首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Bai  L Campisi    P Freimuth 《Journal of virology》1994,68(9):5925-5932
The penton base gene from adenovirus type 12 (Ad12) was sequenced and encodes a 497-residue polypeptide, 74 residues shorter than the penton base from Ad2. The Ad2 and Ad12 proteins are highly conserved at the amino- and carboxy-terminal ends but diverge radically in the central region, where 63 residues are missing from the Ad12 sequence. Conserved within this variable region is the sequence Arg-Gly-Asp (RGD), which, in the Ad2 penton base, binds to integrins in the target cell membrane, enhancing the rate or the efficiency of infection. The Ad12 penton base was expressed in Escherichia coli, and the purified refolded protein assembled in vitro with Ad2 fibers. In contrast to the Ad2 penton base, the Ad12 protein failed to cause the rounding of adherent cells or to promote attachment of HeLa S3 suspension cells; however, A549 cells did attach to surfaces coated with either protein and pretreatment of the cells with an integrin alpha v beta 5 monoclonal antibody reduced attachment to background levels. Treatment of HeLa and A549 cells with integrin alpha v beta 3 or alpha v beta 5 monoclonal antibodies or with an RGD-containing fragment of the Ad2 penton base protein inhibited infection by Ad12 but had no effect on and in some cases enhanced infection by Ad2. Purified Ad2 fiber protein reduced the binding of radiolabeled Ad2 and Ad12 virions to HeLa and A549 cells nearly to background levels, but the concentrations of fiber that strongly inhibited infection by Ad2 only weakly inhibited Ad12 infection. These data suggest that alpha v-containing integrins alone may be sufficient to support infection by Ad12 and that this pathway is not efficiently used by Ad2.  相似文献   

2.
The established mechanism for infection of most cells with adenovirus serotype 5 (Ad5) involves fiber capsid protein binding to coxsackievirus-adenovirus receptor (CAR) at the cell surface, followed by penton base capsid protein binding to alpha(v) integrins, which triggers clathrin-mediated endocytosis of the virus. Here we determined the identity of the capsid proteins responsible for mediating Ad5 entry into the acinar epithelial cells of the lacrimal gland. Ad5 transduction of primary rabbit lacrimal acinar cells was inhibited by excess Ad5 fiber or knob (terminal region of the fiber) but not excess penton base. Investigation of the interactions of recombinant Ad5 penton base, fiber, and knob with lacrimal acini revealed that the penton base capsid protein remained surface associated, while the knob domain of the fiber capsid protein was rapidly internalized. Introduction of rabbit CAR-specific small interfering RNA (siRNA) into lacrimal acini under conditions that reduced intracellular CAR mRNA significantly inhibited Ad5 transduction, in contrast to a control (nonspecific) siRNA. Preincubation of Ad5 with excess heparin or pretreatment of acini with a heparinase cocktail each inhibited Ad5 transduction by a separate and apparently additive mechanism. Functional and imaging studies revealed that Ad5, fiber, and knob, but not penton base, stimulated macropinocytosis in acini and that inhibition of macropinocytosis significantly reduced Ad5 transduction of acini. However, inhibition of macropinocytosis did not reduce Ad5 uptake. We propose that internalization of Ad5 into lacrimal acini is through a novel fiber-dependent mechanism that includes CAR and heparan sulfate glycosaminoglycans and that the subsequent intracellular trafficking of Ad5 is enhanced by fiber-induced macropinocytosis.  相似文献   

