首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The theory of discrete time coevolution is applied to the problem of maintenance of genetic polymorphism with selfing hosts and haploid pathogens. It is shown that the usual simplifying assumption, discrete synchroized generations with no intraspecific frequency-dependent selection, precludes stability. This situation is not corrected by the incorporation of special features such as mutation, alternate hosts, partial outcrossing of the hosts, or genetic recombination in the pathogen population.  相似文献   

2.
The theory of adaptive polymorphism predicts that species occupying broad ecological niches will be phenotypically and genotypically more varied than those occupying narrow niches. It is suggested that this theory has direct relevance to the epidemiology of microbial pathogens in that environmental pathogens inhabit a broader niche and should be expected to exhibit greater variation than pathogens that are obligate commensals. This proved to be the case when one obligate commensal, the pathogenic yeast Candida albicans, was compared with other Candida spp. and an environmental pathogen, Cryptococcus neoformans. Further evidence of this relationship is derived from the literature. This observation adds further support to the theory of adaptive polymorphism, although the mechanisms of maintenance of polymorphism is asexually reproducing populations must be different from those in sexually reproducing populations. This observation may give important clues to the epidemiology of those infections for which it is not already known.  相似文献   

3.
Troy Day 《Ecology letters》2002,5(4):471-476
Many pathogens produce resilient free-living propagules that allow their dissemination in the absence of direct contact between susceptible and infected hosts. One might expect pathogens capable of producing such long-lived propagules to evolve high levels of virulence because their reproductive success is de-coupled from the survival of their host. Despite some comparative data supporting this prediction, theory has questioned its general validity. I present theoretical results that incorporate two transmission routes neglected by previous theory: death-mediated propagule production and direct host-host transmission. This theory predicts that spore-producing pathogens should evolve high levels of virulence under quite broad conditions. Moreover, a novel prediction of this theory is that the production of propagules can generate selection for the evolution of pathogen characteristics such as toxins whose sole function is to kill the host. This latter result reveals an unanticipated mechanism through which virulence is expected to evolve in spore-producing pathogens.  相似文献   

4.
The theory of adaptive polymorphism predicts that species occupying broad ecological niches will be phenotypically and genotypically more varied than those occupying narrow niches. It is suggested that this theory has direct relevance to the epidemiology of microbial pathogens in that environmental pathogens inhabit a broader niche and should be expected to exhibit greater variation than pathogens that are obligate commensals. This proved to be the case when one obligate commensal, the pathogenic yeast Candida albicans, was compared with other Candida spp. and an environmental pathogen, Cryptococcus neoformans. Further evidence of this relationship is derived from the literature. This observation adds further support to the theory of adaptive polymorphism, although the mechanisms of maintenance of polymorphism is asexually reproducing populations must be different from those in sexually reproducing populations. This observation may give important clues to the epidemiology of those infections for which it is not already known.  相似文献   

5.
The allele frequency spectrum is a series of statistics that describe genetic polymorphism, and is commonly used for inferring population genetic parameters and detecting natural selection. Population genetic theory on the allele frequency spectrum for a single population has been well studied using both coalescent theory and diffusion equations. Recently, the theory was extended to the joint allele frequency spectrum (JAFS) for three populations using diffusion equations and was shown to be very useful in inferring human demographic history. In this paper, I show that the JAFS can be analytically derived with coalescent theory for a basic model of two isolated populations and then extended to multiple populations and various complex scenarios, such as those involving population growth and bottleneck, migration, and positive selection. Simulation study is used to demonstrate the accuracy and applicability of the theoretical model. The coalescent theory-based approach for the JAFS can characterize the demographic history with comprehensive statistical models as the diffusion approach does, and in addition gains several novel advantages: the computational complexity of calculating the JAFS with coalescent theory is reduced, and thus it is feasible to analytically obtain the JAFS for multiple populations; the hitchhiking effect can be efficiently modeled in coalescent theory, enabling the development of methodologies for detecting selection via multi-population polymorphism data. As an alternative to the diffusion approximation approach, the coalescent theory for the JAFS also provides a foundation for population genetic inference with the advent of large-scale genomic polymorphism data.  相似文献   

6.
Lactoferrin is a multifunctional mammalian immunity protein that limits microbial growth through sequestration of nutrient iron. Additionally, lactoferrin possesses cationic protein domains that directly bind and inhibit diverse microbes. The implications for these dual functions on lactoferrin evolution and genetic conflicts with microbes remain unclear. Here we show that lactoferrin has been subject to recurrent episodes of positive selection during primate divergence predominately at antimicrobial peptide surfaces consistent with long-term antagonism by bacteria. An abundant lactoferrin polymorphism in human populations and Neanderthals also exhibits signatures of positive selection across primates, linking ancient host-microbe conflicts to modern human genetic variation. Rapidly evolving sites in lactoferrin further correspond to molecular interfaces with opportunistic bacterial pathogens causing meningitis, pneumonia, and sepsis. Because microbes actively target lactoferrin to acquire iron, we propose that the emergence of antimicrobial activity provided a pivotal mechanism of adaptation sparking evolutionary conflicts via acquisition of new protein functions.  相似文献   

