首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epiphyses of long tubular bones in the man and animals of various age, as well as experimental material of the adjuvant arthritis, with special reference to the basal part of the articular cartilage have been studied by means of histological, histochemical and histometrical methods. The structural-chemical organization of the basophilic line (tidemark) of the articular cartilage ensures its barrier role and participation in regulating selective permeability. Reconstruction of the tidemark in the process of physiological ageing and in cases of the articular pathology is aimed to preserve its integrity and in this way a complete differentiation of the noncalcified and calcified structures is secured. Disturbance of the basophilic line results in changes of the articular selective permeability, in invasion of vessels and structural elements of the bone marrow, and in development of profound distrophic and destructive changes of the cartilage--in deforming artrosis. Deflations in the structural-chemical organization of the tidemark indicate certain disturbances in the state of the system articular cartilage--subchondral bone. These data can be of prognostic importance.  相似文献   

2.
The thickness of the articular cartilage and its calcified zone were both measured at specially chosen places in several limb joints from five subjects. The volume of the calcified zone expressed as a percentage of the total cartilage was not only constant for one joint, but also in all the joints of a single individual. Nevertheless, the variation between subjects ranges from 6.9 to 8.6%. In two cases both sides of the body were investigated. As was the case in an earlier investigation on the femoral head, the bilateral distribution of the thickness was the same. Since the thickness of the total cartilage varies with the local distribution of loading in the joint, it follows that the thickness of the calcified layer also depends upon mechanical factors. Five subjects is too few to allow correlation with age or sex to be either refuted or confirmed. There is some evidence in the existing literature that the thickness of the calcified zone may be altered by disease.  相似文献   

3.
Results of both clinical and animal studies show that meniscectomy often leads to osteoarthritic degenerative changes in articular cartilage. It is generally assumed that this process of cartilage degeneration is due to changes in mechanical loading after meniscectomy. It is, however, not known why and where this cartilage degeneration starts. Load induced cartilage damage is characterized as either type (1)--damage without disruption of the underlying bone or calcified cartilage layer--or type (2), subchondral fracture with or without damage to the overlying cartilage. We asked the question whether cartilage degeneration after meniscectomy is likely to be initiated by type (1) and/or type (2) cartilage damage. To investigate that we applied an axisymmetric biphasic finite element analysis model of the knee joint. In this model the articular cartilage layers of the tibial and the femoral condyles, the meniscus and the bone underlying the articular cartilage of the tibia plateau were included. The model was validated with data from clinical studies, in which the effects of meniscectomy on contact areas and pressures were measured. It was found that both the maximal values and the distributions of the shear stress in the articular cartilage changed after meniscectomy, and that these changes could lead to both type (1) and type (2) cartilage damage. Hence it likely that the cartilage degeneration seen after meniscectomy is initiated by both type (1) and type (2) cartilage damage.  相似文献   

4.
Several investigators have used pulse-echo ultrasonics to measure the thickness of articular cartilage in situ. The underlying assumption in all measurements was that the second reflection used in thickness calculations was from the calcified-cartilage/cartilage boundary (tidemark). To investigate this assumption, the thickness of 24 cartilage plugs excised from a human femoral head was measured both ultrasonically and optically. Measurements established that the second reflection was from the tidemark and validated the ultrasonic technique as a method of mapping the thickness distribution of articular cartilage in synovial joints in situ.  相似文献   

5.
Fluorescein-isothiocyanate (FITC) labeled lectins were used to study the distribution pattern of specific binding-sites in histological sections of normal and osteoarthrotic articular cartilage from the mouse knee joint. Male inbred mice of the STR/1N-strain develop spontaneous arthrotic articular cartilage lesions on the medial condyle of tibia and femur. The varus-deformity of the knee joint leads to a recurrent medial patellar luxation with osteoarthrotic defects on the medial part of the facies patellaris femoris. It was demonstrated that the lectin staining pattern of osteoarthrotic articular cartilage, especially on the facies patellaris femoris, was different from that of normal articular cartilage. The differences in lectin staining corresponded to those observed between normal and fibrillated articular cartilage from human patellae. The normal articular cartilage of the mouse knee joint possessed lectin binding-sites for Concanavalin A (ConA) and wheat germ agglutinin (WGA), but not for Ulex europaeus agglutinin (UEA), soy bean agglutinin (SBA) and peanut agglutinin (PNA). In addition to the completely changed distribution pattern of ConA and WGA in osteoarthrotic cartilage, SBA, PNA and UEA developed distinct staining patterns particular to the fibrillated areas of arthrotic cartilage. The increased lectin-binding to arthrotic articular cartilage may be due to unmasking of sugars in the course of bondage breakdown in fibrillated cartilage or the production of pathological glycoproteins. It is evident that lectins can demonstrate minute differences between normal and arthrotic cartilage and it is concluded, therefore, that lectins are sensitive and specific tools for the study of degenerative joint diseases.  相似文献   

