首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional analysis of lung ventilation in salamanders combined with historical analysis of respiratory pumps provides new perspectives on the evolution of breathing mechanisms in vertebrates. Lung ventilation in the aquatic salamander Necturus maculosus was examined by means of cineradiography, measurement of buccal and pleuroperitoneal cavity pressures, and electromyography of hypaxial musculature. In deoxygenated water Necturus periodically rises to the surface, opens its mouth, expands its buccal cavity to draw in fresh air, exhales air from the lungs, closes its mouth, and then compresses its buccal cavity and pumps air into the lungs. Thus Necturus produces only two buccal movements per breath: one expansion and one compression. Necturus shares the use of this two-stroke buccal pump with lungfishes, frogs and other salamanders. The ubiquitous use of this system by basal sarcopterygians is evidence that a two-stroke buccal pump is the primitive lung ventilation mechanism for sarcopterygian vertebrates. In contrast, basal actinopterygian fishes use a four-stroke buccal pump. In these fishes the buccal cavity expands to fill with expired air, compresses to expel the pulmonary air, expands to fill with fresh air, and then compresses for a second time to pump air into the lungs. Whether the sarcopterygian two-stroke buccal pump and the actinopterygian four-stroke buccal pump arose independently, whether both are derived from a single, primitive osteichthyian breathing mechanism, or whether one might be the primitive pattern and the other derived, cannot be determined. Although Necturus and lungfishes both use a two-stroke buccal pump, they differ in their expiration mechanics. Unlike a lungfish (Protopterus), Necturus exhales by contracting a portion of its hypaxial trunk musculature (the m. Iransversus abdominis) to increase pleuroperitoneal pressure. The occurrence of this same expiratory mechanism in amniotes is evidence that the use of hypaxial musculature for expiration, but not for inspiration, is a primitive tetrapod feature. From this observation we hypothesize that aspiration breathing may have evolved in two stages: initially, from pure buccal pumping to the use of trunk musculature for exhalation but not for inspiration (as in Necturus); and secondarily, to the use of trunk musculature for both exhalation and inhalation by costal aspiration (as in amniotes).  相似文献   

2.
SYNOPSIS. Structural evolution of the vertebrate lung illustratesthe principle that the emergence of seemingly new structuressuch as the mammalian lung is due to intensification of oneof the functions of the original piscine lung. The configurationof the mechanical support of the lung in which elastic and collagenfibers form a continuous framework is well matched with thefunctional demands. The design of the mammalian gas exchangecells is an ingenious solution to meet the functional demandsof optimizing maintenance pathways from nucleus to the cytoplasmwhile simultaneously providing minimal barrier thickness. Surfactantis found in the most primitive lungs providing a protectivecontinuous film of fluid over the delicate epithelium. As thelung became profusely partitioned, surfactant became a functionallynew surface-tension reduction device to prevent the collapseof the super-thin foam-like respiratory surface. Experimentalanalyses have established that in lower vertebrates lungs areventilated with a buccal pulse pump, which is driven by identicalsets of muscles acting in identical patterns in fishes and frogs.In the aquatic habitats suction is the dominant mode of feedinggenerating buccal pressure changes far exceeding those recordedduring air ventilation. From the perspective of air ventilationthe buccal pulse pump is overdesigned. However in terrestrialhabitats vertebrates must operate with higher metabolic demandsand the lung became subdivided into long narrow airways andprogressively smaller air spaces, rendering the pulse pump inefficient.With the placement of the lungs inside a pump, the aspirationpump was established. In mammals, the muscular diaphragm representsa key evolutionary innovation since it led to an energeticallymost efficient aspiration pump. Apparently the potential energycreated by contraction of the diaphragm during inhalation isstored in the elastic tissues of the thoracic unit and lung.This energy is released when lung and thorax recoil to bringabout exhalation. It is further determined experimentally thatrespiratory and locomotory patterns are coupled, further maximizingthe efficiency of mammalian respiration. Symmorphosis is exhibitedin the avian breathing apparatus, which is endowed with a keyevolutionary innovation by having the highly specialized lungcontinuously ventilated by multiple air sacs that function asbellows. Functional morphologists directly deal with these kindsof functional and structural complexities that provide an enormouspotential upon simple changes in underlying mechanisms.  相似文献   