7.
Two general models for the transspecific evolution of butterfly colour patterns are advanced: directional selection acting equally on both sexes, and disruptive selection involving periods of polymorphism. To consider possible outcomes of me latter process, a morphism notation based on an integrated classification for polymorphism and sexual dimorphism is developed. This notation is used to examine the properties of all morphism transformations possible from the minimal expressions of the nine morphism categories, as reached through defined minimum step changes. The significance of such pathway models is analysed in terms of general properties of butterfly polymorphism. The potential use of pathway models in evolutionary studies is briefly discussed, mainly with respect to phylogenetics, and ideas on the evolution of genetic dominance.  相似文献   

8.
Genes of the major histocompatibility complex (MHC) are highly polymorphic in most terrestrial mammal populations so far studied. Exceptions to this are typically populations that lack genome-wide diversity. Here I show that two populations of the southern elephant seal (Mirounga leonina) have low DNA restriction fragment length polymorphism at MHC loci when compared with terrestrial mammals. Limited studies on MHC polymorphism in two cetacean species suggest this is a feature of marine mammal populations in general. MHC polymorphism is thought to be maintained by balancing selection, and several types of disease-based and reproductive-based mechanisms have been proposed. For the three marine mammal species examined, the low MHC polymorphism cannot be explained by low genome-wide diversity, or by any reproductive-based selection pressure. It can, however, be explained by diminished exposure to pathogenic selection pressure compared with terrestrial mammals. Reduced exposure to pathogens would also mean that marine mammal populations may be susceptible to occasional pathogen-induced mass mortalities.  相似文献   

9.
Allelic diversity is common at host loci involved in parasite recognition, such as the major histocompatibility complex in vertebrates or gene-for-gene relationships in plants, and in corresponding loci encoding antigenic molecules in parasites. Diverse factors have been proposed in models to account for genetic polymorphism in host-parasite recognition. Here, a simple but general theory of host-parasite coevolution is developed. Coevolution implies the existence of indirect frequency-dependent selection (FDS), because natural selection on the host depends on the frequency of a parasite gene, and vice versa. It is shown that polymorphism can be maintained in both organisms only if there is negative, direct FDS, such that the strength of natural selection for the host resistance allele, the parasite virulence allele or both declines with increasing frequency of that allele itself. This condition may be fulfilled if the parasite has more than one generation in the same host individual, a feature which is common to most diseases. It is argued that the general theory encompasses almost all factors previously proposed to account for polymorphism at corresponding host and parasite loci, including those controlling gene-for-gene interactions.  相似文献   

10.
MHC polymorphism under host-pathogen coevolution   总被引:9,自引:0,他引:9  
The genes encoding major histocompatibility (MHC) molecules are among the most polymorphic genes known for vertebrates. Since MHC molecules play an important role in the induction of immune responses, the evolution of MHC polymorphism is often explained in terms of increased protection of hosts against pathogens. Two selective pressures that are thought to be involved are (1) selection favoring MHC heterozygous hosts, and (2) selection for rare MHC alleles by host-pathogen coevolution. We have developed a computer simulation of coevolving hosts and pathogens to study the relative impact of these two mechanisms on the evolution of MHC polymorphism. We found that heterozygote advantage per se is insufficient to explain the high degree of polymorphism at the MHC, even in very large host populations. Host-pathogen coevolution, on the other hand, can easily account for realistic polymorphisms of more than 50 alleles per MHC locus. Since evolving pathogens mainly evade presentation by the most common MHC alleles in the host population, they provide a selective pressure for a large variety of rare MHC alleles. Provided that the host population is sufficiently large, a large set of MHC alleles can persist over many host generations under host-pathogen coevolution, despite the fact that allele frequencies continuously change.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

11.
A microbial pathogen species can adapt to its host species to the extent that members of the host species are uniform. Loss of this uniformity would make it difficult for a pathogen species to transfer, from one member of the host species to another, what it had "learned" through selection of its members with advantageous mutations. The existence of major histocompatibility complex (MHC) polymorphism indicates that non-uniformity within a species is an effective host defence strategy. By virtue of this molecular discontinuity among its members the host species can "present a moving target" to the pathogen. Many proteins other than MHC proteins show polymorphism - a phenomenon which has suggested that mutations in regions of protein molecules which do not affect overt function are neutral. However, in the context of the author's differential aggregation theory of intracellular self/not-self discrimination as previously applied to the problem of the antigenicity of cancer cells, such polymorphism should serve for the recruitment of subsets of self-antigens into the antigenic repertoire of an infected cell. These would act as "intracellular antibodies" by virtue of their weak, but specific, aggregation with pathogen proteins. Peptides from the self-antigens, as well as (or instead of) those from the antigens of the pathogen, would then serve as targets for attack by cytotoxic T cells. Thus, polymorphism of intracellular proteins should be of adaptive value, serving to amplify and individualize the immune response to intracellular pathogens.  相似文献   

