首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Tall hair cells were isolated by enzymatic and mechanical dissociation from selected regions of the apical half of the alligator (A. mississippiensis) cochlea. Single cells were subjected to voltage-clamp and current-clamp using the tight-seal whole-cell recording technique. Most hair cells isolated from the apex of the cochlea produced slowly regenerative depolarizations or Na action potentials during current injection, whereas hair cells isolated from more basal regions usually produced voltage oscillations (ringing) in response to depolarizing current injection, an indication of electrical resonance. Resonant frequencies ranged from 50 to 157 Hz in different cells. The higher-frequency cells tended to have larger and more rapidly activating outward currents than did the lower-frequency cells. An inward Ca current and an outward Ca-activated K current were present in all hair cells. In addition, an inwardly rectifying current and a small, transient outward current were often seen. Thus, we conclude that an electrical tuning mechanism is present in alligator hair cells. The role of the ionic conductances in shaping hair cell responses to current injection, and the possible contributions of these electrical responses to cochlear function are discussed.  相似文献   

2.
Membrane properties of isolated mudpuppy taste cells   总被引:13,自引:3,他引:10       下载免费PDF全文
The voltage-dependent currents of isolated Necturus lingual cells were studied using the whole-cell configuration of the patch-clamp technique. Nongustatory surface epithelial cells had only passive membrane properties. Small, spherical cells resembling basal cells responded to depolarizing voltage steps with predominantly outward K+ currents. Taste receptor cells generated both outward and inward currents in response to depolarizing voltage steps. Outward K+ currents activated at approximately 0 mV and increased almost linearly with increasing depolarization. The K+ current did not inactivate and was partially Ca++ dependent. One inward current activated at -40 mV, reached a peak at -20 mV, and rapidly inactivated. This transient inward current was blocked by tetrodotoxin (TTX), which indicates that it is an Na+ current. The other inward current activated at 0 mV, peaked at 30 mV, and slowly inactivated. This more sustained inward current had the kinetic and pharmacological properties of a slow Ca++ current. In addition, most taste cells had inwardly rectifying K+ currents. Sour taste stimuli (weak acids) decreased outward K+ currents and slightly reduced inward currents; bitter taste stimuli (quinine) reduced inward currents to a greater extent than outward currents. It is concluded that sour and bitter taste stimuli produce depolarizing receptor potentials, at least in part, by reducing the voltage-dependent K+ conductance.  相似文献   

3.
Cardiomyocytes enzymatically isolated from rat and guinea pig ventricular tissue were investigated under conditions of intracellular perfusion and voltage clamp at 18-20 degrees C. Perfusion with 135 mmol/l Tris(HF), pH 7.2 was used to eliminate outward potassium currents. The dependence of inward current (elicited by depolarizing pulses from a holding potential level of--120 mV) on low external TTX concentrations (from 10(-13) to 10(-10) mol/l) was studied. Similar TTX concentrations increased the amplitude of the inward current and changed its kinetics in a large number of cells tested. The effect was fully reversible. The effect could be evaluated in a net form by digital subtraction of the current obtained after the application of a low external TTX concentration from the initial current in a TTX-free solution. The TTX concentration dependence of the difference current could be fitted by one-to-one binding curve with Kd = (1.0 +/= 0.4) x 10(-12) mol/l. TTX-induced current changes were absent in low sodium or chloride-free external solutions. The outward current (a block of which by TTX produced the inward current changes observed) showed a reversal potential consistent with the chloride nature of such a current. The existence of a transient TTX-sensitive Na-dependent potential gated chloride current in the membrane of isolated cardiomyocytes is postulated.  相似文献   