3.
Typhlonectes natans empty their lungs in a single extended exhalation and subsequently fill their lungs by using a series of 10-20 inspiratory buccal oscillations. These animals always use this breathing pattern, which effectively separates inspiratory and expiratory airflows, unlike most urodele and anuran amphibians that may use one to many buccal oscillations for lung inflation and typically mix expired and inspired gases. Aquatic hypoxia had no significant effect on the breathing pattern or mechanics in these animals. Aerial hypoxia stimulated ventilatory frequency and increased the number of inspiratory oscillations but had little effect on inspiratory and expiratory tidal volume. Aquatic hypercapnia elicited a large significant increase in air-breathing frequency and minute ventilation compared to the small stimulation of minute ventilation seen during aerial hypercapnia. Some animals responded to aquatic hypercapnia with a series of three or four closely spaced breaths separated by long nonventilatory periods. Overall, T. natans showed little capacity to modulate expiratory or inspiratory tidal volumes and depended heavily on changing air-breathing frequency to meet hypoxic and hypercapnic challenges. These responses are different from those of anurans or urodeles studied to date, which modulate both the number of ventilatory oscillations in lung-inflation cycles and the degree of lung inflation when challenged with peripheral or central chemoreceptor stimulation.  相似文献   

4.
In most anurans, the production of advertisement calls is accompanied by the inflation of a vocal sac. Current functions of the vocal sac, however, are not fully understood, although several hypotheses have been proposed. One hypothesis suggests that the vocal sac decreases the intercall interval (i.e., increases call rate) by reinflating the lungs more rapidly than is possible with the buccal pump. We investigate this hypothesis by analyzing audio and video recordings of calling tungara frogs. We compare the first two call bouts emitted by an originally uninflated male. The first call bout requires lung inflation via buccal pumping, but in the second, the male is already inflated because of capture of air and reinflation of the lungs by the vocal sac. Lung inflation to typical field levels requires 26-51 buccal pumps, which takes at least 4.4 s. This estimate is more than 2.5 times the typical intercall interval with lung reinflation via a vocal sac (ca. 1.7 s). Evidence from phonotaxis tests demonstrates that these differences in intercall intervals are salient to females and that female Physalaemus pustulosus prefer the shorter intercall interval/higher call rate. Acoustic analyses demonstrate that the first call of bout 1, which requires buccal pumping, is usually shorter, of lower amplitude, and spans a smaller frequency range than the first call of bout 2, which does not require buccal pumping. Because females prefer longer, more intense calls, these results suggest that the vocal sac not only increases call rate but also allows males to produce more calls of increased attractiveness to females.  相似文献   

5.
Early tetrapods faced an auditory challenge from the impedance mismatch between air and tissue in the transition from aquatic to terrestrial lifestyles during the Early Carboniferous (350 Ma). Consequently, tetrapods may have been deaf to airborne sounds for up to 100 Myr until tympanic middle ears evolved during the Triassic. The middle ear morphology of recent urodeles is similar to that of early ‘lepospondyl’ microsaur tetrapods, and experimental studies on their hearing capabilities are therefore useful to understand the evolutionary and functional drivers behind the shift from aquatic to aerial hearing in early tetrapods. Here, we combine imaging techniques with neurophysiological measurements to resolve how the change from aquatic larvae to terrestrial adult affects the ear morphology and sensory capabilities of salamanders. We show that air-induced pressure detection enhances underwater hearing sensitivity of salamanders at frequencies above 120 Hz, and that both terrestrial adults and fully aquatic juvenile salamanders can detect airborne sound. Collectively, these findings suggest that early atympanic tetrapods may have been pre-equipped to aerial hearing and are able to hear airborne sound better than fish on land. When selected for, this rudimentary hearing could have led to the evolution of tympanic middle ears.  相似文献   