3.
The best-characterized receptors for adenoviruses (Ads) are the coxsackievirus-Ad receptor (CAR) and integrins alpha(v)beta(5) and alpha(v)beta(3), which facilitate entry. The alpha(v) integrins recognize an Arg-Gly-Asp (RGD) motif found in some extracellular matrix proteins and in the penton base in most human Ads. Using a canine adenovirus type 2 (CAV-2) vector, we found that CHO cells that express CAR but not wild-type CHO cells are susceptible to CAV-2 transduction. Cells expressing alpha(M)beta(2) integrins or major histocompatibility complex class I (MHC-I) molecules but which do not express CAR were not transduced. Binding assays showed that CAV-2 attaches to a recombinant soluble form of CAR and that Ad type 5 (Ad5) fiber, penton base, and an anti-CAR antibody partially blocked attachment. Using fluorescently labeled CAV-2 particles, we found that in some cells nonpermissive for transduction, inhibition was at the point of internalization and not attachment. The transduction efficiency of CAV-2, which lacks an RGD motif, surprisingly mimicked that of Ad5 when tested in cells selectively expressing alpha(v)beta(5) and alpha(v)beta(3) integrins. Our results demonstrate that CAV-2 transduction is augmented by CAR and possibly by alpha(v)beta(5), though transduction can be CAR and alpha(v)beta(3/5) independent but is alpha(M)beta(2), MHC-I, and RGD independent, demonstrating a transduction mechanism which is distinct from that of Ad2/5.  相似文献   

4.
Human adenovirus type 2 (Ad2) enters host cells by receptor-mediated endocytosis, an event mediated by the virus penton base binding to cell surface integrins alpha v beta 3 and alpha v beta 5. While both alpha v integrins promote virus internalization, alpha v beta 5 is involved in the subsequent event of membrane permeabilization. Cells transfected with the beta 5 or beta 3 subunit, expressing either alpha v beta 5 and alpha v beta 3, respectively, were capable of supporting Ad2 infection to varying degrees. In this case, cells expressing alpha v beta 5 were significantly more susceptible to Ad2-induced membrane permeabilization, as well as to Ad2 infection, than cells expressing alpha v beta 3. Adenovirus-mediated gene delivery was also more efficient in cells expressing alpha v beta 5. These results suggest that the interaction of alpha v beta 5 with Ad2 penton base facilitates the subsequent step of virus penetration into the cell. These studies provide evidence for the involvement of a cellular receptor in virus- mediated membrane permeabilization and suggest a novel biological role for integrin alpha v beta 5 in the infectious pathway of a human adenovirus.  相似文献   

5.
Attachment of an adenovirus (Ad) to a cell is mediated by the capsid fiber protein. To date, only the cellular fiber receptor for subgroup C serotypes 2 and 5, the so-called coxsackievirus-adenovirus receptor (CAR) protein, has been identified and cloned. Previous data suggested that the fiber of the subgroup D serotype Ad9 also recognizes CAR, since Ad9 and Ad2 fiber knobs cross-blocked each other’s cellular binding. Recombinant fiber knobs and 3H-labeled Ad virions from serotypes representing all six subgroups (A to F) were used to determine whether the knobs cross-blocked the binding of virions from different subgroups. With the exception of subgroup B, all subgroup representatives cross-competed, suggesting that they use CAR as a cellular fiber receptor as well. This result was confirmed by showing that CAR, produced in a soluble recombinant form (sCAR), bound to nitrocellulose-immobilized virions from the different subgroups except subgroup B. Similar results were found for blotted fiber knob proteins. The subgroup F virus Ad41 has both short and long fibers, but only the long fiber bound sCAR. The sCAR protein blocked the attachment of all virus serotypes that bound CAR. Moreover, CHO cells expressing human CAR, in contrast to untransformed CHO cells, all specifically bound the sCAR-binding serotypes. We conclude therefore that Ad serotypes from subgroups A, C, D, E, and F all use CAR as a cellular fiber receptor.  相似文献   

6.
The primary receptor, the coxsackievirus and adenovirus receptor (CAR), and the secondary receptor, αv integrins, are the tropism determinants of adenovirus (Ad) type 5. Inhibition of the interaction of both the fiber with CAR and the penton base with the αv integrin appears to be crucial to the development of targeted Ad vectors, which specifically transduce a given cell population. In this study, we developed Ad vectors with ablation of both CAR and αv integrin binding by mutating the fiber knob and the RGD motif of the penton base. We also replaced the fiber shaft domain with that derived from Ad type 35. High transduction efficiency in the mouse liver was suppressed approximately 130- to 270-fold by intravenous administration of the double-mutant Ad vectors, which mutated two domains each of the fiber knob and shaft and the RGD motif of the penton base compared with those of conventional Ad vectors (type 5). Most significantly, the triple-mutant Ad vector containing the fiber knob with ablation of CAR binding ability, the fiber shaft of Ad type 35, and the penton base with a deletion of the RGD motif mediated a >30,000-fold lower level of mouse liver transduction than the conventional Ad vectors. This triple-mutant Ad vector also mediated reduced transduction in other organs (the spleen, kidney, heart, and lung). Viral DNA analysis showed that systemically delivered triple-mutant Ad vector was primarily taken up by liver nonparenchymal cells and that most viral DNAs were easily degraded, resulting in little gene expression in the liver. These results suggest that the fiber knob, fiber shaft, and RGD motif of the penton base each plays an important role in Ad vector-mediated transduction to the mouse liver and that the triple-mutant Ad vector exhibits little tropism to any organs and appears to be a fundamental vector for targeted Ad vectors.  相似文献   