4.
Properties of "creep currents" in single frog atrial cells   总被引:1,自引:5,他引:1  
Changes in membrane current in response to an elevation of [Na]i were studied in enzymatically dispersed frog atrial cells. Na loading by either intracellular dialysis or exposure to the Na ionophore monensin produces changes in membrane current that resemble the "creep currents" originally observed in cardiac Purkinje fibers during exposure to low-K solutions. Na loading induces a transient outward current during depolarizing voltage-clamp pulses, followed by an inward current in response to repolarization back to the holding potential. In contrast to cardiac Purkinje fibers, Na loading of frog atrial cells induces creep currents without accompanying transient inward currents. Creep currents induced by Na loading are insensitive to K channel antagonists like Cs and 4-aminopyridine; they are not influenced by doses of Ca channel antagonists that abolish iCa, but are sensitive to changes in [Ca]o or [Na]o. A comparison of the time course of development of inward creep currents are not tail currents associated with iCa. Inward creep currents can also be induced by experimental interventions that increase the iCa amplitude. Exposure to isoproterenol enhances the iCa amplitude and induces inward creep currents; both can be attenuated by Ca channel antagonists. Both inward and outward creep currents are blocked by low doses of La, independently of La's ability to block iCa. It is concluded that (a) creep currents are not mediated by voltage-gated Na, Ca, or K channels or by an electrogenic Na,K pump; (b) inward creep currents induced either by Na loading or in response to an increase in the amplitude of iCa are triggered by an elevation of [Ca]i; and (c) creep currents may be generated by either an electrogenic Na/Ca exchange mechanism or by a nonselective cation channel activated by [Ca]i.  相似文献   

5.
Voltage-dependent membrane currents of cells dissociated from tongues of larval tiger salamanders (Ambystoma tigrinum) were studied using whole-cell and single-channel patch-clamp techniques. Nongustatory epithelial cells displayed only passive membrane properties. Cells dissociated from taste buds, presumed to be gustatory receptor cells, generated both inward and outward currents in response to depolarizing voltage steps from a holding potential of -60 or -80 mV. Almost all taste cells displayed a transient inward current that activated at -30 mV, reached a peak between 0 and +10 mV and rapidly inactivated. This inward current was blocked by tetrodotoxin (TTX) or by substitution of choline for Na+ in the bath solution, indicating that it was a Na+ current. Approximately 60% of the taste cells also displayed a sustained inward current which activated slowly at about -30 mV and reached a peak at 0 to +10 mV. The amplitude of the slow inward current was larger when Ca2+ was replaced by Ba2+ and it was blocked by bath applied CO2+, indicating it was a Ca2+ current. Delayed outward K+ currents were observed in all taste cells although in about 10% of the cells, they were small and activated only at voltages more depolarized than +10 mV. Normally, K+ currents activated at -40 mV and usually showed some inactivation during a 25-ms voltage step. The inactivating component of outward current was not observed at holding potentials more depolarized -40 mV. The outward currents were blocked by tetraethylammonium chloride (TEA) and BaCl2 in the bath or by substitution of Cs+ for K+ in the pipette solution. Both transient and noninactivating components of outward current were partially suppressed by CO2+, suggesting the presence of a Ca2(+)-activated K+ current component. Single-channel currents were recorded in cell-attached and outside-out patches of taste cell membranes. Two types of K+ channels were partially characterized, one having a mean unitary conductance of 21 pS, and the other, a conductance of 148 pS. These experiments demonstrate that tiger salamander taste cells have a variety of voltage- and ion-dependent currents including Na+ currents, Ca2+ currents and three types of K+ currents. One or more of these conductances may be modulated either directly by taste stimuli or indirectly by stimulus-regulated second messenger systems to give rise to stimulus-activated receptor potentials. Others may play a role in modulation of neurotransmitter release at synapses with taste nerve fibers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
用双微电极电压钳技术在巨孔匙(虫戚)(Megathura)未受精卵细胞膜上记录到多种离子流。主要有一种内向的两价离子流和几种钾离子流:包括钡离子激活的钾离子流,迅速激活又迅速失活的钾离子流(类似于I_A)和异常整流钾离子流。不同细胞的离子流大小不同。在一些卵可能会缺少其中某一种离子流。此外,还观察到浴槽溶液中氯和钠离子浓度改变对膜电位及膜电导的影响。  相似文献   

