首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The crystal structure of activated tobacco rubisco, complexed with the reaction-intermediate analogue 2-carboxy-arabinitol 1,5-bisphosphate (CABP) has been determined by molecular replacement, using the structure of activated spinach rubisco (Knight, S., Andersson, I., & Brändén, C.-I., 1990, J. Mol. Biol. 215, 113-160) as a model. The R-factor after refinement is 21.0% for 57,855 reflections between 9.0 and 2.7 A resolution. The local fourfold axis of the rubisco hexadecamer coincides with a crystallographic twofold axis. The result is that the asymmetric unit of the crystals contains half of the L8S8 complex (molecular mass 280 kDa in the asymmetric unit). The activated form of tobacco rubisco is very similar to the activated form of spinach rubisco. The root mean square difference is 0.4 A for 587 equivalent C alpha atoms. Analysis of mutations between tobacco and spinach rubisco revealed that the vast majority of mutations concerned exposed residues. Only 7 buried residues were found to be mutated versus 54 residues at or near the surface of the protein. The crystal structure suggests that the Cys 247-Cys 247 and Cys 449-Cys 459 pairs are linked via disulfide bridges. This pattern of disulfide links differ from the pattern of disulfide links observed in crystals of unactivated tobacco rubisco (Curmi, P.M.G., et al., 1992, J. Biol. Chem. 267, 16980-16989) and is similar to the pattern observed for activated spinach tobacco.  相似文献   

2.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) catalyzes the initial steps of photosynthetic carbon reduction and photorespiratory carbon oxidation cycles by combining CO(2) and O(2), respectively, with ribulose-1,5-bisphosphate. Many photosynthetic organisms have form I rubiscos comprised of eight large (L) and eight small (S) subunits. The crystal structure of the complex of activated rubisco from the green alga Chlamydomonas reinhardtii and the reaction intermediate analogue 2-carboxyarabinitol-1,5-bisphosphate (2-CABP) has been solved at 1.84 A resolution (R(cryst) of 15.2 % and R(free) of 18.1 %). The subunit arrangement of Chlamydomonas rubisco is the same as those of the previously solved form I rubiscos. Especially, the present structure is very similar to the activated spinach structure complexed with 2-CABP in the L-subunit folding and active-site conformation, but differs in S-subunit folding. The central insertion of the Chlamydomonas S-subunit forms the longer betaA-betaB loop that protrudes deeper into the solvent channel of rubisco than higher plant, cyanobacterial, and red algal (red-like) betaA-betaB loops. The C-terminal extension of the Chlamydomonas S-subunit does not protrude into the solvent channel, unlike that of the red algal S-subunit, but lies on the protein surface anchored by interactions with the N-terminal region of the S-subunit. Further, the present high-resolution structure has revealed novel post-translational modifications. Residue 1 of the S-subunit is N(alpha)-methylmethionine, residues 104 and 151 of the L-subunit are 4-hydroxyproline, and residues 256 and 369 of the L-subunit are S(gamma)-methylcysteine. Furthermore, the unusual electron density of residue 471 of the L-subunit, which has been deduced to be threonine from the genomic DNA sequence, suggests that the residue is isoleucine produced by RNA editing or O(gamma)-methylthreonine.  相似文献   