6.
《Bone and mineral》1994,24(3):235-244
Growth plate cartilage calcification has been examined in a recently described mouse mutant, tich, which is co-isogenic with the A.TL strain. Long bones were studied from 1-day-old and 1-month-old mice which carried a homozygous recessive gene mutation making them short limbed and dumpy. Specimens were studied by routine histology, scanning electron microscopy and radiography. In 1-day-old tich mice the front of calcified cartilage was recessed behind the advancing periosteum and bone. No similar recess was seen in control mice. At 1 month of age, a number of the long bone growth plates were irregularly thickened, particularly in the central area. This produced a central tongue of non-calcified cartilage (particularly prominent in the proximal tibia) which gave rise to a corresponding pit in the calcified cartilage layer, in macerated specimens. This was accompanied by poor resorption of calcified cartilage. At both ages the presence of the respective defects was radiographically confirmed. At present it is not known whether this is primarily a defect of calcification or resorption but its presence, apparently from a single mutation in a genetically defined mouse strain, makes it a potentially valuable model.  相似文献   

7.
The naturally occurring structure of articular cartilage has proven to be an effective means for the facilitation of motion and load support in equine and other animal joints. For this reason, cartilage has been extensively studied for many years. Although the roughness of cartilage has been determined from atomic force microscopy (AFM) and other methods in multiple studies, a comparison of roughness to joint function has not be completed. It is hypothesized that various joint types with different motions and regimes of lubrication have altered demands on the articular surface that may affect cartilage surface properties. Micro- and nanoscale stylus profilometry was performed on the carpal cartilage harvested from 16 equine forelimbs. Eighty cartilage surface samples taken from three different functioning joint types (radiocarpal, midcarpal, and carpometacarpal) were measured by a Veeco Dektak 150 Stylus Surface Profilometer. The average surface roughness measurements were statistically different for each joint. This indicates that the structure of cartilage is adapted to, or worn by, its operating environment. Knowledge of cartilage micro- and nanoscale roughness will assist the future development and design of treatments for intra- articular substances or surfaces to preserve joint integrity and reduce limitations or loss of joint performance.  相似文献   

8.
Members of the TGF-β superfamily are important regulators of skeletal development. TGF-βs signal through heteromeric type I and type II receptor serine/threonine kinases. When over-expressed, a cytoplasmically truncated type II receptor can compete with the endogenous receptors for complex formation, thereby acting as a dominant-negative mutant (DNIIR). To determine the role of TGF-βs in the development and maintenance of the skeleton, we have generated transgenic mice (MT-DNIIR-4 and -27) that express the DNIIR in skeletal tissue. DNIIR mRNA expression was localized to the periosteum/perichondrium, syno-vium, and articular cartilage. Lower levels of DNIIR mRNA were detected in growth plate cartilage. Transgenic mice frequently showed bifurcation of the xiphoid process and sternum. They also developed progressive skeletal degeneration, resulting by 4 to 8 mo of age in kyphoscoliosis and stiff and torqued joints. The histology of affected joints strongly resembled human osteo-arthritis. The articular surface was replaced by bone or hypertrophic cartilage as judged by the expression of type X collagen, a marker of hypertrophic cartilage normally absent from articular cartilage. The synovium was hyperplastic, and cartilaginous metaplasia was observed in the joint space.

