首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Taking into account results of numerous experiments, the variability of the energy spectra of cosmic rays (protons and helium nuclei) in the energy range of 10 GeV to ~107 GeV is explained on the basis of a hypothesis of the existence of two variable sources close to the Sun. The first (soft) surfatron source (with a size of ~100 AU) is located at the periphery of the heliosphere. The second (hard) surfatron source (with a size of ~1 pc) is situated in the Local Interstellar Cloud (LIC) at a distance of <1 pc. The constant background is described by a power-law spectrum with a slope of ~2.75. The variable heliospheric surfatron source is described by a power-law spectrum with a variable amplitude, slope, and cutoff energy, the maximum cutoff energy being in the range of E СН/Z < 1000 GeV. The variable surfatron source in the LIC is described by a power-law spectrum with a variable amplitude, slope, and cut-off energy, the maximum cut-off energy being E СL/Z ≤ 3 × 106 GeV. The proposed model is used to approximate data from several experiments performed at close times. The energy of each cosmic-ray component is calculated. The possibility of surfatron acceleration of Fe nuclei (Z = 26) in the LIC up to an energy of E CL ~ 1017 eV and electron and positrons to the “knee” in the energy spectrum is predicted. By numerically solving a system of nonlinear equations describing the interaction between an electromagnetic wave and a charged particle with an energy of up to E/Z ~ 3 × 106 GeV, the possibility of trapping, confinement, and acceleration of charged cosmic-ray particles by a quasi-longitudinal plasma wave is demonstrated.  相似文献   

2.
A three-component phenomenological model describing the specific features of the spectrum of cosmic-ray protons and helium nuclei in the rigidity range of 30–2×105 GV is proposed. The first component corresponds to the constant background; the second, to the variable “soft” (30–500 GV) heliospheric source; and the third, to the variable “hard” (0.5–200 TV) source located inside a local bubble. The existence and variability of both sources are provided by the corresponding “surfatron accelerators,” whose operation requires the presence of an extended region with an almost uniform (in both magnitude and direction) magnetic field, orthogonally (or obliquely) to which electromagnetic waves propagate. The maximum energy to which cosmic rays can be accelerated is determined by the source size. The soft source with a size of ~100 AU is located at the periphery of the heliosphere, behind the front of the solar wind shock wave. The hard source with a size of >0.1 pc is located near the boundary of an interstellar cloud at a distance of ~0.01 pc from the Sun. The presence of a kink in the rigidity spectra of p and He near 230 GV is related to the variability of the physical conditions in the acceleration region and depends on the relation between the amplitudes and power-law exponents in the dependences of the background, soft heliospheric source, and hard near galactic source. The ultrarelativistic acceleration of p and He by an electromagnetic wave propagating in space plasma across the external magnetic field is numerically analyzed. Conditions for particle trapping by the wave and the dynamics of the particle velocity and momentum components are considered. The calculations show that, in contrast to electrons and positrons (e +), the trapped protons relatively rapidly escape from the effective potential well and cease to accelerate. Due to this effect, the p and He spectra are softer than that of e +. The possibility that the spectra of accelerated protons deviate from standard power-law dependences due to the surfatron mechanism is discussed.  相似文献   

3.
The phenomenon of trapping of weakly relativistic charged particles (with kinetic energies on the order of mc 2) into a regime of surfatron acceleration by an electromagnetic wave that propagates in plasma across a weak external magnetic field has been studied using nonlinear numerical calculations based on a solution of the relativistic equations of motion. Analysis showed that, for the wave amplitude above a certain threshold value and the initial wave phase outside the interval favorable for the surfing regime, the trajectory of a charged particle initially corresponds to its cyclotron rotation in the external magnetic field. For the initial particle energies studied, the period of this rotation is relatively short. After a certain number (from several dozen to several thousand and above) of periods of rotation, the wave phase takes a value that is favorable for trapping of the charged particle on its trajectory by the electromagnetic wave, provided the Cherenkov resonance conditions are satisfied. As a result, the wave traps the charged particle and imparts it an ultrarelativistic acceleration. In momentum space, the region of trapping into the regime of surfing on an electromagnetic wave turns out to be rather large.  相似文献   

