10 was found to occur in an inactive two-chain form due to cleavage of an Arg-Thr bond, the two peptide chains being linked to each other by a disulphide bridge. The cleavage site is identical to that observed in the reaction between PAI-2 and urokinase. The results make it possible to coordinate and correlate the findings of many separate studies and our own observations on PP10 and PAI-2.  相似文献   

11.
A peptide mitogen for cultured osteoblast-like cells was purified from serum-free conditioned culture medium of a human prostatic cancer cell line, PC-3. Based on amino acid sequencing and estimated molecular weight, this peptide was identified as an NH2-terminal fragment of urokinase-type plasminogen activator (uPA). Recombinant high molecular weight (HMW) uPA and the NH2-terminal growth factor domain (GFD) of uPA, but not low molecular weight (LMW) uPA (lacking the NH2-terminal region) stimulated [3H] thymidine incorporation and proliferation in osteoblast-like cells, and specific, competitive binding sites for HMW, but not LMW, uPA were demonstrable. These studies demonstrate the production of a mitogenic NH2-terminal fragment of uPA by a human prostatic cancer cell line which may be of importance in the pathogenesis of osteoblastic metastases.  相似文献   

12.
Plasminogen activator inhibitor-1 (PAI-1) is a serpin protease inhibitor that binds plasminogen activators (uPA and tPA) at a reactive center loop located at the carboxyl-terminal amino acid residues 320-351. The loop is stretched across the top of the active PAI-1 protein maintaining the molecule in a rigid conformation. In the latent PAI-1 conformation, the reactive center loop is inserted into one of the beta sheets, thus making the reactive center loop unavailable for interaction with the plasminogen activators. We truncated porcine PAI-1 at the amino and carboxyl termini to eliminate the reactive center loop, part of a heparin binding site, and a vitronectin binding site. The region we maintained corresponds to amino acids 80-265 of mature human PAI-1 containing binding sites for vitronectin, heparin (partial), uPA, tPA, fibrin, thrombin, and the helix F region. The interaction of "inactive" PAI-1, rPAI-1(23), with plasminogen and uPA induces the formation of a proteolytic protein with angiostatin properties. Increasing amounts of rPAI-1(23) inhibit the proteolytic angiostatin fragment. Endothelial cells exposed to exogenous rPAI-1(23) exhibit reduced proliferation, reduced tube formation, and 47% apoptotic cells within 48 h. Transfected endothelial cells secreting rPAI-1(23) have a 30% reduction in proliferation, vastly reduced tube formation, and a 50% reduction in cell migration in the presence of VEGF. These two studies show that rPAI-1(23) interactions with uPA and plasminogen can inhibit plasmin by two mechanisms. In one mechanism, rPAI-1(23) cleaves plasmin to form a proteolytic angiostatin-like protein. In a second mechanism, rPAI-1(23) can bind uPA and/or plasminogen to reduce the number of uPA and plasminogen interactions, hence reducing the amount of plasmin that is produced.  相似文献   

13.
We examined whether plasminogen activators (PAs) are produced by bovine cumulus-oocyte complexes (COCs) during maturation in vitro. The effects of epidermal growth factor (EGF) on production of PAs in oocytes and cumulus cells were also examined. When COCs were cultured for 24 h with 30 ng/ml EGF, three plasminogen-dependent lytic zones (58.5 +/- 3.5 kDa, 79.0 +/- 3.0 kDa, and 113.5 +/- 6.5 kDa) were observed. Addition of amiloride, a competitive inhibitor of urokinase-type PA (uPA), to the zymogram eliminated the activity of the 58.5 +/- 3.5-kDa zone, suggesting that this band is a uPA. However, since the activity of the remaining two bands was not eliminated, it was suggested that the 79.0 +/- 3.0-kDa band is a tissue-type PA (tPA) and the 113.5 +/- 6.5-kDa band is possibly a tPA-PA inhibitor (tPA-PAI) complex. In COCs before culture, however, no activity of PAs was detected. At 6 h of culture, the same level of uPA activity was detected in COCs cultured both in the absence and in the presence of EGF. The uPA activity was increased at 12 h of culture but without further increase at 24 h of culture, with higher activity in the presence than in the absence of EGF. The activity of tPA and tPA-PAI was first detected at 24 h of culture in the absence of EGF. In the presence of EGF, however, some activity of tPA-PAI was detected at 12 h of culture. At 24 h of culture, the activity of all PAs was detected in cumulus cells, but only uPA activity was detected in oocytes, with higher activity in the presence than in the absence of EGF. The uPA activity in oocytes was not detected when they were cultured without cumulus cells in either the presence or absence of EGF, although cumulus expansion was stimulated by EGF, exhibiting a time-course similar to that observed in PA production. These results suggest that uPA, tPA, and tPA-PAI are all produced by bovine COCs, but only uPA by oocytes, during maturation in vitro. However, cumulus cells play an essential role or roles in the production of uPA by oocytes, and EGF enhances the roles of cumulus cells.  相似文献   