3.
The crystal structure of the binary complex of nonactivated ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum and a transition state analogue, 2-carboxy-D-arabinitol 1,5-bisphosphate has been determined to 2.6 A resolution with x-ray crystallographic methods. The transition state analogue binds in a rather extended conformation at the active site. The orientation of the transition state analogue within the active site could be determined from the electron density maps. The P1 phosphate group of the analogue binds at a site built up of residues from loops 5 and 6 of the alpha/beta-barrel. The phosphate group interacts with the side chains of the conserved residues Arg-288, His-321, and Ser-368 and with main chain nitrogens from residues Thr-322 and Gly-323. The second phosphate group of the transition state analogue binds at the opposite side of the barrel close to loops 1 and 8. Significant differences for the positions and interactions of the P2 phosphate group with the enzyme are found in the two subunits of the dimer. The different mode of binding for this phosphate group in the two subunits is interpreted as a consequence of different conformations of the polypeptide chain observed in loops 6 and 8. The P2 phosphate group interacts with the sidechains of Lys-166 and Lys-329. Loop 6, which is disordered in the nonactivated, nonliganded enzyme is considerably more ordered in one of the subunits, probably due to the interaction of the side chain of Lys-329 with the P2 phosphate group. Almost all oxygen atoms are hydrogen bonded to groups on the enzyme. The carboxyl group forms hydrogen bonds to the side chain of the conserved Asn-111. The binding of the transition state analogue to the nonactivated enzyme is different from the binding of the analogue to activated spinach ribulose-bisphosphate carboxylase.  相似文献   

4.
Ribulose 1,5-bisphosphate carboxylase/oxygenase has been purified from spinach and crystallized by equilibrium vapor diffusion with polyethylene glycol 6000 as a precipitant. Crystals suitable for x-ray studies were obtained from a binary complex with a transition state analogue, 2-C-carboxy-D-arabinitol 1,5-bisphosphate, and a quaternary complex with 2-C-carboxy-D-arabinitol 1,5-bisphosphate, Mg2+, and HCO-3. Two forms of crystals were obtained in the presence of 2-C-carboxy-D-arabinitol 1,5-bisphosphate. Form B crystals are plates which have orthorhombic space group P2(1)2(1)2 with unit cell dimensions a = 184 A, b = 218 A, and c = 119 A. Form C crystals are tetragonal needles with space group I422 and with cell dimensions a = b = 275 A and c = 178 A. In both forms, the asymmetric unit contains half a molecule.  相似文献   

5.
Marine and terrestrial photosynthetic and chemoautotrophic microorganisms assimilate considerable amounts of carbon dioxide. Like green plastids, the predominant means by which this process occurs is via the Calvin-Benson-Bassham reductive pentose phosphate pathway, where ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) plays a paramount role. Recent findings indicate that this enzyme is subject to diverse means of control, including specific and elaborate means to guarantee its high rate and extent of synthesis. In addition, powerful and specific means to regulate Rubisco activity is a characteristic feature of many microbial systems. In many respects, the diverse properties of microbial Rubisco enzymes suggest interesting strategies to elucidate the molecular basis of CO2/O2 specificity, the holy grail of Rubisco biochemistry. These systems thus provide, as the title suggests, different perspectives to this fundamental problem. These include vast possibilities for imaginative biological selection using metabolically versatile organisms with well-defined genetic transfer capabilities to solve important issues of Rubisco specificity and molecular control. This review considers the major issues of Rubisco biochemistry and regulation in photosynthetic microoganisms including proteobacteria, cyanobacteria, marine nongreen algae, as well as other interesting prokaryotic and eukaryotic microbial systems recently shown to possess this enzyme.  相似文献   

6.
The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase   总被引:1,自引:0,他引:1  
The substrate specificity factor, V cKo/VoKc, of spinach (Spinacia oleracea L.) ribulose 1,5-bisphosphate carboxylase/oxygenase was determined at ribulosebisphosphate concentrations between 0.63 and 200 M, at pH values between 7.4 and 8.9, and at temperatures in the range of 5° C to 40° C. The CO2/O2 specificity was the same at all ribulosebisphosphate concentrations and largely independent of pH. With increasing temperature, the specificity decreased from values of about 160 at 5° C to about 50 at 40° C. The primary effects of temperature were on K c [Km(CO2)] and V c [Vmax (CO2)], which increased by factors of about 10 and 20, respectively, over the temperature range examined. In contrast, K o [Ki (O2)] was unchanged and V o [Vmax (O2)] increased by a factor of 5 over these temperatures. The CO2 compensation concentrations () were calculated from specificity values obtained at temperatures between 5° C and 40° C, and were compared with literature values of . Quantitative agreement was found for the calculated and measured values. The observations reported here indicate that the temperature response of ribulose 1,5-bisphosphate carboxylase/oxygenase kinetic parameters accounts for two-thirds of the temperature dependence of the photorespiration/photosynthesis ratio in C3 plants, with the remaining one-third the consequence of differential temperature effects on the solubilities of CO2 and O2.Abbreviations RuBPC/O(ase) ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - CO2 compensation concentration  相似文献   

