首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The function of vitamin D receptor in vitamin D action   总被引:5,自引:0,他引:5  
  相似文献   

2.
3.
Yamada S  Yamamoto K  Masuno H  Choi M 《Steroids》2001,66(3-5):177-187
On the basis of conformational analysis of the vitamin D side chain and studies using conformationally restricted synthetic vitamin D analogs, we have suggested the active space region concept of vitamin D: The vitamin D side-chain region was grouped into four regions (A, G, EA and EG) and the A and EA regions were suggested to be important for vitamin D actions. We extended our theory to known highly potent vitamin D analogs and found a new region F. The analogs which occupy the F region have such modifications as 22-oxa, 22-ene, 16-ene and 18-nor. Altogether, the following relationship between the space region and activity was found: Affinity for vitamin D receptor (VDR), EA > A> F > G > EG; Affinity for vitamin D binding protein (DBP), A > G,EA,EG; Target gene transactivation, EA > F > A > EG > or = G; Cell differentiation, EA > F > A > EG > or = G; Bone calcium mobilization, EA > GA > F > or = EG; Intestinal calcium absorption, EA = A > or = G > EG. We modeled the 3D structure of VDR-LBD (ligand binding domain) using hRARgamma as a template, to develop our structure-function theory into a theory involving VDR. 1alpha,25(OH)(2)D(3) was docked into the ligand binding pocket of the VDR with the side chain heading the wide cavity at the H-11 site, the A-ring toward the narrow beta-turn site, and the beta-face of the CD ring facing H3. Amino acid residues forming hydrogen bonds with the 1alpha- and 25-OH groups were specified: S237 and R274 forming a pincer type hydrogen-bond for the 1alpha-OH and H397 for the 25-OH. Mutants of several amino acid residues that are hydrogen-bond candidates were prepared and their biologic properties were evaluated. All of our mutation results together with known mutation data support our VDR model docked with the natural ligand.  相似文献   

4.
5.
Y Sorgue  L Miravet 《Steroids》1978,31(5):653-660
This paper describes a simple chromatographic technique on Sephadex LH20 for the separation of vitamin D3 sulfate from free vitamin D3 and its metabolites. This technique has been used in the study of vitamin D3 sulfate metabolism in rats. Seven hours after injection of vitamin D3 sulfate (35S or 35S and 3H) only the peak of vitamin D sulfoconjugate was found in chromatographic elution of serum extracts.  相似文献   

6.
The regulation of renal mitochondrial 1-hydroxylase activity in chronic vitamin D deficiency was studied in male rats. These rats were born of mothers who had been raised from weaning (21 days) on a vitamin D deficient diet and who had no detectable serum 1,25-dihydroxycholecalciferol (1,25-(OH)2D) at the time their offspring were weaned (28 days). In the pups, renal mitochondrial 1-hydroxylase activity was undetectable before the 3rd week of life even though the animals were severely hypocalcemic from birth. The 1-hydroxylase activity first became detectable at 26 days of age, rapidly reached a maximum at day 34, then decreased to become undetectable again by 65 days. Throughout this time serum calcium concentration was less than 5.0 mg/dL and serum parathyroid hormone (PTH) concentration, measured by a midmolecule radioimmunoassay, was two- to five-fold greater than that found in vitamin D replete rats. 1-Hydroxylase activity could be restored in the +65-day-old animals by administration of a single dose of 2.5 micrograms vitamin D3. Enzyme activity was detected within 24 h, was maximal at 72 h, and returned to undetectable levels by 96 h after administration of the vitamin. Serum 1,25-(OH)2D which was undetectable before administration of the vitamin D3, was 108 and 458 pg/mL at 16 and 40 h, respectively, after the injection. The serum concentration of this metabolite then decreased progressively to 80 pg/mL by 6 days. 24-Hydroxylase activity first became detectable 48 h after vitamin D administration, increased to a maximum at 96 h, and thereafter decreased to become undetectable by 7 days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
9.
The amount of skin calcium-binding protein, evaluated using a sensitive radioimmunoassay and indirect immunofluorescence, was decreased in vitamin-D deficient rats and increased after one week vitamin D3 or 1 alpha-hydroxyvitamin D3 treatment. In vitamin D replete and in vitamin D-deficient animals, skin calcium-binding protein was not sensitive to changes in dietary and/or serum calcium concentrations. These results indicate that this protein is different from other calcium-binding proteins such as parvalbumin and calmodulin which are not vitamin D-dependent, and also different from intestinal calcium-binding protein which, in D replete animals, is sensitive to changes in dietary and serum calcium concentrations. Skin calcium-binding protein may, therefore, represent a new class of vitamin D-dependent protein.  相似文献   