7.
8.
A major hurdle to adenovirus (Ad)-mediated gene transfer is that the target issue lacks sufficient levels of receptors to mediate vector attachment via its fiber coat protein. Endothelial and smooth muscle cells are primary targets in gene therapy approaches to prevent restenosis following angioplasty or to promote or inhibit angiogenesis. However, Ad poorly binds and transduces these cells because of their low or undetectable levels of functional Ad fiber receptor. The Ad-binding deficiency of these cells was overcome by targeting Ad binding to alpha v integrin receptors that are sufficiently expressed by these cells. In order to target alpha v integrins, a bispecific antibody (bsAb) that comprised a monoclonal Ab to the FLAG peptide epitope, DYKDDDDK, and a monoclonal Ab to alpha v integrins was constructed. In conjunction with the bsAb, a new vector, AdFLAG, which incorporated the FLAG peptide epitope into its penton base protein was constructed. Complexing AdFLAG with the bsAb increased the beta-glucuronidase transduction of human venule endothelial cells and human intestinal smooth muscle cells by seven- to ninefold compared with transduction by AdFLAG alone. The increased transduction efficiency was shown to occur through the specific interaction of the complex with alpha v integrins. These results demonstrate that bsAbs can be successfully used to target Ad to a specific cellular receptor and thereby increase the efficiency of gene transfer.  相似文献   

9.
Interaction of the adenovirus penton base protein with alpha v integrins promotes virus entry into host cells. The location of the integrin binding sequence Arg-Gly-Asp (RGD) on human type 2 adenovirus (Ad2) was visualized by cryo-electron microscopy (cryo-EM) and image reconstruction using a mAb (DAV-1) which recognizes a linear epitope, IRGDTFATR. The sites for DAV-1 binding corresponded to the weak density above each of the five 22 A protrusions on the adenovirus penton base protein. Modeling of a Fab fragment crystal structure into the adenovirus-Fab cryo-EM density indicated a large amplitude of motion for the Fab and the RGD epitope. An unexpected finding was that Fab fragments, but not IgG antibody molecules, inhibited adenovirus infection. Steric hindrance from the adenovirus fiber and a few bound IgG molecules, as well as epitope mobility, most likely prevent binding of IgG antibodies to all five RGD sites on the penton base protein within the intact virus. These studies indicate that the structure of the adenovirus particle facilitates interaction with cell integrins, whilst restricting binding of potentially neutralizing antibodies.  相似文献   

10.
Role of vesicles during adenovirus 2 internalization into HeLa cells.   总被引:17,自引:14,他引:3       下载免费PDF全文
In this investigation, the early period of adenovirus type 2 (Ad2)-HeLa cell interaction was analyzed by electron microscopy and biochemical techniques. Events observed in this period ranged from the disappearance of virions from the cell surface to their subsequent association with the cell nucleus. Destabilization of the virions attached to the intact cell was necessary for virions to escape from intracellular vesicles. Strong temperature dependence and rapid escape from a vesicular compartment were shown in temporal kinetic experiments. These vesicles appeared to be acidic, since lysosomotropic agents partly inhibited the release of virions from vesicles. Studies of Ad2 binding to cells in buffers of different pH values suggested that adenovirus binds to cells by two different mechanisms. At low pH the binding was most probably mediated by the penton base and at neutral pH by the fiber protein. The number of receptor sites per cell was 25,000 and 6,000 at low and neutral pH, respectively. This study suggests that the low-pH affinity between the penton base and a vesicular membrane is important inside acid vesicles when Ad2 quickly enters the cytoplasm. However, a significant fraction of the virions was possibly internalized by a pathway not requiring a passage through such vesicles.  相似文献   