6.
In filling the lungs by means of the buccal "force-pump", air drawn into the buccal cavity by the lowering of the floor of the mouth is forced into the lungs when the mouth is firmly closed and the buccal floor raised. This mechanism depends on the ability of the fish to prevent air being forced out of the mouth through the lips and it is shown that the tongue is pressed against the roof of the mouth to form a seal. Radiologically it has been shown that the hyoid apparatus ("ceratohyal" of some authors) plays a large part in the movements necessary to draw air into the mouth, seal it in and force it into the lungs. Another skeletal element involved is the pectoral girdle which makes considerable movements in association with the filling of the lungs. Expiration of the air from the lungs, which as shown by radiographs may be remarkably complete, is brought about by the elasticity of the lung tissue.  相似文献   

7.
A leading hypothesis for the origin of insect wings is that they evolved from thoracic gills that were serial homologues of the abdominal gills present in fossil pterygotes and in the nymphs of some modern mayflies, damselflies and stoneflies. Co-occurrence of thoracic wings and abdominal gills is the primitive condition for fossil pterygote insects, whereas the winged stage of modern insects almost exclusively lacks abdominal gills. Here we examine the locomotor behaviour and gill morphology of a stonefly, Diamphipnopsis samali (Plecoptera), which retains abdominal gills in the winged adult stage. This species can fly, but also uses its forewings as oars to accomplish rowing locomotion along the surface of water. The abdominal gills are in contact with both air and water during rowing, and their elaborately folded surface suggests an ability to contribute to gas-exchange. D. samali nymphs also have behaviours that place them in locations where their gills are exposed to air; they forage at night at the stream margin and within bubble curtains in rapids. These traits may exemplify an early pterygote condition in which gill and protowing function overlapped in an amphibious setting during a transition from aquatic to aerial locomotion and gas exchange. Rowing locomotion provides a novel and mechanically intermediate stage for the wings-from-gills and surface-skimming hypotheses for the origin of insect wings and flight.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 79, 341–349.  相似文献   

8.
The mechanism of respiration in the bullfrog has been analyzed by means of pressure recordings from the buccal cavity, the lungs and the abdominal cavity, by cinematography and cinefluorography, and by electromyography of buccal, laryngeal and abdominal muscles. Gas flow was investigated by putting frogs in atmospheres of changing argon and nitrogen content and monitoring the concentration of the nostril efflux. Three kinds of cyclical phenomena were found. (1) Oscillatory cycles consist of rhythmical raising and lowering of the floor of the mouth, with open nares. They have a definite respiratory function in introducing fresh air into the buccal cavity. (2) Ventilatory cycles involve opening and closing of the glottis and nares and renewal of a portion of the pulmonary gas. More muscles are involved and the pattern of muscular activity is more complex than in the oscillatory cycles. (3) Inflation cycles consist of a series of ventilation cycles, interrupted by an apneic pause. The intensity of the ventilatory cycles increases before this pause and decreases immediately thereafter. This results in a stepwise increase in pulmonary pressure, to a plateau (coincident with the pause) followed by a sudden or stepwise decrease. The respiratory mechanism depends on the activity of a buccal force pump, which determines pulmonary pressure whose level is always slightly less than the peak pressure values of the ventilation cycles. The elevated pulmonary pressure is responsible for the expulsion of pulmonary gas during the second phase of the next ventilation cycle. This pressure is maintained by the elastic fibers (and the smooth masculature) of the lungs.  相似文献   

9.
Knowledge of the neuroanatomy of the sucking pump of Manduca sexta (Sphingidae) is valuable for studies of olfactory learning, pattern generators, and postembryonic modification of motor circuitry. The pump comprises a cibarial valve, a buccal pump, and an esophageal sphincter valve. Cibarial opener and closer muscles control the cibarial valve. Six pairs of dilator muscles and a compressor muscle operate the buccal pump. The cibarial opener and one pair of buccal dilator muscles are innervated by paired neurons in the tritocerebrum, and the cibarial opener has double, bilateral innervation. Their tritocerebral innervation indicates that these muscles evolved from labro-clypeal muscles. The remaining paired buccal dilator muscles each are innervated by an unpaired motor neuron in the frontal ganglion. These motor neurons project bilaterally through the frontal connectives to dendritic arborizations in the tritocerebrum. These projections also have a series of dendritic-like arborizations in the connectives. The cibarial closer and buccal compressor muscles are also innervated by motor neurons in the frontal ganglion, but only the closer muscle neuron projects bilaterally to the tritocerebrum. The innervation of the pump muscles indicates that they are associated with the stomodaeum, and, therefore, the buccal pump evolved from the anterior stomodaeum rather than from the cibarium.  相似文献   