7.
8.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) has played a central role in our understanding of chloroplast biogenesis and photosynthesis. In particular, its catalysis of the rate-limiting step of CO2 fixation, and the mutual competition of CO2 and O2 at the active site, makes Rubisco a prime focus for genetically engineering an increase in photosynthetic productivity. Although it remains difficult to manipulate the chloroplast-encoded large subunit and nuclear-encoded small subunit of crop plants, much has been learned about the structure/function relationships of Rubisco by expressing prokaryotic genes in Escherichia coli or by exploiting classical genetics and chloroplast transformation of the green alga Chlamydomonas reinhardtii. However, the complexity of chloroplast Rubisco in land plants cannot be completely addressed with the existing model organisms. Two subunits encoded in different genetic compartments have coevolved in the formation of the Rubisco holoenzyme, but the function of the small subunit remains largely unknown. The subunits are posttranslationally modified, assembled via a complex process, and degraded in regulated ways. There is also a second chloroplast protein, Rubisco activase, that is responsible for removing inhibitory molecules from the large-subunit active site. Many of these complex interactions and processes display species specificity. This means that attempts to engineer or discover a better Rubisco may be futile if one cannot transfer the better enzyme to a compatible host. We must frame the questions that address this problem of chloroplast-Rubisco complexity. We must work harder to find the answers.  相似文献   

9.
The three-dimensional structure of the complex of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum, CO2, Mg2+, and ribulose bisphosphate has been determined with x-ray crystallographic methods to 2.6-A resolution. Ribulose-1,5-bisphosphate binds across the active site with the two phosphate groups in the two phosphate binding sites of the beta/alpha barrel. The oxygen atoms of the carbamate and the side chain of Asp-193 provide the protein ligands to the bound Mg2+ ion. The C2 and the C3 or C4 oxygen atoms of the substrate are also within the first coordination sphere of the metal ion. At the present resolution of the electron density maps, two slightly different conformations of the substrate, with the C3 hydroxyl group "cis" or "trans" to the C2 oxygen, can be built into the observed electron density. The two different conformations suggest two different mechanisms of proton abstraction in the first step of catalysis, the enolization of the ribulose 1,5-bisphosphate. Two loop regions, which are disordered in the crystals of the nonactivated enzyme, could be built into their respective electron density. A comparison with the structure of the quaternary complex of the spinach enzyme shows that despite the different conformations of loop 6, the positions of the Mg2+ ion, and most atoms of the substrate are very similar when superimposed on each other. There are, however, some significant differences at the active site, especially in the metal coordination sphere.  相似文献   

10.
In some plants, 2-carboxy-d-arabinitol 1-phosphate (CA 1P) is tightly bound to catalytic sites of ribulose, 1,5-bisphosphate carboxylase/oxygenase (rubisco). This inhibitor's tight binding property results from its close resemblance to the transition state intermediate of the carboxylase reaction. Amounts of CA 1P present in leaves varies with light level, giving CA 1P characteristics of a diurnal modulator of rubisco activity. Recently, a specific phosphatase was found that degrades CA 1P, providing a mechanism to account for its disappearance in the light. The route of synthesis of CA 1P is not known, but could involve the branched chain sugar, hamamelose. There appear to be two means for diurnal regulation of the number of catalytic sites on rubisco: carbamylation mediated by the enzyme, rubisco activase, and binding of CA 1P. While strong evidence exists for the involvement of rubisco activase in rubisco regulation, the significance of CA 1P in rubisco regulation is enigmatic, given the lack of general occurrence of CA 1P in plant species. Alternatively, CA 1P may have a role in preventing the binding of metabolites to rubisco during the night and the noncatalytic binding of ribulose bisphosphate in the light.  相似文献   