We then tested the hypothesis that TGF-β is required for normal differentiation of cartilage in vivo. By 4 and 8 wk of age, the level of type X collagen was increased in growth plate cartilage of transgenic mice relative to wild-type controls. Less proteoglycan staining was detected in the growth plate and articular cartilage matrix of transgenic mice. Mice that express DNIIR in skeletal tissue also demonstrated increased Indian hedgehog (IHH) expression. IHH is a secreted protein that is expressed in chondrocytes that are committed to becoming hypertrophic. It is thought to be involved in a feedback loop that signals through the periosteum/ perichondrium to inhibit cartilage differentiation. The data suggest that TGF-β may be critical for multifaceted maintenance of synovial joints. Loss of responsiveness to TGF-β promotes chondrocyte terminal differentiation and results in development of degenerative joint disease resembling osteoarthritis in humans.

  相似文献   

9.
Systemic application of glucocorticoids is an essential anti-inflammatory and immune-modulating therapy for severe inflammatory or autoimmunity conditions. However, its long-term effects on articular cartilage of patients'' health need to be further investigated. In this study, we studied the effects of dexamethasone (Dex) on the homeostasis of articular cartilage and the progress of destabilization of medial meniscus (DMM)-induced osteoarthritis (OA) in adult mice. Long-term administration of Dex aggravates the proteoglycan loss of articular cartilage and drastically accelerates cartilage degeneration under surgically induced OA conditions. In addition, Dex increases calcium content in calcified cartilage layer of mice and the samples from OA patients with a history of long-term Dex treatment. Moreover, long term usage of Dex results in decrease subchondral bone mass and bone density. Further studies showed that Dex leads to calcification of extracellular matrix of chondrocytes partially through activation of AKT, as well as promotes apoptosis of chondrocytes in calcified cartilage layer. Besides, Dex weakens the stress-response autophagy with the passage of time. Taken together, our data indicate that long-term application of Dex may predispose patients to OA and or even accelerate the OA disease progression development of OA patients.  相似文献   

10.
目的探讨生长休止蛋白7(Gas7)在成年大鼠关节软骨中的表达及意义。方法雄性SD大鼠(3个月、12个月)各12只。取膝关节和股骨上端关节部分,经脱钙石蜡包埋并切片,采用HE染色和免疫组化SABC法检测。检测各关节软骨组织中Gas7的表达及其定位。结果关节软骨切线层与移行层Gas7的表达呈现强阳性,而在辐射层及软骨钙化层则弱阳性或阴性。结论Gas7在成年大鼠关节软骨各层细胞的表达不同,可能与各层软骨细胞的生长发育及代谢状况有关  相似文献   

11.
The tidemark of the chondro-osseous junction of the normal human knee joint   总被引:3,自引:0,他引:3  
Summary The chondro-osseous junction includes the junction between calcified and non-calcified cartilage matrices often referred to as the tidemark. A detailed knowledge of the structure, function and pathophysiology of the chondro-osseous junction is essential for an understanding both of the normal elongation of bones and of the pathogenesis of osteoarthrosis. In this study the molecular anatomy of the tidemark was studied using histochemical techniques, including lectin histochemistry, on blocks of normal cartilage from human knee joints. The tidemark stained with H&E, picro-sirius red, toluidine blue, safranin O and methyl green, but not with alcian blue in the presence of magnesium chloride at 0.05 M or above. It stained with only four lectins, those from Datura stramonium, Maclura pomifera, Erythrina crystagalli and Helix pomatia, out of the 19 used. Therefore, it is rich in collagen and contains hyaluronan, but appears to lack the glycosaminoglycans of conventional proteoglycans and it expresses a very limited and distinctive lectin staining glycoprofile, which is probably attributable to specific glycoproteins. In addition, the tidemark had a distinct microanatomical trilaminate appearance. From all of these results it is clear that this part of the chondro-osseous junctional region is chemically more complex and distinctive than has previously been described.  相似文献   

