首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Nicotiana plumbaginifolia cell line able to grow in the presence of high doses of valine was isolated following -rays mutagenesis. The selected clone, named D5R5, showed a growth rate higher than that of wild-type. It was less sensitive also to an equimolar mixture of the three branched-chain amino acids, but did not display cross-resistance to isoleucine and leucine. The increased tolerance was due to neither a reduced valine uptake, nor a modification in the level or sensitivity to feed-back inhibition by valine of the first common enzyme (and the main regulative site) in isoleucine, leucine and valine synthesis, acetohydroxyacid synthase (AHAS). When wild-type cells were fed with valine or equimolar mixtures of the three aminoacids, a decrease in AHAS level was found. On the contrary, the level of extractable AHAS activity from D5R5 cells was significantly less affected by similar treatments, suggesting that some alteration in enzyme modulation mechanism(s) could account for valine resistance.Abbreviations AHAS acetohydroxyacid synthase - BCAA branched-chain amino acid - FAD flavin adenine dinucleotide - ILV equimolar mixture of isoleucine, leucine and valine - TPP thiamine pyrophosphate  相似文献   

2.
Acetohydroxyacid synthase (AHAS; EC 4.1.3.18) catalyzes the first step in branched-chain amino acid biosynthesis. The enzyme requires thiamin diphosphate and FAD for activity, but the latter is unexpected, because the reaction involves no oxidation or reduction. Due to its presence in plants, AHAS is a target for sulfonylurea and imidazolinone herbicides. Here, the crystal structure to 2.6 A resolution of the catalytic subunit of yeast AHAS is reported. The active site is located at the dimer interface and is near the proposed herbicide-binding site. The conformation of FAD and its position in the active site are defined. The structure of AHAS provides a starting point for the rational design of new herbicides.  相似文献   

3.
Summary. The branched-chain amino acids are synthesized by plants, fungi and microorganisms, but not by animals. Therefore, the enzymes of this pathway are potential target sites for the development of antifungal agents, antimicrobials and herbicides. Most research has focused upon the first enzyme in this biosynthetic pathway, acetohydroxyacid synthase (AHAS) largely because it is the target site for many commercial herbicides. In this review we provide a brief overview of the important properties of each enzyme within the pathway and a detailed summary of the most recent AHAS research, against the perspective of work that has been carried out over the past 50 years.  相似文献   

4.
The first step in the common pathway for the biosynthesis of branched-chain amino acids (BCAAs) is catalyzed by acetohydroxyacid synthase (AHAS). The roles of three well-conserved serine residues (S167, S506, and S539) in tobacco AHAS were determined using site-directed mutagenesis. The mutations S167F and S506F were found to be inactive and abolished the binding affinity for cofactor FAD. The Far-UV CD spectrum of the inactive mutants was similar to that of wild-type enzyme, indicating no major conformational changes in the secondary structure. However, the active mutants, S167R, S506A, S506R, S539A, S539F and S539R, showed lower specific activities. Further, a homology model of tobacco AHAS was generated based on the crystal structure of yeast AHAS. In the model, the S167 and S506 residues were identified near the FAD binding site, while the S539 residue was found to near the ThDP binding site. The S539 mutants, S539A and S539R, showed strong resistance to three classes of herbicides, NC-311 (a sulfonylurea), Cadre (an imidazolinone), and TP (a triazolopyrimidine). In contrast, the active S167 and S506 mutants did not show any significant resistance to the herbicides, with the exception of S506R, which showed strong resistance to all herbicides. Thus, our results suggest that the S167 and S506 residues are essential for catalytic activity by playing a role in the FAD binding site. The S539 residue was found to be near the ThDP with an essential role in the catalytic activity and specific mutants of this residue (S539A and S539R) showed strong herbicide resistance as well.  相似文献   