11.
Kent SS  Young JD 《Plant physiology》1980,65(3):465-468
An assay was developed for simultaneous kinetic analysis of the activities of the bifunctional plant enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase [EC 4.1.1.39]. [1-14C,5-3H]Ribulose 1,5-bisphosphate (RuBP) was used as the labeled substrate. Tritium enrichment of the doubly labeled 3-phosphoglycerate (3-PGA) product, common to both enzyme activities, may be used to calculate Vc/Vo ratios from the expression A/(B-A) where A and B represent the 3H/14C isotope ratios of doubly labeled RuBP and 3-PGA, and Vc and Vo represent the activities of carboxylase and oxygenase, respectively. Doubly labeled substrate was synthesized from [2-14C]glucose and [6-3H]glucose using the enzymes of the pentose phosphate pathway coupled with phosphoribulokinase.  相似文献   

12.
2-Carboxy-3-keto-D-arabinitol 1,5-bisphosphate is a tightly bound intermediate of the carboxylase reaction of ribulosebisphosphate carboxylase/oxygenase. Two stereoisomers of an analog of this intermediate, 2-carboxy-D-arabinitol 1,5-bisphosphate (2CABP) and 4-carboxy-D-arabinitol 1,5-bisphosphate (4CABP), are exceptionally potent, virtually irreversible inhibitors of the spinach carboxylase, presumably due to their structural similarity to the gem-diol (hydrated carbonyl at C-3) form of the intermediate. Incubation of the enzyme with either leads to time-dependent loss of activity. Inhibition of the enzyme is biphasic, with initial dissociation constants of 0.47 and 0.19 microM and maximal rates for tight complex formation of 2.2 and 1.8 min-1 for 2CABP and 4CABP, respectively. These values give second-order rate constants for tight complex formation of 7.8 x 10(4) and 1.6 x 10(5) M-1 s-1. To determine the overall affinity of the spinach enzyme for 2CABP and 4CABP, the release rates were determined by dual isotope exchange (3H-inhibitor complex with free 14C-inhibitor). Exchange half-times of 1.82 and 530 days were observed for 4CABP and 2CABP, respectively. Overall dissociation constants of 28 pM (2.8 x 10(-11) M) and 190 fM (1.9 x 10(-13) M) were calculated from these dissociation rates together with the rates of association determined by inactivation kinetics. The difference in affinity of 2CABP and 4CABP corresponds to 2.9 kcal/mol, presumably reflecting the difference in interaction of the enzyme with the two hydroxyls of the intermediate's gem-diol. The kinetic behavior of these two inhibitors, in particular the rather slow maximal rates of association, are consistent with the expected behavior of analogs of a labile intermediate of an enzymic reaction that is far more stable than a transition state.  相似文献   

13.
A simple approach to determine CO2/O2 specificity factor () of ribulose 1,5-bisphosphate carboxylase/oxygenase is described. The assay measures the amount of CO2 fixation at varying [CO2]/[O2] ratios after complete consumption of ribulose 1,5-bisphosphate (RuBP). Carbon dioxide fixation catalyzed by the carboxylase was monitored by directly measuring the moles of 14CO2 incorporated into 3-phosphoglycerate (PGA). This measurement at different [CO2]/[O2] ratios is used to determine graphically by several different linear plots the total RuBP consumed by the two activities and the CO2/O2 specificity factor. The assay can be used to measure the amounts of products of the carboxylase and oxygenase reactions and to determine the concentration of the substrate RuBP converted to an endpoint amount of PGA and phosphoglycolate. The assay was found to be suitable for all [CO2]/[O2] ratios examined, ranging from 14 to 215 micromolar CO2 (provided as 1–16 mM NaHCO3) and 614 micromolar O2 provided as 50% O2. The procedure described is extremely rapid and sensitive. Specificity factors for enzymes of highly divergent values are in good agreement with previously published data.Abbreviations HEPPS N-(2-hydroxyethyl)piperazine-N-(3-propanesulfonic acid) - L large subunit of rubisco - PGA 3-phosphoglyceric acid - rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP d-ribulose 1,5-bisphosphate - S small subunit of rubisco - XuBP d-xylulose 1,5-bisphosphate  相似文献   