14.
J P Quigley 《Cell》1979,17(1):131-141
The tumor promoter phorbol myristate acetate (PMA) induces the production of the serine protease plasminogen activator (PA) in cultures of normal chick embryo fibroblasts (CEF) and synergistically enhances PA production in Rous sarcoma virus-transformed chick embryo fibroblasts (RSVCEF). Following PMA treatment of serum-free RSVCEF cultures, PA induction is accompanied by distinct morphological changes, including enhanced cell clustering and the formation of dense cellular aggregates. These alterations in the morphology of the PMA-treated transformed cells are inhibited by several protease inhibitors, including leupeptin, NPGB, SBTI, benzamidine and DFP, the specific inhibitor of serine enzymes. A number of protease inhibitors are ineffective in preventing the PMA-induced morphological changes; these include inhibitors of trypsin, chymotrypsin, elastase, thrombin and, most importantly, plasmin. The use of a fluorescent substrate to assay PA directly demonstrated that the pattern of inhibiton of PA activity correlates exactly with the inhibition of morphological changes. The of 3H-DFP to label and characterize serine zymes in the culture fluid from PMA-treated cells further indicated that PA is the serine protease responsible for the morphological changes. Thus PA itself can catalytically alter cellular behavior in culture independent of plasminogen, until not its only known natural substrate.  相似文献   

15.
1. Serum-free conditioned medium from L-cells or L-cells treated with the tumor-promotor phorbol myristate acetate (PMA) was analyzed for plasminogen activator (PA) and plasminogen activator inhibitor (PAI) activity. Conditioned medium from control or PMA-treated cells did not contain detectable PA activity when assayed by SDS-PAGE and zymography. 2. Conditioned medium from PMA-treated cells, but not control cells, contained a PAI of Mr = 40,000 da when assayed by reverse zymography. 3. The L-cell PAI formed SDS-stable complexes with purified human (homo sapiens) urokinase and tissue plasminogen activator, as well as, mouse (Mus musculus) urinary PA. 4. These results indicate that biochemical and immunological differences between human and mouse urokinase and human urokinase and human tissue plasminogen activator do not influence the interaction of the L-cell PAI with these enzymes.  相似文献   

16.
Plasminogen activator from conditioned medium of human embryonal lung fibroblasts was purified by phosphocellulose P11 chromatography, followed by p-aminobenzamidine-agarose chromatography. Two forms of plasminogen activators were separated by chromatography on the heparin-sepharose. The high molecular weight form (53 kDa) with specific activity 130 000 IU/mg consists of two polypeptide chains (31 kDa and 20 kDa) and exhibits strong affinity for fibrin-celite, lysine-sepharose and heparin-sepharose. The low molecular weight form (32 kDa, 190 000 IU/mg) also binds to these sorbents, but more weakly, and its properties are very similar to those of low molecular weight urokinase. Activity of both forms of plasminogen activators are inhibited by monoclonal antibodies against urokinase. A number of enzymological chromatographic and immunological properties indicates, that the plasminogen activator from lung fibroblasts is of urokinase type.  相似文献   