11.
Alteration of the natural tropism of adenovirus (Ad) will permit gene transfer into specific cell types and thereby greatly broaden the scope of target diseases that can be treated by using Ad. We have constructed two Ad vectors which contain modifications to the Ad fiber coat protein that redirect virus binding to either alpha(v) integrin [AdZ.F(RGD)] or heparan sulfate [AdZ.F(pK7)] cellular receptors. These vectors were constructed by a novel method involving E4 rescue of an E4-deficient Ad with a transfer vector containing both the E4 region and the modified fiber gene. AdZ.F(RGD) increased gene delivery to endothelial and smooth muscle cells expressing alpha(v) integrins. Likewise, AdZ.F(pK7) increased transduction 5- to 500-fold in multiple cell types lacking high levels of Ad fiber receptor, including macrophage, endothelial, smooth muscle, fibroblast, and T cells. In addition, AdZ.F(pK7) significantly increased gene transfer in vivo to vascular smooth muscle cells of the porcine iliac artery following balloon angioplasty. These vectors may therefore be useful in gene therapy for vascular restenosis or for targeting endothelial cells in tumors. Although binding to the fiber receptor still occurs with these vectors, they demonstrate the feasibility of tissue-specific receptor targeting in cells which express low levels of Ad fiber receptor.  相似文献   

12.
We investigated the mechanism of adenovirus serotype 5 (Ad5)-mediated maturation of bone marrow-derived murine dendritic cells (DC) using (i) Ad5 vectors with wild-type capsid (AdE1 degrees, AdGFP); (ii) Ad5 vector mutant deleted of the fiber C-terminal knob domain (AdGFPDeltaknob); and (iii) capsid components isolated from Ad5-infected cells or expressed as recombinant proteins, hexon, penton, penton base, full-length fiber, fiber knob, and fiber mutants. We found that penton capsomer (penton base linked to its fiber projection), full-length fiber protein, and its isolated knob domain were all capable of inducing DC maturation, whereas no significant DC maturation was observed for hexon or penton base alone. This capacity was severely reduced for AdGFPDeltaknob and for fiber protein deletion mutants lacking the beta-stranded region F of the knob (residues Leu-485-Thr-486). The DC maturation effect was fully retained in a recombinant fiber protein deleted of the HI loop (FiDeltaHI), a fiber (Fi) deletion mutant that failed to trimerize, suggesting that the fiber knob-mediated DC activation did not depend on the integrity of the HI loop and on the trimeric status of the fiber. Interestingly, peptide-pulsed DC that had been stimulated with Ad5 knob protein induced a potent CD8+ T cell response in vivo.  相似文献   

13.
S S Hong  P Boulanger 《The EMBO journal》1995,14(19):4714-4727
A filamentous phage-displayed random hexapeptide library was screened on the adenovirus type 2 (Ad2) penton capsomer and its separate domains, penton base, full-length fiber, fiber shaft and fiber knob. Affinity supports were designed to immobilize the penton ligate with a preferred orientation, via immuno-adsorption to pre-coated antibody. Three classes of phagotopes were distinguished in the eluates from the penton and fiber domains. (i) The first class represented peptide sequences identified in certain Ad2 capsid proteins, protein IIIa, protein pVIII, penton base and penton fiber. Data from specific ligand elution of phages bound to fiber and penton base wild-types and mutants suggested that the region overlapping the RLSNLLG motif at residues 254-260 in the penton base and the FNPVYP motif at residues 11-16 in the fiber tail formed mutual interacting sites in the penton capsomer. (ii) The second class consisted of phagotopes homologous to peptide sequences found in host cell membrane proteins involved in receptor or adhesion functions. One of the most abundant species corresponded to a conserved motif present in the beta-strand B of type III modules of human fibronectin. In addition, phages which were screened for their failure to bind to penton base RGD mutants were found to carry consensus motifs to peptide sequences present in the RGD recognition site of human integrin beta subunits. (iii) The third class comprised peptide motifs common to both viral and cellular proteins, suggesting that a mechanism of ligand exchange could occur during virus entry and uncoating, and virus assembly and release.  相似文献   