12.
The evolution of antifungal peptides in Drosophila   总被引:4,自引:0,他引:4       下载免费PDF全文
Jiggins FM  Kim KW 《Genetics》2005,171(4):1847-1859
An essential component of the immune system of animals is the production of antimicrobial peptides (AMPs). In vertebrates and termites the protein sequence of some AMPs evolves rapidly under positive selection, suggesting that they may be coevolving with pathogens. However, antibacterial peptides in Drosophila tend to be highly conserved. We have inferred the selection pressures acting on Drosophila antifungal peptides (drosomycins) from both the divergence of drosomycin genes within and between five species of Drosophila and polymorphism data from Drosophila simulans and D. melanogaster. In common with Drosophila antibacterial peptides, there is no evidence of adaptive protein evolution in any of the drosomycin genes, suggesting that they do not coevolve with pathogens. It is possible that this reflects a lack of specific fungal and bacterial parasites in Drosophila populations. The polymorphism data from both species differed from neutrality at one locus, but this was not associated with changes in the protein sequence. The synonymous site diversity was greater in D. simulans than in D. melanogaster, but the diversity both upstream of the genes and at nonsynonymous sites was similar. This can be explained if both upstream and nonsynonymous mutations are slightly deleterious and are removed more effectively from D. simulans due to its larger effective population size.  相似文献   

13.
Visible genetic polymorphism is a common feature of many species. In most cases, the mechanism(s) underlying the maintenance of such variation remain obscure although apostatic selection has often been suggested. Here, we explore individual-based evolutionary models to understand what features of predator–prey relationships may lead to patterns of exuberant polymorphism similar to those observed in the wild. When all morphs are equally visible, the number of evolved morphs increases with the strength of apostatic selection although even with powerful selection the number morphs is still relatively small. The introduction of dietary wariness increases the number of morphs substantially, even when apostatic selection is absent. When one morph is more cryptic the number of evolved morphs is fewer. The cryptic morph reaches high frequency in the population and other morphs are each at lower frequencies. Decreasing the predation intensity enhances the number of evolved morphs in all models. Dietary wariness is a critical factor missing from earlier models and it may provide a general solution to the problem of polymorphisms involving many morphs. Apostatic selection is shown to be neither a necessary, nor a sufficient, requirement for the maintenance of exuberant polymorphisms.  相似文献   

14.
Gregorius HR  Ross MD 《Genetics》1984,107(1):165-178
General conditions for the protectedness of gene-cytoplasm polymorphisms are considered for a biallelic model with two cytoplasm types and under the assumption that nuclear polymorphisms cannot be maintained in the presence of only one cytoplasm type. Analytical results involving male fertilities, female fertilities, viabilities and selfing rates are obtained, and numerical results show spiral and cyclic behavior of population trajectories. It is shown that a maternally inherited cytoplasmic polymorphism cannot be maintained in the absence of a nuclear polymorphism, and that a gene-cytoplasm polymorphism can only be maintained if the population shows sexual asymmetry, i.e. , if the ratio of male to female fertility varies among genotypes. Thus, the classical viability selection model does not allow gene-cytoplasm polymorphisms.  相似文献   

15.
Pathogen virulence is usually thought to evolve in reciprocal selection with the host. While this might be true for obligate pathogens, the life histories of opportunistic pathogens typically alternate between within-host and outside-host environments during the infection-transmission cycle. As a result, opportunistic pathogens are likely to experience conflicting selection pressures across different environments, and this could affect their virulence through life-history trait correlations. We studied these correlations experimentally by exposing an opportunistic bacterial pathogen Serratia marcescens to its natural protist predator Tetrahymena thermophila for 13 weeks, after which we measured changes in bacterial traits related to both anti-predator defence and virulence. We found that anti-predator adaptation (producing predator-resistant biofilm) caused a correlative attenuation in virulence. Even though the direct mechanism was not found, reduction in virulence was most clearly connected to a predator-driven loss of a red bacterial pigment, prodigiosin. Moreover, life-history trait evolution was more divergent among replicate populations in the absence of predation, leading also to lowered virulence in some of the 'predator absent' selection lines. Together these findings suggest that the virulence of non-obligatory, opportunistic bacterial pathogens can decrease in environmental reservoirs through life history trade-offs, or random accumulation of mutations that impair virulence traits under relaxed selection.  相似文献   