7.
The objective of these experiments was to test the hypothesis that the "creep currents" induced by Na loading of single frog atrial cells (Hume, J. R., and A. Uehara. 1986. Journal of General Physiology. 87:833) may be generated by an electrogenic Na/Ca exchanger. Creep currents induced by Na loading were examined over a wide range of membrane potentials. During depolarizing voltage-clamp pulses, outward creep currents were observed, followed by inward creep currents upon the return to the holding potential. During hyperpolarizing voltage-clamp pulses, creep currents of the opposite polarity were observed: inward creep currents were observed during the pulses, followed by outward creep currents upon the return to the holding potential. The current-voltage relations for inward and outward creep currents in response to depolarizing or hyperpolarizing voltage displacements away from the holding potential all intersect the voltage axis at a common potential, which indicates that inward and outward creep currents may have a common reversal potential under equilibrium conditions and may therefore be generated by a common mechanism. Measurements of inward creep currents confirm that voltage displacements away from the holding potential rapidly alter equilibrium conditions. Current-voltage relationships of inward creep currents after depolarizing voltage-clamp pulses are extremely labile and depend critically upon the amplitude and duration of outward creep currents elicited during preceding voltage-clamp pulses. An optical monitor of mechanical activity in single cells revealed (a) a similar voltage dependence for the outward creep currents induced by Na loading and tonic contraction, and (b) a close correlation between the time course of the decay of the inward creep current and the time course of mechanical relaxation. A mathematical model of electrogenic Na/Ca exchange (Mullins, L.J. 1979. Federation Proceedings. 35:2583; Noble, D. 1986. Cardiac Muscle. 171-200) can adequately account for many of the properties of creep currents. It is concluded that creep currents in single frog atrial cells may be attributed to the operation of an electrogenic Na/Ca exchange mechanism.  相似文献   

8.
Transient outward currents in rat saphenous arterial myocytes were studied using the perforated configuration of the patch-clamp method. When myocytes were bathed in a Na-gluconate solution containing TEA to block large-conductance Ca2+-activated K+ (BK) currents, depolarizing pulses positive to +20 mV from a holding potential of -100 mV induced fast transient outward currents. The activation and inactivation time constants of the current were voltage dependent, and at +40 mV were 3.6 +/- 0.8 ms and 23.9 +/- 6.4 ms (n = 4), respectively. The steady-state inactivation of the transient outward current was steeply voltage dependent (z = 1.7), with 50% of the current inactivated at -55 mV. The current was insensitive to the A-type K+ channel blocker 4-AP (1-5 mM), and was modulated by external Ca, decreasing to approximately 0.85 of control values upon raising Ca2+ from 1 to 10 mM, and increasing approximately 3-fold upon lowering it to 0.1 mM. Transient outward currents were also recorded following replacement of internal K+ with either Na+ or Cs+, raising the possibility that the current was carried by monovalent ions passing through voltage-gated Ca2+ channels. This hypothesis was supported by the finding that the transient outward current had the same inactivation rate as the inward Ba2+ current, and that both currents were effectively blocked by the L-type Ca2+ channel blocker, nifedipine and enhanced by the agonist BAYK8644.  相似文献   

9.
The ionic mechanisms of the depolarizing and the hyperpolarizing quinine receptor potentials in the ciliate Paramecium caudatum were examined by using a behavioral mutant strain. The depolarizing receptor potential was induced by stimulating the anterior end of the specimen, and the hyperpolarizing receptor potential by stimulating the posterior end. The amplitude of both the depolarizing and the hyperpolarizing receptor potentials increased linearly with logarithmic increase in quinine concentration applied. Threshold concentration for inducing the depolarizing receptor potential was lower than that for the hyperpolarizing one. The peak level of the depolarizing receptor potential shifted towards the depolarizing direction with increasing external Ca2+ concentration while that of the hyperpolarizing receptor potential shifted in the depolarizing direction with increasing external K+ concentration. Under voltage-clamp conditions, the specimen produced an inward current in response to anterior stimulation, and an outward current in response to posterior stimulation. Both the peak inward and the peak outward currents showed a linear relationship with membrane potential. Current-voltage relationships of the receptor currents indicated conductance increase during the application of quinine. The depolarizing quinine receptor potential appears to be produced by an activation of Ca2+ channels, and the hyperpolarizing quinine receptor potential by an activation of K+ channels. Accepted: 3 October 1997  相似文献   