5.
Summary The acetohydroxyacid synthase (AHAS) gene from the Arabidopsis thaliana mutant line GH90 carrying the imidazolinone resistance allele imr1 was cloned. Expression of the AHAS gene under the control of the CaMV 35S promoter in transgenic tobacco resulted in selective imidazolinone resistance, confirming that the single base-pair change found near the 3 end of the coding region of this gene is responsible for imidazolinone resistance. A chimeric AHAS gene containing both the imr1 mutation and the csr1 mutation, responsible for selective resistance to sulfonylurea herbicides, was constructed. It conferred on transgenic tobacco plants resistance to both sulfonylurea and imidazolinone herbicides. The data illustrate that a multiple-resistance phenotype can be achieved in an AHAS gene through combinations of separate mutations, each of which individually confers resistance to only one class of herbicides.  相似文献   

6.
Acetohydroxyacid synthase (AHAS) is the first common enzyme in the pathway for the biosynthesis of branched-chain amino acids. Interest in the enzyme has escalated over the past 20 years since it was discovered that AHAS is the target of the sulfonylurea and imidazolinone herbicides. However, several questions regarding the reaction mechanism have remained unanswered, particularly the way in which AHAS "chooses" its second substrate. A new method for the detection of reaction intermediates enables calculation of the microscopic rate constants required to explain this phenomenon.  相似文献   

7.
The first step in branched-chain amino acid biosynthesis is catalyzed by acetohydroxyacid synthase (EC 2.2.1.6). This reaction involves decarboxylation of pyruvate followed by condensation with either an additional pyruvate molecule or with 2-oxobutyrate. The enzyme requires three cofactors, thiamine diphosphate (ThDP), a divalent ion, and flavin adenine dinucleotide (FAD). Escherichia coli contains three active isoenzymes, and acetohydroxyacid synthase I (AHAS I) large subunit is encoded by the ilvB gene. In this study, the ilvB gene from E. coli K-12 was cloned into expression vector pETDuet-1, and was expressed in E. coli BL21 (DH3). The purified protein was identified on a 12% SDS–PAGE gel as a single band with a mass of 65 kDa. The optimum temperature, buffer, and pH for E. coli K-12 AHAS I were 37 °C, potassium phosphate buffer, and 7.5. Km values for E. coli K-12 AHAS I binding to pyruvate, Mg+2, ThDP, and FAD were 4.15, 1.26, 0.2 mM, and 0.61 μM respectively. Inhibition of purified AHAS I protein was determined with herbicides and new compounds.  相似文献   

8.
The branched‐chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that play critical roles in animal growth and development. Animals cannot synthesize these amino acids and must obtain them from their diet. Plants are the ultimate source of these essential nutrients, and they synthesize BCAAs through a conserved pathway that is inhibited by its end products. This feedback inhibition has prevented scientists from engineering plants that accumulate high levels of BCAAs by simply over‐expressing the respective biosynthetic genes. To identify components critical for this feedback regulation, we performed a genetic screen for Arabidopsis mutants that exhibit enhanced resistance to BCAAs. Multiple dominant allelic mutations in the VALINE‐TOLERANT 1 (VAT1) gene were identified that conferred plant resistance to valine inhibition. Map‐based cloning revealed that VAT1 encodes a regulatory subunit of acetohydroxy acid synthase (AHAS), the first committed enzyme in the BCAA biosynthesis pathway. The VAT1 gene is highly expressed in young, rapidly growing tissues. When reconstituted with the catalytic subunit in vitro, the vat1 mutant‐containing AHAS holoenzyme exhibits increased resistance to valine. Importantly, transgenic plants expressing the mutated vat1 gene exhibit valine tolerance and accumulate higher levels of BCAAs. Our studies not only uncovered regulatory characteristics of plant AHAS, but also identified a method to enhance BCAA accumulation in crop plants that will significantly enhance the nutritional value of food and feed.  相似文献   