16.
The depletion of variation at MHC loci, which play a crucial role in pathogen recognition, has been postulated to be one of important extinction risk factors for endangered populations. Thus, it is important to understand how selection affects the level of polymorphism in these genes when populations undergo a reduction in size. We followed MHC diversity in computer simulations of population bottlenecks. The fates of MHC alleles in the simulations were determined either by drift, or by balancing selection resulting from host–parasite coevolution. We found that the impact of selection on MHC polymorphism in bottlenecked populations was dependent upon the timescales involved. Initially, selection maintained lower number of alleles than drift, but after ~40 generations of hosts selection maintained higher MHC diversity, as compared to drift. The adverse effects of decreased MHC polymorphism on population viability may be, to some extent, compensated for if selection helps to retain MHC alleles which show high functional diversity, which should allow protection against a broader range of pathogens. Our simulation shows, however, that the mean divergence of alleles retained under selection in bottlenecked populations is not, on average, significantly higher than the divergence due to drift.  相似文献   

17.
Immunosuppression during pregnancy makes the mother vulnerable to pathogens. Because meat is the principal source of ingestible pathogens, pregnancy raises the costs of meat eating. Natural selection has crafted a mechanism involving changes in nausea susceptibility and olfactory perception that reduces meat consumption during pregnancy. Evidence is presented showing that the luteal phase is marked by both immunosuppression and changes in nausea susceptibility and olfaction; meat consumption may be reduced during this period, suggesting a mechanism similar to pregnancy sickness. Constraints on compensatory increases in meat consumption outside of the luteal phase explain why women eat less meat than men. Meat is the principal target of acquired aversions. Women possess more aversions than men, suggesting that prophylactic mechanisms sometimes result in longstanding dietary changes. Reproductive immunosuppression explains many aspects of dietary behavior and sheds light on factors that may have contributed to gender-based divisions of labor during hominid evolution.  相似文献   

18.
从80个随机扩增多态性DNA (RAPD)引物中筛选出26个扩增稳定、带纹清晰的引物,对从玉米丝黑穗病发生严重的大部分北方省市收集分离的68个玉米丝轴黑粉菌菌株进行了DNA遗传多 样性分析.结果表明,RAPD谱带多态性为98.33%,北方玉米丝轴黑粉菌具有丰富的遗传多样性,遗传分化明显;种群内遗传变异小于种群间遗传变异.玉米丝轴黑粉菌遗传分化除明显受地理阻隔影响外,也可能与玉米种子调运过程中携带病菌基因的遗传迁移相关.取相似系数为0.76阀值时的系统聚类分析,可将68个菌株划分为13个遗传宗谱.本研究结果完善和丰富了我国玉米丝轴黑粉菌遗传多样性评价研究,对玉米抗病资源筛选和抗病育种具有重要参考价值.  相似文献   

19.
The best-known example of terminal-glycan variation is the ABO histo-blood group polymorphism in humans. We model two selective forces acting on histo-blood group antigens that may account for this polymorphism. The first is generated by the invasion of opportunistic bacterial or other pathogens that interact with the epithelial-mucosal surfaces. The bacteria adapt to the microenvironments of common host phenotypes and so create frequency-dependent selection for rarer host alleles. The second is generated by intracellular viruses, and accounts for the observed differentials between the ABO-phenotype frequencies. It is thought that viruses acquire histo-blood group structures as part of their envelope from their previous host. The presence of host antigens on the viral envelope causes differential transmission of the virus between host types owing to the asymmetric action of ABO natural antibodies. Our model simulations show that these two forces acting together can account for the major features of the ABO polymorphism in humans.  相似文献   

20.
Individuals in natural populations are frequently exposed to a wide range of pathogens. Given the diverse profile of gene products involved in responses to different types of pathogen, this potentially results in complex pathogen-specific selection pressures acting on a broad spectrum of immune system genes in wild animals. Thus far, studies into the evolution of immune genes in natural populations have focused almost exclusively on the Major Histocompatibility Complex (MHC). However, the MHC represents only a fraction of the immune system and there is a need to broaden research in wild species to include other immune genes. Here, we examine the evidence for natural selection in a range of non-MHC genes in a natural population of field voles (Microtus agrestis). We concentrate primarily on genes encoding cytokines, signalling molecules critical in eliciting and mediating immune responses and identify signatures of natural selection acting on several of these genes. In particular, genetic diversity within Interleukin 1 beta and Interleukin 2 appears to have been maintained through balancing selection. Taken together with previous findings that polymorphism within these genes is associated with variation in resistance to multiple pathogens, this suggests that pathogen-mediated selection may be an important force driving genetic diversity at cytokine loci in voles and other natural populations. These results also suggest that, along with the MHC, preservation of genetic variation within cytokine genes should be a priority for the conservation genetics of threatened wildlife populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号