14.
The vertex of the adenoviral capsid is formed by the penton, a complex of two proteins, the pentameric penton base and the trimeric fiber protein. The penton contains all necessary components for viral attachment and entry into the host cell. After initial attachment via the head domain of the fiber protein, the penton base interacts with cellular integrins through an Arg-Gly-Asp (RGD) motif located in a hypervariable surface loop, triggering virus internalization. In order to investigate the structural and functional role of this region, we replaced the hypervariable loop of serotype 2 with the corresponding, but much shorter, loop of serotype 12 and compared it to the wild type. Here, we report the 3.6 A crystal structure of a human adenovirus 2/12 penton base chimera crystallized as a dodecamer. The structure is generally similar to human adenovirus 2 penton base, with the main differences localized to the fiber protein-binding site. Fluorescence anisotropy assays using a trimeric fiber protein mimetic called the minifiber and wild-type human adenovirus 2 and chimeric penton base demonstrate that fiber protein binding is independent of the hypervariable loop, with a K(d) for fiber binding estimated in the 1-2 microm range. Interestingly, competition assays using labeled and unlabeled minifiber demonstrated virtually irreversible binding to the penton base, which we ascribe to a conformational change, on the basis of comparisons of all available penton base structures.  相似文献   

15.
Recent studies have demonstrated the usefulness of dendritic cells (DCs) genetically modified by adenovirus vectors (Ad) to immunotherapy, while sufficient gene transduction into DCs is required for high doses of Ad. The RT-PCR analysis revealed that the relative resistance of DCs to Ad-mediated gene transfer is due to the absence of Coxsackie-adenovirus receptor expression, and that DCs expressed adequate alpha(v)-integrins. Therefore, we investigated whether fiber-mutant Ad containing the Arg-Gly-Asp (RGD) sequence in the fiber knob can efficiently transduce and express high levels of the LacZ gene into DCs. The gene delivery by fiber-mutant Ad was more efficient than that by conventional Ad in both murine DC lines and normal human DCs (NHDC). Furthermore, NHDC transduced with fiber-mutant Ad and conventional Ad at 8000-vector particles/cell resulted in a 70-fold difference in beta-galactosidase activity. We propose that alpha(v)-integrin-targeted Ad is a very powerful tool with which to implement DC-based vaccination strategies.  相似文献   

16.
During human adenovirus type 3 (Ad3) infection, an excess of penton base and fiber proteins are produced which form dodecahedral particles composed of 12 pentamers of penton base and 12 trimers of fiber protein. No biological functions have yet been ascribed to Ad3 dodecahedra. Here, we show that dodecahedra compete with Ad3 virions for binding to the cell surface and trigger cell remodeling, giving new insights into possible biological functions of dodecahedra in the Ad3 infectious cycle.  相似文献   

17.
Unlike most adenovirus (Ad) serotypes, the species B Ads do not use the coxsackie-adenovirus receptor as an attachment receptor. The species B attachment receptor(s) has not yet been identified and is also poorly characterized. Species B Ads can be further divided into species B1 and B2 Ads, and these display different organ tropisms, suggesting a difference in receptor usage. We have studied the receptor interactions of the species B1 serotypes 3p and 7p and the species B2 serotypes 11p and 35 and characterized the properties of the species B receptor(s). Reciprocal blocking experiments using unlabeled Ad11p or Ad3p virions to block the binding to A549 cells of (35)S-labeled 3p, 7p, 11p, and 35 showed that only Ad11p virions efficiently blocked the binding of all the species B Ads studied (> or =70%). Thus, there is apparently a common species B Ad receptor (sBAR). However, Ad3p virions only partially (< or =30%) blocked the binding of Ad11p and Ad35 to A549 cells. Binding experiments after trypsin treatment of the cells confirmed that the species B2 serotypes address at least two different receptors on A549 and J82 cells, since sBAR is trypsin sensitive but the species B2 Ad receptor (sB2AR) is not. Both receptors are proteins or glycoproteins, since binding of all species B serotypes was abolished after proteinase K or subtilisin treatment of A549 or J82 cells. Furthermore, binding of the species B serotypes to sBAR was abolished with EDTA and restored with Ca(2+), whereas the binding of Ad11p and Ad35 to SB2AR was independent of divalent cations.  相似文献   