10.
11.
12.
13.
14.
Structure–activity relationship studies on 1α,25-dihydroxyvitamin D3-26,23-lactams (DLAMs), antagonists of vitamin D, were conducted, focusing on the substituents of the phenyl group. One of the derivatives (23S,25S)-DLAM-1P-3,5(OEt)2, showed potent antagonistic activity with an IC50 of 90 nM.  相似文献   

15.
16.
17.
18.
《Bone and mineral》1989,5(3):259-269
The pediatrician's interest in vitamin D metabolism stems from the once-endemic rachitic deformities induced by vitamin D deficiency; later, clinical research of inherited forms of rickets established further principles of vitamin D metabolism and action. Constantine Anast, as both clinician and researcher, maintained an enthusiastic interest in vitamin D metabolism. His investigative esprit fostered my interest, as a fellow in his laboratory, in the synthetic pathway of active vitamin D.The best known active metabolite of vitamin D, 1,25(OH)2D, is formed by 1βhydroxylation of 25(OH)D, the most abundant circulating form of the vitamin. This well-characterized biochemical conversion is the rate-limiting reaction in the synthesis of 1,25(OH)2D [1]. The classical homeostatic role of 1,25(OH)2D is predominantly that of a calcemie agent, an action largely resulting from the metabolite's stimulation of intestinal transport of calcium [2]. Intestinal phosphorus transport, to a lesser extent than calcium transport can be stimulated by 1,25(OH)2D [3]. Furthermore, skeletal [4] and perhaps renal activity [5] of 1,25(OH)2D can increase circulating concentrations of calcium. These in vivo effects of 1,25(OH)2D on mineral homeostasis raise the question of whether feedback control, via mineral regulation of 1,25(OH)2D production, exists, and the significant mechanisms involved. Here, I will briefly review evidence from earlier studies supporting the notion of calcium and phosphorus regulation of 1α-hydroxylase activity, and present data generated in collaboration with Dr Anast examining vitamin D metabolism in magnesium deficiency.  相似文献   

19.
H F DeLuca 《Life sciences》1975,17(9):1351-1358
Vitamin D can be regarded as a prohormone and its most potent metabolite, 1, 25-dihydroxyvitamin D3, a hormone which mobilizes calcium and phosphate from bone and intestine. In true hormonal fashion, the biosynthesis of 1, 25-dihydroxyvitamin D3 by kidney mitochondria is feed-back regulated by serum calcium and serum phosphorus levels. The lack of calcium brings about a secretion of parathyroid hormone which stimulates 1, 25-dihydroxyvitamin D3 synthesis while low blood phosphorus stimulates 1, 25-dihydroxyvitamin D3 synthesis even in the absence of the parathyroid glands. For such regulation to occur, vitamin D must be present probably because 1, 25-dihydroxyvitamin D3 itself is needed for the regulation. The molecular and cellular mechanisms whereby 1, 25-dihydroxyvitamin D3 synthesis is regulated are unknown despite many recent reports. Likely the elucidation of these mechanisms must await a detailed investigation of the enzymology of the renal 25-hydroxyvitamin D3-1α-hydroxylase. In addition to the regulation at the 25-hydroxyvitamin D3-1α-hydroxylase step, vitamin D metabolism is regulated at the hepatic vitamin D-25-hydroxylase level. This regulation is a suppression of the hydroxylase by the hepatic level of 25-hydroxyvitamin D3 itself by an unknown mechanism. Much remains to be learned concerning the regulation of this newly discovered endocrine system but already the findings are not only relevant to calcium homeostasis but also to an understanding of a variety of metabolic bone diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号