9.
Acetohydroxyacid synthase (AHAS, EC 4.1.3.18; also known as acetolactate synthase), which catalyses the first reaction common to the biosynthesis of the branched-chain amino acids, L-valine, L-leucine and L-isoleucine, and is the target of several classes of herbicides, has been studied in hydroponically-grown seedlings of wheat (Triticum aestivum L. cv. Vulcan). Enzyme activity was greater in leaves than roots, reaching a maximum between 4 and 6 days after germination. AHAS was associated with the chloroplasts after centrifugation in a density gradient. A preparation of the enzyme was obtained from wheat leaves which gave a single band after electrophoresis in native gels but was resolved by denaturing sodium dodecyl sulphate-polyacrylamide gel electrophoresis into three polypeptide bands of molecular mass 58, 57 and 15 kDa. The native molecular mass was approximately 128 kDa. AHAS had optimum activity at pH 7 and did not require the addition of flavin adenine dinucleotide (FAD), thiamine pyrophosphate (TPP) and MgCl2 for activity. The enzyme did not display typical hyperbolic kinetics, in that the double reciprocal plot of activity against pyruvate concentration was non-linear. The concentration of pyruvate that gave half of the maximum activity was 4 mM. Sulfonylurea and imidazolinone herbicides were potent inhibitors of wheat leaf AHAS, with 50% inhibition being observed at concentrations of 0.6 and 0.3 μM for chlorsulfuron and metsulfuron methyl, respectively, and at 2.5, 5 and 10 μM for imazaquin, imazethapyr and imazapyr. Inhibition by both classes of compounds was reversed by removal of the inhibitor. Progress curves of product formation against time in the presence of the herbicides were non-linear, and based on the assumption that inhibition by the sulfonylureas was of the slow, tight-binding type, estimates of 0.17 and 0.1 nM were obtained for the dissociation constants of chlorsulfuron and metsulfuron methyl, respectively, from the steady-state enzyme-inhibitor complex.  相似文献   

10.

Key message

A point mutation in the AHAS1 gene leading to resistance to imidazolinone in chickpea was identified. The resistance is inherited as a single gene. A KASP marker targeting the mutation was developed.

Abstract

Weed control in chickpea (Cicer arietinum L.) is challenging due to poor crop competition ability and limited herbicide options. A chickpea genotype with resistance to imidazolinone (IMI) herbicides has been identified, but the genetic inheritance and the mechanism were unknown. In many plant species, resistance to IMI is caused by point mutation(s) in the acetohydroxyacid synthase (AHAS) gene resulting in an amino acid substitution preventing herbicide attachment to the molecule. The main objective of this research was to characterize the resistance to IMI herbicides in chickpea. Two homologous AHAS genes namely AHAS1 and AHAS2 sharing 80 % amino acid sequence similarity were identified in the chickpea genome. Cluster analysis indicated independent grouping of AHAS1 and AHAS2 across legume species. A point mutation in the AHAS1 gene at C675 to T675 resulting in an amino acid substitution from Ala205 to Val205 confers the resistance to IMI in chickpea. A KASP marker targeting the point mutation was developed and effectively predicted the response to IMI herbicides in a recombinant inbred (RI) population of chickpea. The RI population was used in molecular mapping where the major locus for the reaction to IMI herbicide was mapped to chromosome 5. Segregation analysis across an F2 population and RI population demonstrated that the resistance is inherited as a single gene in a semi-dominant fashion. The simple genetic inheritance and the availability of KASP marker generated in this study would speed up development of chickpea varieties with resistance to IMI herbicides.  相似文献   

11.
Nicotiana plumbaginifolia suspension cultured cells were grown on medium supplemented with valine, leucine and isoleucine, singly or in combination. The effects of the three branched-chain amino acids on cell growth rate and on the activity of acetohydroxyacid synthase (AHAS), the first enzyme (and the main regulative site) of their biosynthetic pathway, were studied. Results showed that valine and leucine, at concentrations ranging from 10–4 to 10–3 M, inhibit growth, and at higher doses (from 10–2 to 10–1 M) AHAS activity. Growth, but not AHAS activity, was affected also by isoleucine. The addition of ammonium succinate to the culture medium, in order to counteract a possible general inhibitory effect of these compounds on nitrogen metabolism, relieved only partially their cytotoxicity. Feeding cells with equimolar mixtures of the three amino acids resulted in a minor but reproducible decrease in AHAS level, which was proportional to the dose. A similar result was obtained also on N. plumbaginifolia seedlings, suggesting that in this species a modulation of enzyme level could play a role in controlling the flow of metabolites through the pathway.Abbreviations AHAS acetohydroxyacid synthase - BCAA branched-chain amino acids - FAD flavin adenine dinucleotide - GS glutamine synthetase - TPP thiamine pyrophosphate  相似文献   