12.
Articular cartilage is classified as permanent hyaline cartilage and has significant differences in structure, extracelluar matrix components, gene expression profile, and mechanical property from transient hyaline cartilage found in the epiphyseal growth plate. In the process of synovial joint development, articular cartilage originates from the interzone, developing at the edge of the cartilaginous anlagen, and establishes zonal structure over time and supports smooth movement of the synovial joint through life. The cascade actions of key regulators, such as Wnts, GDF5, Erg, and PTHLH, coordinate sequential steps of articular cartilage formation. Articular chondrocytes are restrictedly controlled not to differentiate into a hypertrophic stage by autocrine and paracrine factors and extracellular matrix microenvironment, but retain potential to undergo hypertrophy. The basal calcified zone of articular cartilage is connected with subchondral bone, but not invaded by blood vessels nor replaced by bone, which is highly contrasted with the growth plate. Articular cartilage has limited regenerative capacity, but likely possesses and potentially uses intrinsic stem cell source in the superficial layer, Ranvier's groove, the intra‐articular tissues such as synovium and fat pad, and marrow below the subchondral bone. Considering the biological views on articular cartilage, several important points are raised for regeneration of articular cartilage. We should evaluate the nature of regenerated cartilage as permanent hyaline cartilage and not just hyaline cartilage. We should study how a hypertrophic phenotype of transplanted cells can be lastingly suppressed in regenerating tissue. Furthermore, we should develop the methods and reagents to activate recruitment of intrinsic stem/progenitor cells into the damaged site. Birth Defects Research (Part C) 99:192–202, 2013 . © 2013 Wiley Periodicals, Inc .  相似文献   

13.
The distribution of type I and II collagen synthesis in the temporomandibular joint (TMJ) area of 1- to 28-day-old rats was studied after hybridization with probes to pro alpha1(I) and pro alpha1(II) collagen mRNA, and stain intensity through the various cartilaginous zones of the mandibular condyle and other areas of TMJ was assessed. The pro alpha(I) collagen mRNA was detected in the perichondrium/periosteum, in the fibrous and undifferentiated cell layers of the mandibular condyle, in the articular disc, and in all bone structures and muscles. The pro alpha1(II) collagen mRNA was found in the condylar cartilage and the articular fossa. Intensity in the condyle was highest in the chondroblastic layer and decreased towards the lower hypertrophic layer. In the condylar cartilage of the 21- to 28-day-old rats the chondroblastic cell zone was relatively narrow compared with the younger animals, whereas the reverse seems to be the case in the cartilage of the articular fossa. Changes in the pro alpha1(II) collagen mRNA were observed in the osseochondral junction area of the primary spongiosa, in that at the age of 5 days intense staining was found, whereas no staining was observed by 14 days. In the mineralizing zone, however, the majority of osteoblastic cells gave a positive signal with the pro alpha1(I) collagen probe. In conclusion, type II collagen synthesis of the mandibular condyle is restricted to its upper area. This differs from the long bone epiphyseal plate, where this type of collagen is produced virtually throughout the cartilage. Type II collagen synthesis of the fossal cartilage seems to increase as a function of age.  相似文献   

14.
This study describes the precise spatial and temporal patterns of protein distribution for aggrecan, fibromodulin, cartilage oligomeric matrix protein (COMP) and cartilage matrix protein (CMP) in the developing mouse limb with particular attention to those cells destined to form articular chondrocytes in comparison to those cells destined to form a mineralized tissue and become replaced by bone. Mouse glenohumeral joints from fetal mice (12-18 days post coitus (dpc) to the young adult (37 days after birth) were immunostained with antibodies specific for these molecules. Aggrecan staining defined the general chondrocytic phenotype, whether articular or transient. Fibromodulin was associated with prechondrocytic mesenchymal cells in the interzone prior to joint cavitation and with the mesenchymal cells of the perichondrium or the periosteum encapsulating the joint elements of the maturing and young adult limb. Staining was most intense around developing articular chondrocytes and much less abundant or absent in those differentiating cells along the anlage. CMP showed an almost reciprocal staining pattern to fibromodulin and was not detected in the matrix surrounding articular chondrocytes. COMP was not detected in the cells at the articular surface prior to cavitation but by 18 dpc, as coordinated movement of the mouse forelimb intensifies, staining for COMP was most intense around the maturing articular chondrocytes. These results show that the cells that differentiate into articular chondrocytes elaborate an extracellular matrix distinct from those cells that are destined to form bone. Fibromodulin may function in the early genesis of articular cartilage and COMP may be associated with elaboration of a weight-bearing chondrocyte matrix.  相似文献   