10.
In the traditional view of vertebrate lung ventilation mechanisms, air-breathing fishes and amphibians breathe with a buccal pump, and amniotes breathe with an aspiration pump. According to this view, no extant animal exhibits a mechanism that is intermediate between buccal pumping and aspiration breathing; all lung ventilation is produced either by expansion and compression of the mouth cavity via the associated cranial and hyobranchial musculature (buccal pump), or by expansion of the thorax via axial musculature (aspiration pump). However, recent work has shown that amphibians exhibit an intermediate mechanism, in which axial muscles are used for exhalation and a buccal pump is used for inhalation. These findings indicate that aspiration breathing evolved in two steps: first, from pure buccal pumping to the use of axial musculature for exhalation and a buccal pump for inspiration; and second, to full aspiration breathing, in which axial muscles are used for both inhalation and exhalation. Furthermore, the traditional view also holds that buccal pump breathing was lost shortly after aspiration breathing evolved. This view is now being challenged by the discovery that several species of lizards use a buccal pump to augment costal aspiration during exercise. This result, combined with the observation that a behavior known as “buccal oscillation” is found in all amniotes except for mammals, suggests that a reappraisal of the role of buccal pumping in extant and extinct amniotes is in order.Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

11.
Summary Air ventilation in most Anabantoid species is diphasic, consisting of exhalation and inhalation. Exhalation is the release of air from the accessory breathing organs (suprabranchial chambers) through the mouth either into the water near the surface (e.g.,Ctenopoma) or directly into the atmosphere (e.g.,Osphronemus goramy). Inhalation, i.e., taking in fresh air through the mouth at the surface, immediately follows exhalation. X-ray films show (Figs. 5 and 6) that evacuation of the suprabranchial chambers during exhalation is total or nearly total. This, together with the fact that these chambers can contract at most to a very small extent, led to the conclusion that gas is replaced by water entering the chambers during exhalation and that this water is replaced by fresh air during inhalation. Further analysis of films, including conventional films showing the behavior of the opercular apparatus during air ventilation (Fig. 7), leads to a theory of a double-pumping mechanism responsible for air ventilation. This mechanism consists of the buccal apparatus and the opercular apparatus. It is suggested that both of these structures are able to act as both suction and pressure pumps, and thus air ventilation may be explained as the result of alternating activity of these two pumps.In the monophasic air ventilation characteristic of (adult)Anabas testudineus, there is no exhalation phase comparable to that of other Anabantoids. Therefore, no water enters the suprabranchial chambers, which remain filled with gas during the whole ventilation process (Fig. 10). Ventilation is limited to one phase comparable to inhalation in other Anabantoids.The structure of the accessory breathing organs (Fig. 1) and its progressive complication with growth (Fig. 4) were studied inOsphronemus goramy. The arrangement of the labyrinthine plates is in accordance with the requirements of transport of water and gas through the suprabranchial chambers. One plate (the inner plate, Fig. 1) separates these chambers into atrium, ventro-caudal, and dorso-caudal compartments, each with its own opening (valve). This organization seems essential for the transport of gas and water through the suprabranchial chambers and ensures that during exhalation, water flows into the chambers from above, so that while water is filling these chambers displaced gas can be sucked through the deep-lying pharyngeal openings into the expanding buccal cavity.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

12.
We describe a mathematical model of the flow and deformation in a human teat. Our aim is to compare the theoretical milk yield during infant breast feeding with that obtained through the use of a breast pump. Infants use a peristaltic motion of the tongue, along with some suction, to extract milk, whereas breast pumps use a cyclic pattern of suction only. Our model is based on quasi-linear poroelasticity whereby the teat is modelled as a cylindrical porous elastic material saturated with fluid. We impose a cyclic axial suction pressure difference across the teat and impose a radial compressive force moving along the teat which mimics infant suckling. This is compared to the case of cyclic and steady pumping only which models the action of breast pumps. The results illustrate that there is an optimal time to apply the compressive force during the suction cycle that will increase the flow rate in our theoretical teat. The model and results may be of use in the future design of effective breast pumps.  相似文献   