4.
Cosmic ray (CR) energy spectra for H, He, Si, and Fe nuclei with energy-to-charge number ratios ?/Z in the range from 10 to 5 × 107 GeV are studied using observational data obtained at different times in different energy ranges: AMS-02, CREAM, Tibet ASγ, Tibet (hybrid), GRAPES-3, KASCADE, and KASCADE-Grande. Comparison of the H and He CR fluxes according to the KASCADE and KASCADE-Grande data (for different models of deconvolving CR spectra) with the Tibet ASγ and Tibet (hybrid) data obtained at another time in the range of ?/Z ~ 3 × 106 GeV demonstrates space weather-caused variability of the CR flux. This feature of CR energy spectra in the Tibet ASγ data is most clearly observed in the spectra of heavier nuclei (Si and Fe) according to the KASCADE-Grande and GRAPES-3 data. The variability in the energy spectra of all CRs in the vicinity of the “knee” is shown in the data of Yakutsk EAS, CASA-BLANCA, and Tibet-III experiments. The variability of the CR flux on a time scale on the order of several years exists only if the source corresponding to the peak in the energy spectrum is situated at a distance of no more than 1 pc from the Sun. Rapid surfatron acceleration of CRs may result from colliding interstellar clouds nearest to the Sun (LIC and G). This acceleration mechanism allows one to explain the variability of the CR spectrum in the range 103 GeV < ?/Z < 108 GeV. Conditions for the trapping of strongly relativistic Fe nuclei by an electromagnetic wave, the dynamics of the components of the particle velocity and momentum, and the dependence of the particle acceleration rate on the initial parameters of the problem are analyzed using numerical calculations. The structure of the phase plane of the accelerated Fe nuclei is examined. Optimal conditions for the implementation of ultrarelativistic surfatron acceleration of Fe nuclei by an electromagnetic wave are formulated.  相似文献   

5.
By numerically calculating the second-order nonlinear time-dependent equation for the wave phase on a particle trajectory, the effect of the longitudinal (with respect to the external magnetic field) momentum of electrons on the dynamics of their surfatron acceleration by an electromagnetic wave propagating across the external magnetic field in space plasma is analyzed. It is shown that, for strongly relativistic initial values of the longitudinal component of the electron momentum (the other parameters of the problem being fixed), the electrons are trapped into the ultrarelativistic regime of surfatron acceleration within a definite interval of the initial wave phase Ψ(0) on the particle trajectory. It was assumed in the calculations that Ψ(0) ≤ π. For the initial wave phases lying within the interval of 0 < Ψ(0) ≤ π, the electrons are immediately trapped by the wave, whereas at π ≤ Ψ(0) ≤ 0, no electron trapping is observed even at long computation times. This result substantially simplifies estimates of the wave damping caused by particle acceleration. The dynamics of the velocity components, momentum, and relativistic factor of electrons in the course of their ultrarelativistic acceleration are considered. The obtained results present interest for the development of modern concepts of the mechanisms for the generation of ultrarelativistic particles in space plasma, correct interpretation of experimental data on the flows of such particles, explanation of possible reasons for the deviation of the fast particle spectra observed in the heliosphere from the standard power-law scaling, and analysis of the relation between such deviations and the space weather.  相似文献   