15.
An analytical model of two elastic spheres with two elastic layers in normal, frictionless contact is developed which simulates contact of articulating joints, and allows for the calculation of stresses and displacements in the layered region of contact. Using various layer/layer/substrate combinations, the effects of variations in layer and substrate properties are determined in relation to the occurrence of tensile and shear stresses as the source of crack initiation in joint cartilage and bone. Vertical cracking at the cartilage surface and horizontal splitting at the tidemark have been observed in joints with primary osteoarthritis. Deep vertical cracks in the calcified cartilage and underlying bone have been observed in blunt trauma experiments. The current model shows that cartilage stresses for a particular system are a function of the ratio of contact radius to total layer thickness (a/h). Surface tension, which is observed for a/h small, is alleviated as a/h is increased due to increased load, softening and/or thinning of the cartilage layer. Decreases in a/h due to cartilage stiffening lead to increased global compressive stresses and increased incidence of surface tension, consistent with impact-induced surface cracks. Cartilage stresses are not significantly affected by variations in stiffness of the underlying material. Tensile radial strains in the cartilage layer approach one-third of the normal compressive strains, and increase significantly with cartilage softening. For cases where the middle layer stiffness exceeds that of the underlying substrate, tensile stresses occur at the base of the middle layer, consistent with impact induced cracks in the zone of calcified cartilage and subchondral bone. The presence of the superficial tangential zone appears to have little effect on underlying cartilage stresses.  相似文献   

16.
The determination of area and shape of articular surfaces on the limb bones of extinct archosaurs is difficult because of postmortem decomposition of the fibrous tissue and articular cartilages that provide the complex three‐dimensional joint surfaces in vivo. This study aims at describing the shape of the articular cartilages in the elbow joints of six crocodilian specimens; comparing its structure with that of four birds, three testudines, and five squamates; and comparing the shapes of the surfaces of the calcified and the articular cartilages in the elbow joints of an Alligator specimen. The shapes of the articular cartilages of crocodilian elbow joint are shown to resemble those of birds. The humerus possesses an olecranon fossa positioned approximately at the midportion of the distal epiphysis and bordering the margin of the extensor side of the articular surface. The ulna possesses a prominent intercotylar process at approximately the middle of its articular surface, and splits the surface into the radial and ulnar cotylae. This divides the articular cartilage into an articular surface on the flexor portion, and the olecranon on the extensor portion. The intercotylar process fits into the olecranon fossa to restrict elbow joint extension. Dinosaurs and pterosaurs, phylogenetically bracketed by Crocodylia and Aves (birds), may have possessed a similar olecranon fossa and intercotylar process on their articular cartilages. Although these shapes are rarely recognizable on the bones, their impressions on the surfaces of the calcified cartilages provide an important indication of the extensor margin of the articular surfaces. This, in turn, helps to determine the maximum angle of extension of the elbow joint in archosaurs. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
The shoulder (glenohumeral) joint has the greatest range of motion of all human joints; as a result, it is particularly vulnerable to dislocation and injury. The ability to non-invasively quantify in-vivo articular cartilage contact patterns of joints has been and remains a difficult biomechanics problem. As a result, little is known about normal in-vivo glenohumeral joint contact patterns or the consequences that surgery has on altering them. In addition, the effect of quantifying glenohumeral joint contact patterns by means of proximity mapping, both with and without cartilage data, is unknown. Therefore, the objectives of this study are to (1) describe a technique for quantifying in-vivo glenohumeral joint contact patterns during dynamic shoulder motion, (2) quantify normal glenohumeral joint contact patterns in the young healthy adult during scapular plane elevation depression with external humeral rotation, and (3) compare glenohumeral joint contact patterns determined both with and without articular cartilage data. Our results show that the inclusion of articular cartilage data when quantifying in-vivo glenohumeral joint contact patterns has significant effects on the anterior–posterior contact centroid location, the superior–inferior contact centroid range of travel, and the total contact path length. As a result, our technique offers an advantage over glenohumeral joint contact pattern measurement techniques that neglect articular cartilage data. Likewise, this technique may be more sensitive than traditional 6-Degree-of-Freedom (6-DOF) joint kinematics for the assessment of overall glenohumeral joint health. Lastly, for the shoulder motion tested, we found that glenohumeral joint contact was located on the anterior–inferior glenoid surface.  相似文献   