13.
The oxygen consumption of three species of Malaysian mangrove gastropods was measured in air and sea water at the temperatures commonly recorded in the mangrove. The experiments in air were carried out after the animals had regained fluid lost from the mantle due to handling. Fluid loss can have considerable effects on rate of oxygen consumption. Nerita arliculata (Gould) was found throughout the mangrove and experiences from 50 to 92% aerial exposure. It has a gill and a ratio of aerial to aquatic respiration rates of 2.7 at 28°C. 50% of the animals can survive underwater for 72 h at 28°C. The other two species, Cerithidea obtusa (Lamarck) and Cassidula aurisfelis (Brugière) experience over 95% aerial exposure, have their mantle cavities modified as lungs and have air : water respiration rate ratios of 5.5 and 6.0, respectively. 50% can survive from 48 to 36 h underwater at 28°C. Acclimated animals have Q10's of about 1.6 in air and 1.4 in water. The respiratory physiology of the snails is compared with that of rocky shore species.  相似文献   

14.
Functional morphology including the origin, insertion, and innervation of the respiratory muscles in relation to buccal pressure pump and opercular suction pumps in a fresh-water bottom dwelling siluroid fish, Bagarius bagarius have been studied. Histochemical studies were made on the succinic dehydrogenase activity of adductor mandibulae, retractor tentaculi, levator operculi, dilatator operculi, adductor operculi, intermandibularis, interhyoideus, hyohyoideus superior and constrictor branchialis. The intensity of reaction reveals the presence of three types of muscle fibres in some of the respiratory muscles. The muscle containing red muscle fibres are mostly innervated by the branches of the VIIth cranial nerve. The retractor tentaculi consists of superficial white muscle fibres and the interior part is dominated by red muscle fibres. The muscles (adductor operculi, levator operculi, dilatator operculi, interhyoideus, hyohyoideus superior) concerned with the opercular suction pumps are of mixed type and consist of white and red muscle fibres, whereas adductor mandibulae and intermandibularis are made up entirely of white muscle fibres. The adductor muscle bundles of the constrictor branchialis, which are responsible for movement of gill filaments, are dominated by the red muscle fibres. The abductor part, however, is made up entirely of white muscle fibres.  相似文献   

15.
The increase in intramedullary pressure during implantation of a cemented total hip prosthesis is the decisive pathogenic factor in the development of an embolism. The logical countermeasure aimed at preventing bone marrow and fat emboli is reduction of pressure. Drainage of the femoral canal enabled by the bone-vacuum cementing technique substantially reduces intraoperative fat embolism and cardiopulmonary events. The aim of the present study was to compare the efficiency of two suction pumps used with this technique. In-vitro and In-vivo measurements of pressure were obtained to characterize the properties of the Vakufix pump and the Sterivap pump. In vitro experiments showed that the length of the suction tube has no influence on the performance of the pumps. A useful vacuum in the medullary canal was achieved In-vivo with both pumps (mean-209.3 mbar). The vacuum obtained with the Vakufix pump was higher (+16%) than that obtained with the Sterivap pump. Owing to the complexity of the system, we would not recommend the use of the Sterivap pump for evacuating the femoral canal.  相似文献   

16.
采用形态测量分析方法对上世纪80年代发现于山东沂源的6枚人类牙齿化石齿冠外轮廓形状进行了研究, 并与亚洲直立人、早期智人、晚期智人、南方古猿、非洲早期人属以及现代人进行了对比。本文发现:沂源人既保留了部分原始特征, 也表现出许多进步特征。颊侧尖基底轮廓原始特征主要表现在P3和P4近似蚕豆形的外轮廓及M1近中轮廓线的平直; 进步特征主要体现在: P3向近远中方向的明显扩展、颊侧尖向颊侧的突出程度减弱,P4外轮廓形状处于现代人分布范围的边缘,M1前后尖比例增大, M1颊侧外轮廓的圆隆以及下后尖的相对内缩等。中国更新世的古人类牙齿表现出很多一致性, 直立人和早期智人在牙齿齿冠轮廓形状上没有明显的差异, 沂源人也体现出了与这些古人类的一致性, 但是在这一组标本中, 沂源人齿冠形状处于比较进步的一端。此外,沂源人上、下M1的颊舌径非常大,这一特殊性状可能具有进化意义。  相似文献   