17.
The binding of urokinase-type plasminogen activator (uPA) to its specific cell-surface receptor (uPAR) localises the proteolytic cascade initiated by uPA to the pericellular environment. Inhibition of uPA activity or prevention of uPA binding to uPAR might have a beneficial effect on disease states wherein this activity is deregulated, e.g. cancer and some inflammatory diseases. To this end, a bifunctional hybrid molecule consisting of the uPAR-binding growth-factor domain of uPA (amino acids 1-47; GFuPA) at the N-terminus of plasminogen-activator inhibitor type 2 (PAI-2) was produced in Saccharomyces cerevisiae. The purified protein inhibited uPA with kinetics similar to placental or recombinant PAI-2 and was also found to bind to U937 cells and to FL amnion cells. GFuPA-PAI-2 competed with uPA, the N-terminal fragment of uPA and a proteolytic fragment of uPA (amino acids 4-43) in cell binding experiments, indicating that the molecule bound to the cells via uPAR. Hence, both the uPA-inhibitory and uPAR-binding domains of the hybrid molecule were functional, demonstrating the feasibility of the novel concept of introducing an unrelated, functional domain onto a member of the serine-protease-inhibitor superfamily.  相似文献   

18.
There are two physiological plasminogen activators (PAs), tissue-type PA (t-PA) and urokinase (u-PA) which possess distinct immunological and biochemical characteristics. Using genetic engineering techniques a hybrid t:u-PA cDNA, comprised of amino acid (aa) sequences corresponding to the non-protease region (aa 1-261) of t-PA and the protease region (aa 132-411) of u-PA, was constructed. The t:u-PA gene after insertion into the SV40 expression vector was expressed in monkey Cos-1 cells. The 66-67 kDa t:u-PA was produced in an enzymatically active form. The fibrinolytic activity of the t:u-PA could be quenched by anti-urokinase as well as by anti-t-PA sera. Like urokinase, the t:u-PA showed a high intrinsic plasminogen activation. This activity, as in the case of t-PA, was stimulated by fibrin. The u-PA, on the other hand, stimulated plasminogen activation marginally in the presence of fibrin. Both the t:u-PA and t-PA showed binding affinity for fibrin clot. This study strongly suggests the autonomous nature of the structural domains in PA and also demonstrates the feasibility of shuffling these domains without loss of their functional activities.  相似文献   

19.
Transforming growth factor beta (TGF beta) treatment of rat osteoblast-rich calvarial cells or of the clonal osteogenic sarcoma cells, UMR 106-01, resulted in dose-dependent inhibition of plasminogen activator (PA) activity, and increased production of 3.2 kb mRNA and protein for PA inhibitor -1 (PAI-1). Although tissue-type PA (tPA) protein was not measured, TGF beta did not influence production of mRNA for tPA. Production of 2.3 kb mRNA for urokinase-type PA (uPA) was also increased by TGF beta in a dose-dependent manner. The effects of TGF beta on synthesis of mRNA for PAI-1 and uPA were maintained when protein synthesis was inhibited, and were abolished by inhibition of RNA synthesis. Although uPA had not been detected previously as a product of rat osteoblasts, treatment of lysates of osteoblast-like cells with plasmin yielded a band of PA activity on reverse fibrin autography, corresponding to a low Mr form of uPA. Untreated conditioned media from normal osteoblasts or UMR 106-01 cells contained no significant TGF beta activity, but activity could be detected in acidified medium. Treatment of conditioned media with plasmin resulted in activation of approximately 50% of the TGF beta detectable in acidified media. The results identify several effects of TGF beta on the PA-PA inhibitor system in osteoblasts. Net regulation of tPA activity through the stimulatory actions of several calciotropic hormones and the promotion of PAI-1 formation by TGF beta could determine the amount of osteoblast-derived TGF beta activated locally in bone. Stimulation of osteoblast production of mRNA for uPA could reflect effects on the synthesis of sc-uPA, a precursor for the active form of the enzyme.  相似文献   

20.
U Zacharias  H Will 《FEBS letters》1991,289(2):155-158
Porcine urine, unlike human urine, does not contain detectable amounts of urokinase-type plasminogen activator (u-PA). The plasminogen activator present in porcine urine is of tissue-type (t-PA) as identified by the following criteria. (1) Porcine urine PA exhibits an Mr of 65,000 similar to the Mr of human t-PA (64-70,000) but distinct from the Mr of human u-PA (55,000). (2) Antibodies against human t-PA bind and inhibit crude and purified porcine urine PA, while human u-PA-specific antibodies do not react with porcine urine PA. (3) Plasminogen activation by porcine urine PA is markedly stimulated in the presence of fibrinogen fragments. (4) Porcine urine PA activity is not affected by concentration of amiloride substantially suppressing human u-PA activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号