18.
Mechanical overload leads to a common arthrosis in the metacarpal condyle of the fetlock joint of racehorses. This is usually asymptomatic but severe forms can cause lameness. Subchondral bone failure is often present and the predictability of the site provided an opportunity to study of the progression of bone failure from microcracks to actual collapse of subchondral bone. Twenty-five fetlock condyles from racehorses with various stages of disease were selected. Stages ranged from mild through severe subchondral bone sclerosis, to the collapse of bone and indentation or loss of cartilage known as 'traumatic osteochondrosis'. Parasagittal slices were radiographed and examined with scanning electron microscopy. Fine matrix cracks were seen in the subchondral bone layer above the calcified cartilage and suggested loss of water or other non-collagenous components. The earliest microcracks appeared to develop in the sclerotic bone within 1-3 mm of the calcified cartilage layer and extend parallel to it in irregular branching lines. Longer cracks or microfractures appeared to develop gaps as fragmentation occurred along the margins. Occasional osteoclastic resorption sites along the fracture lines indicated activated remodeling may have caused previous weakening. In one sample, smoothly ground fragments were found in a fracture gap. Bone collapse occurred when there was compaction of the fragmented matrix along the microfracture. Bone collapse and fracture lines through the calcified cartilage were associated with indentation of articular cartilage at the site.  相似文献   

19.
The structure of the epiphyseal cartilage of the bullfrog Rana catesbeiana and its role in the growth of long bones were examined. The epiphyseal cartilage was inserted into the end of a tubular bone shaft, defining three regions: articular cartilage, lateral articular cartilage and growth cartilage. Joining the lateral cartilage to the bone was a fibrous layer of periosteum, rich in blood vessels. Osteoblasts with alkaline phosphatase activity were found on the surface of the periosteal bone, which presented a fibrous non-mineralised tip. The growth cartilage was inside the bone. The proliferative chondrocytes presented perpendicular separation of daughter cells and there was no columnar arrangement of the cells. Furthermore, chondrocyte hypertrophy was not associated with either calcification or endochondral ossification, in apparent contrast to the avian and mammalian models. Finally, there was no reinforcement system capable of directing cell volume increase into longitudinal growth. Since bone extension depends on the intramembranous ossification of the periosteum, the growth cartilage is inside and not at the end of the bone and the cells in the growth cartilage show no columnar arrangement and separate in a direction perpendicular to the long bone axis, we conclude that the growth cartilage mainly contributes to the radial expansion of the bone.  相似文献   

20.
Xu QR  Dong YH  Chen SL  Bao CD  Du H 《Tissue & cell》2009,41(1):13-22

Objective

To investigate the pathogenesis of late phase osteoarthritic (OA) synovial fluid (SF) on normal articular cartilage in vivo and provide an understanding of degenerative cartilage extending in OA joint.

Methods

A random knee, each of 8 beagle dogs, received anterior cruciate ligament transection (ACLT) and was confirmed to have late phase OA degenerative changes at 24 weeks after operation. Thereafter, one random elbow of each canine was injected with autologous late phase OA knee SF. The contralateral elbow was injected with normal saline (NS) of the same volume as SF aspirated from ACLT knee. These two groups of elbows were labeled “SF” and “NS”. 8 other beagle dogs were left intact and placed in Group Control. After aseptic arthrocentesis was performed weekly on both elbows for 24 weeks, morphological changes were observed in the cartilage of the elbows, and expressions of 7 biological etiological factors of chondrocytes of the elbows were determined in Group SF, Group NS and Group Control, respectively.

Results

Morphological changes were observed in articular cartilage of the elbows in Group SF. Levels of unit area of collagen type I in the noncalcified, calcified and full zones of articular cartilage of the elbows in Group SF increased significantly. Level of unit area of collagen type III in the calcified zone of articular cartilage of the elbows in Group SF remained unchanged. Meanwhile, expressions of MMP-1 and MMP-3 of chondrocytes of the elbows in Group SF increased significantly. There was almost no difference between articular cartilage in Group NS and Group Control.

Conclusion

Based on these results, we conclude that OA degeneration of normal articular cartilage can be independently induced by late phase OA SF. Endogenous OA biological etiological factor may be one of the reasons causing degenerative cartilage extending in OA joint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号