18.
We report a sub-nanometer resolution cryo-electron microscopy (cryoEM) structural analysis of an adenoviral vector, Ad35F, comprised of an adenovirus type 5 (Ad5) capsid pseudo-typed with an Ad35 fiber. This vector transduces human hematopoietic cells via association of its fiber protein with CD46, a member of the complement regulatory protein family. Major advances in data acquisition and image processing allowed a significant improvement in resolution compared to earlier structures. Analysis of the cryoEM density was enhanced by docking the crystal structures of both the hexon and penton base capsid proteins. CryoEM density was observed for hexon residues missing from the crystal structure that include hypervariable regions and the epitope of a neutralizing monoclonal antibody. Within the penton base, density was observed for the integrin-binding RGD loop missing from the crystal structure and for the flexible beta ribbon of the variable loop on the side of the penton base. The Ad35 fiber is flexible, consistent with the sequence insert in the third beta-spiral repeat. On the inner capsid surface density is revealed at the base of the hexons and below the penton base. A revised model is presented for protein IX within the virion. Well-defined density was assigned to a conserved domain in the N terminus of protein IX required for incorporation into the virion. For the C-terminal domain of protein IX two alternate conformations are proposed, either binding on the capsid surface or extending away from the capsid. This model is consistent with the tolerance of the C terminus for inserted ligands and its potential use in vector retargeting. This structural study increases our knowledge of Ad capsid assembly, antibody neutralization mechanisms, and may aid further improvements in gene delivery to important human cell types.  相似文献   

19.
Altering adenovirus vector (Ad vector) targeting is an important goal for a variety of gene therapy applications and involves eliminating or reducing the normal tropism of a vector and retargeting through a distinct receptor-ligand pathway. The first step of Ad vector infection is high-affinity binding to a target cellular receptor. For the majority of adenoviruses and Ad vectors, the fiber capsid protein serves this purpose, binding to the coxsackievirus and adenovirus receptor (CAR) present on a variety of cell types. In this study we have explored a novel approach to altering Ad type 5 (Ad5) vector targeting based on serotypic differences in fiber function. The subgroup B viruses bind to an unidentified receptor that is distinct from CAR. The subgroup F viruses are the only adenoviruses that express two distinct terminal exons encoding fiber open reading frames. We have constructed chimeric fiber adenoviruses that utilize the tandem fiber arrangement of the subgroup F genome configuration. By taking advantage of serotypic differences in fiber expression, fiber shaft length, and fiber binding efficiency, we have developed a tandem fiber vector that has low binding efficiency for the known fiber binding sites, does not rely on an Ad5-based fiber, and can be grown to high titer using conventional cell lines. Importantly, when characterizing these vectors in vivo, we find the subgroup B system and our optimal tandem fiber system demonstrate reduced liver transduction by over 2 logs compared to an Ad5 fiber vector. These attributes make the tandem fiber vector a useful alternative to conventional strategies for fiber manipulation of adenovirus vectors.  相似文献   

20.
Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14   总被引:1,自引:0,他引:1  
We have identified desmoglein-2 (DSG-2) as the primary high-affinity receptor used by adenoviruses Ad3, Ad7, Ad11 and Ad14. These serotypes represent key human pathogens causing respiratory and urinary tract infections. In epithelial cells, adenovirus binding of DSG-2 triggers events reminiscent of epithelial-to-mesenchymal transition, leading to transient opening of intercellular junctions. This opening improves access to receptors, for example, CD46 and Her2/neu, that are trapped in intercellular junctions. In addition to complete virions, dodecahedral particles (PtDds), formed by excess amounts of viral capsid proteins, penton base and fiber during viral replication, can trigger DSG-2-mediated opening of intercellular junctions as shown by studies with recombinant Ad3 PtDds. Our findings shed light on adenovirus biology and pathogenesis and may have implications for cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号