12.
Herbicide-resistant transgenic cotton (Gossypium hirsutum L.) plants carrying mutant forms of a native acetohydroxyacid synthase (AHAS) gene have been obtained by Agrobacterium and biolistic transformation. The native gene, A19, was mutated in vitro to create amino acid substitutions at residue 563 or residue 642 of the precursor polypeptide. Transformation with the mutated forms of the A19 gene produced resistance to imidazolinone and sulfonylurea herbicides (563 substitution), or imidazolinones only (642 substitution). The herbicide-resistant phenotype of transformants was also manifested in their in vitro AHAS activity. Seedling explants of both Coker and Acala cotton varieties were transformed with the mutated forms of the A19 gene using Agrobacterium. In these experiments, hundreds of transformation events were obtained with the Coker varieties, while the Acala varieties were transformed with an efficiency about one-tenth that of Coker. Herbicide-resistant Coker and Acala plants were regenerated from a subset of transformation events. Embryonic cell suspension cultures of both Coker and Acala varieties were biolistically transformed at high frequencies using cloned cotton DNA fragments carrying the mutated forms of the A19 gene. In these transformation experiments the mutated A19 gene served as the selectable marker, and the efficiency of selection was comparable to that obtained with the NPT II gene marker of vector Bin 19. Using this method, transgenic Acala plants resistant to imidazolinone herbicides were obtained. Southern blot analyses indicated the presence of two copies of the mutated A19 transgene in one of the biolistically transformed R0 plants, and a single copy in one of the R0 plants transformed with Agrobacterium. As expected. progeny seedlings derived from outcrosses involving the R0 plant transformed with Agrobacterium segregated in a 1:1 ratio with respect to herbicide resistance. The resistant progeny grew normally after irrigation with 175 g/l of the imidazolinone herbicide imazaquin, which is five times the field application rate. In contrast, untransformed sibling plants were severely stunted.Abbreviations AHAS acetohydroxyacid synthase - CaMV cauliflower mosaic virus - ELISA enzyme linked immunosorbent assay - FW fresh weight - GUS -glucuronidase - IC50 herbicide concentration that produces a 50% reduction in the fresh weight growth of cells - NAA -naphthaleneacetic acid - NPT II neomycin phosphotransferase II - MS Murashige and Skoog (1962)  相似文献   

13.
Acetohydroxyacid synthase (AHAS) (acetolactate synthase, EC ) catalyzes the first step in branched-chain amino acid biosynthesis and is the target for sulfonylurea and imidazolinone herbicides. These compounds are potent and selective inhibitors, but their binding site on AHAS has not been elucidated. Here we report the 2.8 A resolution crystal structure of yeast AHAS in complex with a sulfonylurea herbicide, chlorimuron ethyl. The inhibitor, which has a K(i) of 3.3 nm, blocks access to the active site and contacts multiple residues where mutation results in herbicide resistance. The structure provides a starting point for the rational design of further herbicidal compounds.  相似文献   

14.
Tuberculosis (TB) remains one of the world's leading causes of death from infectious disease. It is caused by infection with Mycobacterium tuberculosis or sometimes, particularly in immune-compromised patients, Mycobacterium avium. The aim of this study was to create a tool that could be used in the search for new anti-TB drugs that inhibit branched-chain amino acid (BCAA) biosynthesis, as these are essential amino acids that are not available to a mycobacterium during growth in an infected organism. To this end, we cloned, overexpressed, purified and characterised for the first time an acetohydroxyacid synthase (AHAS), a key enzyme in the pathway to the biosynthesis of the BCAAs, from the genus Mycobacterium. Nine commercial herbicides of the sulfonylurea and imidazolinone classes were tested for their influence on this enzyme. Four of the sulfonylureas were potent inhibitors of the enzyme. The relative potency of the different inhibitors towards the M. avium enzyme was unlike their potency towards other AHASs whose inhibitor profile has been reported, emphasising the advantage of using a mycobacterial enzyme as a tool in the search for new anti-TB drugs.  相似文献   