14.
The structure of the unactivated form of ribulose-1,5-bisphosphate carboxylase/oxygenase was refined at a resolution of 2.0 A to an R-factor of 17.1%. The previous model (Chapman et al., 1988) was extensively rebuilt, and the small subunit was retraced. The refined model consists of residues 22-63 and 69-467 of the large subunit and the complete small subunit. A striking feature of the model is that several loops have very high B-factors, probably representing mobile regions of the molecule. An examination of the intersubunit contacts shows that the L8S8 hexadecamer is composed of four L2 dimers. The dominant contacts between these L2 dimers are formed by the small subunits. This suggests that the small subunits may be essential for maintaining the integrity of the L8S8 structure. The active site shows differences between the unactivated form and the quaternary complex. In particular, Lys334 has moved out of the active site by about 10A. This residue lies on loop 6 of the alpha beta barrel, which is a particularly mobile loop. The site of ribulose-1,5-bisphosphate carboxylase/oxygenase activation is well ordered in the absence of the carbamylation of Lys201 and Mg2+ binding. The residues are held poised by a network of hydrogen bonds. In the unactivated state, the active site is accessible to substrate binding.  相似文献   

15.
The intra-chloroplastic distribution of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) between thylakoid membranes and stroma was studied by determining the enzyme activities in the two fractions, obtained by the rapid centrifugation of hypotonically disrupted chloroplast preparations of spinach and pea leaf tissues. The membrane-associated form of RuBisCO was found to increase in proportion to the concentration of MgCl2 in the disrupting medium; with 20 mM MgCl2 approximately 20% of the total RuBisCO of spinach chloroplasts and 10% of that of pea chloroplasts became associated with thylakoid membranes. Once released from membranes in the absence of MgCl2, addition of MgCl2 did not cause reassociation of the enzyme. The inclusion of KCl in the hypotonic disruption buffer also caused the association of RuBisCO with membranes; however, up to 30 mM KCl, only minimal enzyme activities could be detected in the membranes, whereas above 40 mM KCl there was a sharp increase in the membrane-associated form of the enzyme.Higher concentrations of chloroplasts during the hypotonic disruption, as well as addition of purified preparations of RuBisCO to the hypotonic buffer, resulted in an increase of membrane-associated activity. Therefore, the association of the enzyme with thylakoid membranes appears to be dependent on the concentration of RuBisCO. P-glycerate kinase and aldolase also associated to the thylakoid membranes but NADP-linked glyceraldehyde-3-P dehydrogenase did not. The optimal conditions for enzyme association with the thylakoid membranes were examined; maximal association occurred at pH 8.0. The association was temperature-insensitive in the range of 4° to 25° C. RuBisCO associated with the thylakoid membranes could be gradually liberated to the soluble form upon shaking in a Vortex mixer at maximal speed, indicating that the association is loose.Abbreviations DTT dithiothreitol - RuBP ribulose 1,5-bisphosphate - RuBisCO ribulose 1,5-bisphosphate carboxylase/oxygenase - MES 2-(N-morpholino) ethane sulfonic acid  相似文献   

16.
The spinach ribulose 1,5-bisphosphate carboxylase/oxygenase was labelled with o-phthalaldehyde, which forms a stable fluorescent isoindole adduct at the active site. The fluorescence behaviour of the labelled enzyme after activation to different levels by Mg2+ was compared with that of a synthetic isoindole adduct of o-phthalaldehyde, namely 1-(hydroxyethylthio)-2-beta hydroxyethylisoindole in solvents of different pH and polarity. The results suggest that the microenvironment at the catalytically incompetent active site of the unactivated Rubisco is highly acidic (pH less than 2) in nature. The activation by Mg2+ results in the conformational change such that the effective pH at the active site increases to greater than 8. The polarity of the active site of the activated enzyme was found to be similar to that of a mixture of hexane and toluene.  相似文献   