10.
Summary Plasmalemmal ionic currents from excitable motor cells of the primary pulvinus ofMimosa pudica were investigated by patch-clamp techniques. In almost all of the enzymatically isolated protoplasts, a delayed rectifier potassium current was activated by depolarization, while no currents were detected upon hyperpolarization. This sustained outward current was reversibly blocked by Ba and TEA and serves to repolarize the membrane potential. Outward single channel currents that very likely underly the macroscopic outward potassium current had an elementary conductance of 20 pS. In addition, in a few protoplasts held at hyperpolarized potentials, depolarization-activated transient inward currents were observed, and under current clamp, action potential-like responses were triggered by depolarizing current injections or by mechanical perturbations. The activation characteristics of both inward currents and spikes showed striking similarities compared to those of action potentialsin situ.  相似文献   

11.
This paper provides the first study of voltage-sensitive membrane currents present in heart myocytes from cephalopods. Whole cell patch clamp recordings have revealed six different ionic currents in myocytes freshly dissociated from squid cardiac tissues (branchial and systemic hearts). Three types of outward potassium currents were identified: first, a transient outward voltage-activated A-current (IA), blocked by 4-aminopyridine, and inactivated by holding the cells at a potential of −40 mV; second, an outward, voltage-activated, delayed rectifier current with a sustained time course (IK); and third, an outward, calcium-dependent, potassium current (IK(Ca)) sensitive to Co2+ and apamin, and with the characteristic N-shaped current voltage relationship. Three inward voltage-activated currents were also identified. First, a rapidly activating and inactivating, sodium current (INa), blocked by tetrodotoxin, inactivated at holding potentials more positive than −40 mV, and abolished when external sodium was replaced by choline. Second, an L-type calcium current (ICa,L) with a sustained time course, suppressed by nifedipine or Co2+, and enhanced by substituting Ca2+ for Ba2+ in the external medium. The third inward current was also carried by calcium ions, but could be distinguished from the L-type current by differences in its voltage dependence. It also had a more transient time course, was activated at more negative potentials, and resembled the previously described low-voltage-activated, T-type calcium current. Accepted: 24 September 1999  相似文献   

12.
Using the whole-cell voltage clamp (to determine the membrane current) and current clamp (to determine membrane potential) methods in conjunction with the nystatin-perforation technique, we studied the effect of methacholine (MCh) and other secretagogues on whole cell K and Cl currents in dissociated rhesus palm eccrine sweat clear cells. Application of MCh by local superfusion induced a net outward current (at a holding potential of ?60 mV and a clamp voltage of 0 mV), and a transient hyperpolarization by 5.6 mV, suggesting the stimulation of K currents. The net outward current gradually changed to the inward (presumably Cl) currents over the next 1 to 2 min of continuous MCh stimulation. During this time the membrane potential also changed from hyperpolarization to depolarization. The inward currents were increasingly more activated than outward (presumably K) currents during repeated MCh stimulations so that a net inward current (at ?60 mV) was observed after the fourth or fifth MCh stimulation. Ionomycin (10 μm) also activated both inward and outward current. The observed effect of MCh was abolished by reducing extracellular [Ca] to below 1 nm (Ca-free + 1 mm EGTA in the bath). MCh-activated outward currents were inhibited by 5 mm Ba and by 0.1 mm quinidine, although these agents also suppressed the inward currents. Bi-ionic potential measurements indicated that the contribution of Na to the membrane potential was negligible both before and after MCh or ISO (isoproterenol) stimulations and that the observed membrane current was carried mainly by K and Cl. MCh increased the bi-ionic potential by step changes in external K and Cl concentrations, further supporting that MCh-induced outward and inward currents represent K and Cl currents, respectively. Stimulation with ISO or FK (forskolin) resulted in a depolarization by about 55 mV and a net inward (most likely Cl) current independent of external Ca. CT-cAMP mimicked the effects of FK and ISO. The bi-ionic potential, produced by step changes in the external Cl concentration, increased during ISO stimulation, whereas that of K decreased. This indicates that the ISO-induced inward current is due to Cl current and that K currents were unchanged or slightly decreased during stimulation with ISO or 10 μm FK. Both myoepithelial and dark cells responded only to MCh (but not to FK) with a marked depolarization of the membrane potential due to activation of Cl, but not K, currents. We conclude that MCh stimulates Ca-dependent K and Cl currents, whereas ISO stimulates cAMP-dependent Cl currents in eccrine clear cells.  相似文献   