15.
Acetohydroxy acid synthase (AHAS), which catalyzes the key reactions in the biosynthesis pathways of branched-chain amino acids (valine, isoleucine, and leucine), is regulated by the end products of these pathways. The whole Corynebacterium glutamicum ilvBNC operon, coding for acetohydroxy acid synthase (ilvBN) and aceto hydroxy acid isomeroreductase (ilvC), was cloned in the newly constructed Escherichia coli-C. glutamicum shuttle vector pECKA (5.4 kb, Km(r)). By using site-directed mutagenesis, one to three amino acid alterations (mutations M8, M11, and M13) were introduced into the small (regulatory) AHAS subunit encoded by ilvN. The activity of AHAS and its inhibition by valine, isoleucine, and leucine were measured in strains carrying the ilvBNC operon with mutations on the plasmid or the ilvNM13 mutation within the chromosome. The enzyme containing the M13 mutation was feedback resistant to all three amino acids. Different combinations of branched-chain amino acids did not inhibit wild-type AHAS to a greater extent than was measured in the presence of 5 mM valine alone (about 57%). We infer from these results that there is a single binding (allosteric) site for all three amino acids in the enzyme molecule. The strains carrying the ilvNM13 mutation in the chromosome produced more valine than their wild-type counterparts. The plasmid-free C. glutamicum DeltailvA DeltapanB ilvNM13 strain formed 90 mM valine within 48 h of cultivation in minimal medium. The same strain harboring the plasmid pECKAilvBNC produced as much as 130 mM valine under the same conditions.  相似文献   

16.
The side effects of sulfonylurea and imidazolinone herbicides on plant-associated bacteria were investigated under pure culture conditions. Eighteen isolates, belonging to the genera Azotobacter, Azospirillum, Bacillus, Enterobacter Pseudomonas and Serratia, were exposed to four active compounds at concentration ranges similar to those in field soil. The sulfonylureas chlorsulfuron and rimsulfuron inhibited the growth of one of two Azospirillum and one of four Pseudomonas strains, while the imidazolinones imazapyr and imazethapyr were effective on two out of five Bacillus isolates. Surfactants in commercial formulation significantly enhanced rimsulfuron toxicity. With the exception of one Azospirillum strain, the differential tolerance of rhizobacteria to these herbicides was related to a differential sensitivity of their target, the activity of the first enzyme in branched-chain amino acid biosynthesis, acetohydroxyacid synthase (AHAS).Greenhouse pot studies were performed to assess the occurrence of inhibitory effects on bacterial growth in field conditions. Maize seedlings were bacterized with the two strains which had shown in vitro sensitivity to sulfonylureas. Following the application to the soil of a commercial formulation of rimsulfuron at rates of 0, 0.2 and 0.5 mol a.i. kg–1, significative differences in the resulting degree of bacterial root colonization were found. Moreover, upon co-inoculation with two strains, one tolerant and one sensitive to the herbicide, the presence of rimsulfuron significantly enhanced root occupancy by resistant bacteria, suggesting that shifts in the microbial community structure of crop rhizosphere could indeed result as a consequence of weed control by AHAS inhibitors.Abbreviations AHAS acetohydroxyacid synthase - CETAB cetyltrimethylammonium bromide - ID50 concentration causing 50% inhibition of enzyme activity - LD50 concentration causing 50% decrease of growth constant value  相似文献   

17.
Acetohydroxy acid synthase (AHAS), which catalyzes the key reactions in the biosynthesis pathways of branched-chain amino acids (valine, isoleucine, and leucine), is regulated by the end products of these pathways. The whole Corynebacterium glutamicum ilvBNC operon, coding for acetohydroxy acid synthase (ilvBN) and aceto hydroxy acid isomeroreductase (ilvC), was cloned in the newly constructed Escherichia coli-C. glutamicum shuttle vector pECKA (5.4 kb, Kmr). By using site-directed mutagenesis, one to three amino acid alterations (mutations M8, M11, and M13) were introduced into the small (regulatory) AHAS subunit encoded by ilvN. The activity of AHAS and its inhibition by valine, isoleucine, and leucine were measured in strains carrying the ilvBNC operon with mutations on the plasmid or the ilvNM13 mutation within the chromosome. The enzyme containing the M13 mutation was feedback resistant to all three amino acids. Different combinations of branched-chain amino acids did not inhibit wild-type AHAS to a greater extent than was measured in the presence of 5 mM valine alone (about 57%). We infer from these results that there is a single binding (allosteric) site for all three amino acids in the enzyme molecule. The strains carrying the ilvNM13 mutation in the chromosome produced more valine than their wild-type counterparts. The plasmid-free C. glutamicum ΔilvA ΔpanB ilvNM13 strain formed 90 mM valine within 48 h of cultivation in minimal medium. The same strain harboring the plasmid pECKAilvBNC produced as much as 130 mM valine under the same conditions.  相似文献   