17.
An improved method was devised to purify ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) with high specific activity (2.1 mumol of CO2 fixed/mg protein/min) from Euglena gracilis Z. The purified enzyme stored at -80 degrees C required treatment with dithiothreitol for full activity. The dithiothreitol-treated RuBisCO was activated by 12 mM NaHCO3 and 20 mM MgCl2, and the activated state was stable at least for 60 min in the presence of 4 mM ethylenediaminetetraacetate. The form of inorganic carbon fixed by the Euglena enzyme was CO2, as for the plant enzymes. The carboxylase reaction proceeded linearly with time for at least 8 min. The optimum pH for this reaction was 7.8 to 8.0. The carboxylase activity increased with increasing temperature up to 50 degrees C. The activation energy for the carboxylation reaction was 10.0 kcal/mol. The Michaelis constants of Euglena RuBisCO were 30.9 microM for CO2, 560 microM for O2, and 10.5 microM for ribulose 1,5-bisphosphate. Mathematical comparison between the photosynthesis rate predicted from these enzymatic properties and the observed rate suggested that there is no CO2-concentrating mechanism in E. gracilis.  相似文献   

18.
The most abundant phosphorus-containing polypeptide in the purple non-sulphur bacterium Rhodomic-robium vannielii has been identified by a combination of immunoprecipitation and sucrose density gradient centrifugation as the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase. The covalent modification of the large subunit involves the phosphorylation of one or more tyrosine residues and appears to occur prior to assembly of the large subunit into the mature enzyme. In addition, the phosphorylated form of the large subunit was found to exist in at least two distinct protein complexes of Mr 410,000 and 440,000.  相似文献   

19.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (EC 4.1.1.39) not only catalyzes carboxylation and oxygenation of ribulose-1,5-bisphosphate (RuBP), but it can also act either as an epimerase or isomerase converting RuBP into xylulose-1,5-bisphosphate (XuBP) or 3-ketoarabinitol-1,5-bisphosphate (KABP), respectively, a process called misfire. XuBP is formed as a result of misprotonation at C3 of the RuBP-enediol. It is released from Rubisco active sites and accumulates in the reaction mixture. Increasing the amounts of CO2 or O2 decreases XuBP production. However, KABP synthesis, which has been proposed to be only a product due to C2 misprotonation of the RuBP-endiol, is dependent upon the presence of O2. KABP remains tightly bound to Rubisco active sites after its formation, causing the loss of Rubisco activity (fallover). The results suggest that the non-stabilized form of the peroxy-intermediate in the oxygenase reaction can be converted in a backreaction to KABP and molecular oxygen. The stabilization of the peroxy-intermediate due to the presence of Mn2+ instead of Mg2+ eliminates the formation of KABP.  相似文献   

20.
Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1. 39) obtained from a thermophilic red alga Galdieria partita has the highest specificity factor of 238 among the Rubiscos hitherto reported. Crystal structure of activated Rubisco from G. partita complexed with the reaction intermediate analogue, 2-carboxyarabinitol 1,5-bisphosphate (2-CABP) has been determined at 2.4-A resolution. Compared with other Rubiscos, different amino residues bring the structural differences in active site, which are marked around the binding sites of P-2 phosphate of 2-CABP. Especially, side chains of His-327 and Arg-295 show the significant differences from those of spinach Rubisco. Moreover, the side chains of Asn-123 and His-294 which are reported to bind the substrate, ribulose 1,5-bisphosphate, form hydrogen bonds characteristic of Galdieria Rubisco. Small subunits of Galdieria Rubisco have more than 30 extra amino acid residues on the C terminus, which make up a hairpin-loop structure to form many interactions with the neighboring small subunits. When the structures of Galdieria and spinach Rubiscos are superimposed, the hairpin region of the neighboring small subunit in Galdieria enzyme and apical portion of insertion residues 52-63 characteristic of small subunits in higher plant enzymes are almost overlapped to each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号