13.
Ionic currents in two strains of rat anterior pituitary tumor cells   总被引:14,自引:7,他引:7       下载免费PDF全文
The ionic conductance mechanisms underlying action potential behavior in GH3 and GH4/C1 rat pituitary tumor cell lines were identified and characterized using a patch electrode voltage-clamp technique. Voltage-dependent sodium, calcium, and potassium currents and calcium-activated potassium currents were present in the GH3 cells. GH4/C1 cells possess much less sodium current, less voltage-dependent potassium current, and comparable amounts of calcium current. Voltage-dependent inward sodium current activated and inactivated rapidly and was blocked by tetrodotoxin. A slower-activating voltage-dependent inward calcium current was blocked by cobalt, manganese, nickel, zinc, or cadmium. Barium was substituted for calcium as the inward current carrier. Calcium tail currents decay with two exponential components. The rate constant for the slower component is voltage dependent, while the faster rate constant is independent of voltage. An analysis of tail current envelopes under conditions of controlled ionic gradients suggests that much of the apparent decline of calcium currents arises from an opposing outward current of low cationic selectivity. Voltage-dependent outward potassium current activated rapidly and inactivated slowly. A second outward current, the calcium-activated potassium current, activated slowly and did not appear to reach steady state with 185-ms voltage pulses. This slowly activating outward current is sensitive to external cobalt and cadmium and to the internal concentration of calcium. Tetraethylammonium and 4-aminopyridine block the majority of these outward currents. Our studies reveal a variety of macroscopic ionic currents that could play a role in the initiation and short-term maintenance of hormone secretion, but suggest that sodium channels probably do not make a major contribution.  相似文献   

14.
The ionic currents of smooth muscle cells isolated from the ctenophore Mnemiopsis were examined by using conventional two-electrode voltage clamp and whole-cell patch clamping methods. Several separable currents were identified. These include: (1) a transient and (2) a steady-state voltage-activated inward current; both are tetrodotoxin (TTX) and saxitoxin (STX) insensitive, partly reduced by decreasing external Ca2+ or Na+ or by addition of 5 mM Co2+, D-600 or verapamil and are totally blocked with 5 mM Cd2+; (3) an early, transient, cation-dependent, outward K+ current (IKCa/Na); (4) a transient, voltage-activated, outward K+ current provisionally identified as IA; (5) a delayed, steady-state, voltage-activated outward K+ current (IK) and (6) a late, transient, outward K+ current which is blocked by Cd2+ and evident only during long voltage pulses. Despite their phylogenic origin, most of these currents are similar to currents identified in many vertebrate smooth and cardiac muscle preparations, and other excitable cells in higher animals.  相似文献   