17.
18.
Archerfish are famous for spitting jets of water to capture terrestrial insects, a task that not only requires oral dexterity, but also the ability to detect small camouflaged prey against a visually complex background of overhanging foliage. Because detection of olfactory, auditory and tactile cues is diminished at air–water interfaces, archerfish must depend almost entirely on visual cues to mediate their sensory interactions with the aerial world. During spitting, their eyes remain below the water''s surface and must adapt to the optical demands of both aquatic and aerial fields of view. These challenges suggest that archerfish eyes may be specially adapted to life at the interface between air and water. Using microspectrophotometry to characterize the spectral absorbance of photoreceptors, we find that archerfish have differentially tuned their rods and cones across their retina, correlated with spectral differences in aquatic and aerial fields of view. Spatial resolving power also differs for aquatic and aerial fields of view with maximum visual resolution (6.9 cycles per degree) aligned with their preferred spitting angle. These measurements provide insight into the functional significance of intraretinal variability in archerfish and infer intraretinal variability may be expected among surface fishes or vertebrates where different fields of view vary markedly.  相似文献   

19.
Plethodontid salamanders capture prey with enhanced tongue protraction relative to other salamander taxa, yet metamorphosing plethodontids are hypothesized to be constrained relative to direct-developing plethodontids in their degree of tongue evolution (protraction length and velocity) by the presence of a larval stage in development. In this biphasic life history the hyobranchial apparatus serves the conflicting functions of larval suction feeding and adult tongue protraction. The deletion of the larval stage removes one of the conflicting functions and has thus permitted direct-developing plethodontids to circumvent this constraint and evolve extremely long tongues, which in some species can be projected to 80% of body length. To evaluate this constraint hypothesis and explore taxonomic diversity of feeding behaviours, we studied feeding in larvae, adults and metamorphosing individuals of seven species of metamorphosing plethodontids from the basal taxa Desmognathinae and Hemidactyliini using direct observations, high-speed videography and kinematic analysis. We found that larval plethodontids suction feed, but feeding is suspended entirely during metamorphosis, and aquatic adults do not suction feed. Adults have exapted the terrestrial modes of tongue and jaw prehension for aquatic prey capture. These findings substantiate the premise that suction feeding and tongue protraction are conflicting functions, and thus our results support the constraint hypothesis. Plethodontid adults have evolved their extreme tongue protraction ability at the expense of adult suction feeding. The rapid metamorphosis that characterizes plethodontids may be an adaptation that minimizes the non-feeding period imposed by the evolution of derived tongue protraction in adults. © 2002 The Linnean Society of London, Zoological Journal of the Linnean Society , 2002, 134 , 375–400.  相似文献   

20.
One of the more unusual visual systems of the Actinopterygii is that of Pantodon buchholzi (Osteoglossomorpha: Osteoglossidae). Its adaptations associate neuroanatomy at different levels of the visual system with ecological and behavioural correlates and demonstrate that the visual system of this fish has adapted for simultaneous vision in air and water. The visual field is divided into three distinct areas: for viewing into the water column, into air, and for viewing the aquatic reflection from the underside of the water surface. Cone diameters in different retinal areas correlate with the differing physical constraints in the respective visual field. Retinal differentiation between the aquatic and aerial views is paralleled at different levels of the central nervous system. A diencephalic nucleus receives both direct and indirect (tectal) afferent input from only the aerial visual system and a specific type of cell in the optic tectum is preferentially distributed in the tectum processing aerial inputs. Distinctions within a single sensory system suggest that some behaviours may be organized according to visual field. For Pantodon, feeding is initiated by stimuli seen by the ventral hemiretina so the anatomical specializations may well play an important role as elements in a feeding circuit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号