18.
The acetohydroxyacid synthase (AHAS), which is involved in the biosynthesis of branched-chain amino acids (BCAAs), is the target of several classes of herbicides. The catalytic (CSU) and regulatory subunits (RSU) of Mycobacterium tuberculosis AHAS (MtbAHAS) were cloned, expressed, and purified to homogeneity. A homology model of MtbAHAS CSU showed three residues (L141, F147 and W516) at the sulfonylurea (SU) herbicide binding site. The residues were mutated and the variant enzymes characterized with respect to its catalytic properties and sensitivity to two SU herbicides. All the tested mutants showed a decrease in Vmax compared to the wild-type protein. The mutants (F147A, F147R, and W516R) showed strong resistance to the two SU herbicides tested, indicating that the compounds related to these herbicides which target these critical residues, may serve as potent and specific anti-tuberculosis drugs. Furthermore, among the mutants of RSU (S27A, L89A and R101A), the S27A mutation caused 56-fold decrease in Vmax of the holoenzyme, whereas the L89A and R101A showed 4- and 12-fold decrease, respectively. The holoenzymes with S27A and L89A showed resistance to leucine. These results reveal characteristics of SU herbicide-resistant mutants of the CSU, and catalytically important residues of the RSU in MtbAHAS.  相似文献   

19.
Shaner DL  Singh BK 《Plant physiology》1993,103(4):1221-1226
Acetohydroxyacid synthase (AHAS) is the site of action of herbicides of different chemical classes, such as imidazolinones, sulfonylureas, and triazolopyrimidines. Inhibition of AHAS causes the accumulation of 2-ketobutyrate (2-KB) and 2-aminobutyrate (2-AB) (the transamination product of 2-KB), and it has been proposed that the phytotoxicity of these inhibitors is due to this accumulation. Experiments were done to determine the relationship between accumulation of 2-KB and 2-AB and the phytotoxicity of imazaquin to maize (Zea mays). Imazaquin concentrations that inhibit growth of maize plants also cause the accumulation of 2-KB and 2-AB in the shoots. Supplementation of imazaquin-treated plants with isoleucine reduced the pools of 2-KB and 2-AB in the plant but did not protect plants from the growth inhibitory effects of imazaquin. Conversely, feeding 2-AB to maize plants increased 2-KB and 2-AB pools to much higher levels than those observed in imazaquin-treated plants, yet such high pools of 2-KB and 2-AB in the plant had no significant effect on growth. These results conclusively demonstrate that growth inhibition following imazaquin treatment is not due to accumulation of 2-KB and/or 2-AB in plants. Changes in the amino acid profiles after treatment with imazaquin suggest that starvation for the branched-chain amino acids may be the primary cause of growth retardation of maize.  相似文献   

20.
Tuberculosis (TB) remains one of the world's leading causes of death from infectious disease. It is caused by infection with Mycobacterium tuberculosis or sometimes, particularly in immune-compromised patients, Mycobacterium avium. The aim of this study was to create a tool that could be used in the search for new anti-TB drugs that inhibit branched-chain amino acid (BCAA) biosynthesis, as these are essential amino acids that are not available to a mycobacterium during growth in an infected organism. To this end, we cloned, overexpressed, purified and characterised for the first time an acetohydroxyacid synthase (AHAS), a key enzyme in the pathway to the biosynthesis of the BCAAs, from the genus Mycobacterium. Nine commercial herbicides of the sulfonylurea and imidazolinone classes were tested for their influence on this enzyme. Four of the sulfonylureas were potent inhibitors of the enzyme. The relative potency of the different inhibitors towards the M. avium enzyme was unlike their potency towards other AHASs whose inhibitor profile has been reported, emphasising the advantage of using a mycobacterial enzyme as a tool in the search for new anti-TB drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号