15.
The ionic currents across the plasmalemma of Nitellopsis obtusawere measured in voltage clamp experiments. Depolarization ofthe cell by 30–100 mV from the level of the resting potentialresulted in (1) a rapid inward current, (2) a subsequent slowinward current, and (3) a stationary outward current. The firstcurrent component changed sign at –20 to –30 mV.The second component decreased to a minimum at this clampedlevel. With increasing depolarizing steps some slow transientcurrent component reappeared without changing sign. This transientinward current occurred also when the potential was clampedeither at large depolarizing (+80 mV) or at large hyperpolarizing(–300 mV) potentials. In cases when the slow inward currentcomponent was evident cessation of protoplasmic streaming wasobserved. The ATPase inhibitor dicyclohexylcarbodiimide (DCCD)at a concentration of 2 x 10–5 M in the external mediuminhibited the slow transient inward current without affectingthe first rapid current component. It is suggested that theirreversible slow transient current component reflects the onsetof some active ion-transport system in the plasmalemma duringcell excitation.  相似文献   

16.
Mechanosensitive hair cells in the statocysts of cephalopods underlie a sophisticated detection system for linear and angular accelerations. To investigate the operation of this system, secondary sensory hair cells were dissociated from the sensory epithelia of these statocysts and their voltage sensitive ionic conductances identified and characterized under whole cell voltage clamp.All secondary hair cells showed two outward potassium conductances; first, a current similar to the previously described delayed rectifier, IK and second, a current similar to the molluscan A current, IA. A small number of hair cells (15%) also showed an inward sodium current; the presence of this current was correlated with the presence of small membrane extensions at the base of the cell. The sodium current could be blocked by TTX and was abolished by substituting choline for sodium in the external medium. An inward L-type, calcium current was also identified. This current showed rapid activation, with little inactivation, could be carried by barium ions, and was blocked by Nifedipine in the external solution.These data provide the first information on the ionic conductances in the basolateral membranes of invertebrate secondary sensory hair cells and form a basis for comparison with analogous vertebrate hair cells.  相似文献   

17.
Two morphologically distinct types of horizontal cell have been identified in the all-rod skate retina by light- and electron-microscopy as well as after isolation by enzymatic dissociation. The external horizontal cell is more distally positioned in the retina and has a much larger cell body than does the internal horizontal cell. However, both external and internal horizontal cells extend processes to the photoreceptor terminals where they end as lateral elements adjacent to the synaptic ribbons within the terminal invaginations. Whole-cell voltage-clamp studies on isolated cells similar in appearance to those seen in situ showed that both types displayed five separate voltage-sensitive conductances: a TTX-sensitive sodium conductance, a calcium current, and three potassium-mediated conductances (an anomalous rectifier, a transient outward current resembling an A current, and a delayed rectifier). There was, however, a striking difference between external and internal horizontal cells in the magnitude of the current carried by the anomalous rectifier. Even after compensating for differences in the surface areas of the two cell types, the sustained inward current elicited by hyperpolarizing voltage steps was a significantly greater component of the current profile of external horizontal cells. A difference between external and internal horizontal cells was seen also in the magnitudes of their TEA-sensitive currents; larger currents were usually obtained in recordings from internal horizontal cells. However, the currents through these K+ channels were quite small, the TEA block was often judged to be incomplete, and except for depolarizing potentials greater than or equal to +20 mV (i.e., outside the normal operating range of horizontal cells), this current did not provide a reliable indicator of cell type. The fact that two classes of horizontal cell can be distinguished by their electrophysiological responses, as well as by their morphological appearance and spatial distribution in the retina, suggests that they may play different roles in the processing of visual information within the retina.  相似文献   

18.
Summary Membrane ionic currents were measured in pregnant rat uterine smooth muscle under voltage clamp conditions by utilizing the double sucrose gap method, and the effects of conditioning pre-pulses on these currents were investigated. With depolarizing pulses, the early inward current was followed by a late outward current. Cobalt (1mm) abolished the inward current and did not affect the late outward currentper se, but produced changes in the current pattern, suggesting that the inward current overlaps with the initial part of the late outward current. After correction for this overlap, the inward current reached its maximum at about +10 mV and its reversal potential was estimated to be +62 mV. Tetraethylammonium (TEA) suppressed the outward currents and increased the apparent inward current. The increase in the inward current by TEA thus could be due to a suppression of the outward current. The reversal potential for the outward current was estimated to be –87 mV. Conditioning depolarization and hyperpolarization both produced a decrease in the inward current. Complete depolarization block occurred at a membrane potential of –20 mV. Conditioning hyperpolarization experiments in the presence of cobalt and/or TEA revealed that the decrease in the inward current caused by conditioning hyperpolarization was a result of an increase in the outward current overlapping with the inward current. It appears that a part of the potassium channel population is inactivated at the resting membrane potential and that this inactivation is removed by hyperpolarization.  相似文献   

19.
Properties of the calcium-activated chloride current in heart   总被引:12,自引:0,他引:12       下载免费PDF全文
We used the whole cell patch clamp technique to study transient outward currents of single rabbit atrial cells. A large transient current, IA, was blocked by 4-aminopyridine (4AP) and/or by depolarized holding potentials. After block of IA, a smaller transient current remained. It was completely blocked by nisoldipine, cadmium, ryanodine, or caffeine, which indicates that all of the 4AP-resistant current is activated by the calcium transient that causes contraction. Neither calcium-activated potassium current nor calcium-activated nonspecific cation current appeared to contribute to the 4AP-resistant transient current. The transient current disappeared when ECl was made equal to the pulse potential; it was present in potassium-free internal and external solutions. It was blocked by the anion transport blockers SITS and DIDS, and the reversal potential of instantaneous current-voltage relations varied with extracellular chloride as predicted for a chloride-selective conductance. We concluded that the 4AP-resistant transient outward current of atrial cells is produced by a calcium-activated chloride current like the current ICl(Ca) of ventricular cells (1991. Circulation Research. 68:424-437). ICl(Ca) in atrial cells demonstrated outward rectification, even when intracellular chloride concentration was higher than extracellular. When ICa was inactivated or allowed to recover from inactivation, amplitudes of ICl(Ca) and ICa were closely correlated. The results were consistent with the view that ICl(Ca) does not undergo independent inactivation. Tentatively, we propose that ICl(Ca) is transient because it is activated by an intracellular calcium transient. Lowering extracellular sodium increased the peak outward transient current. The current was insensitive to the choice of sodium substitute. Because a recently identified time-independent, adrenergically activated chloride current in heart is reduced in low sodium, these data suggest that the two chloride currents are produced by different populations of channels.  相似文献   

20.
Membrane responses to norepinephrine in cultured brown fat cells   总被引:2,自引:0,他引:2       下载免费PDF全文
We used the "perforated-patch" technique (Horn, R., and A. Marty, 1988. Journal of General Physiology. 92:145-159) to examine the effects of adrenergic agonists on the membrane potentials and membrane currents in isolated cultured brown fat cells from neonatal rats. In contrast to our previous results using traditional whole-cell patch clamp, 1-23-d cultured brown fat cells clamped with the perforated patch consistently showed vigorous membrane responses to both alpha- and beta-adrenergic agonists, suggesting that cytoplasmic components essential for the thermogenic response are lost in whole-cell experiments. The membrane responses to adrenergic stimulation varied from cell to cell but were consistent for a given cell. Responses to bath-applied norepinephrine in voltage-clamped cells had three possible components: (a) a fast transient inward current, (b) a slower outward current carried by K+ that often oscillated in amplitude, and (c) a sustained inward current largely by Na+. The fast inward and outward currents were activated by alpha-adrenergic agonists while the slow inward current was mediated by beta-adrenergic agonists. Oscillating outward currents were the most frequently seen response to norepinephrine stimulation. Activation of this current, termed IK,NE, was independent of voltage and seemed to be carried by Ca2(+)-activated K channels since the current oscillated in amplitude at constant membrane potential and gradually decreased when the cells were bathed with calcium-free external solution. IK,NE had a novel pharmacology in that it could be blocked by 4-aminopyridine, tetraethylammonium, apamin, and charybdotoxin. Both IK,NE and the voltage-gated K channels also present in brown fat (Lucero, M. T., and P. A. Pappone, 1989a. Journal of General Physiology. 93:451-472) may play a role in maintaining cellular homeostasis in the face of the high metabolic activity involved in thermogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号