6.
Based on the numerical solution of the nonlinear nonstationary second-order equation for the wave phase on the particle trajectory, the dynamics of surfatron acceleration of electrons by an electromagnetic wave propagating across the external magnetic field in space plasma is analyzed as a function of the electron momentum along the wave front. Numerical calculations show that, for strongly relativistic initial values of the electron momentum component along the wave front g y (0) (the other parameters of the problem being the same), electrons are trapped into the regime of ultrarelativistic surfatron acceleration within a certain interval of the initial wave phase Ψ(0) on the particle trajectory. It is assumed in the calculations that |Ψ(0)| ≤ π. For strongly relativistic values of g y (0), electrons are immediately trapped by the wave for 19% of the initial values of the phase Ψ(0) (favorable phases). For the rest of the values of Ψ(0), trapping does not occur even at long times. This circumstance substantially simplifies estimations of the wave damping due to particle acceleration in subsequent calculations. The dynamics of the relativistic factor and the components of the electron velocity and momentum under surfatron acceleration is also analyzed. The obtained results are of interest for the development of modern concepts of possible mechanisms of generation of ultrarelativistic particle fluxes in relatively calm space plasma, as well as for correct interpretation of observational data on the fluxes of such particles and explanation of possible reasons for the deviation of ultrarelativistic particle spectra detected in the heliosphere from the standard power-law scalings and the relation of these variations to space weather and large-scale atmospheric processes similar to tropical cyclones.  相似文献   

7.
Results from particle-in-cell simulations of the three-dimensional regime of proton acceleration in the interaction of laser radiation with a thin spherical target are presented. It is shown that the density of accelerated protons can be several times higher than that in conventional accelerators. The focusing of fast protons created in the interaction of laser radiation with a spherical target is demonstrated. The focal spot of fast protons is localized near the center of the sphere. The conversion efficiency of laser energy into fast ion energy attains 5%. The acceleration mechanism is analyzed and the electron and proton energy spectra are obtained.  相似文献   

8.
The process of trapping and acceleration of nonmonoenergetic electron bunches by a wake wave excited by a laser pulse in a plasma channel is investigated. The electrons are injected into the vicinity of the maximum of the wakefield potential with a velocity lower than the wave phase velocity. The study is aimed at utilizing specific features of a wakefield with substantially overlapped focusing and accelerating phases for achieving monoenergetic electron acceleration. Conditions are found under which electrons in a finite-length nonmonoenergetic bunch are accelerated to high energies, while the energy spread between them is minimal. The effect of energy grouping of electrons makes it possible to obtain compact high-energy electron bunches with a small energy spread during laser plasma acceleration.  相似文献   

9.
A study is made of a promising method for injecting an electron bunch into an accelerating laser-plasma system. A bunch is injected ahead of the front of a laser pulse generating a wake wave that propagates in a direction collinear with the pulse and has a velocity lower than the pulse group velocity. The influence of the initial nonmonoenergetic character of the bunch on its trapping and acceleration is investigated. By appropriately choosing the laser pulse parameters and the bunch injection energy, it is possible to create such conditions for the trapping of an initially nonmonoenergetic bunch by the wake wave that, over a certain acceleration distance, there will be no energy spread of the bunch due to its initial nonmonoenergetic character, a circumstance that allows compact electron bunches to be accelerated to high energies, with a minimum energy spread.  相似文献   

10.
The process of trapping and acceleration of a nonmonoenergetic electron bunch of finite length is investigated analytically in terms of a one-dimensional model, and relevant three-dimensional simulations are performed. The bunch is assumed to be injected into the region of maximum wake wave potential, the injection energy being such that the electron velocities are lower than the wave phase velocity. The study is aimed at clarifying how the spatial and energy parameters of the injected bunch in the trapping and acceleration stages depend on its initial energy spread. Formulas are obtained that describe the change in the bunch length and its energy spread in the course of acceleration. In some important limiting cases, the formulas are simple enough for them to be conveniently used for practical estimates. The injection conditions are discussed under which the electrons of a nonmonoenergetic bunch can be accelerated to high energies and the energy spread of the bunch electrons after acceleration is weakly sensitive to their initial energy spread. The analytical results agree well with the results of numerical simulations.  相似文献   

11.
The energy characteristics of an electron bunch accelerated by a wakefield are largely determined by the initial bunch dimensions. Present-day injectors are still incapable of ensuring the initial spatial parameters of the bunches required for their acceleration without increasing the energy spread of the bunch electrons. In connection with this, the possibility is studied of improving the energy characteristics of an accelerated bunch by precompressing it in the longitudinal direction in the stage of trapping by a wakefield. Analytic formulas are derived that describe the one-dimensional dynamics of the spatial and energy characteristics of a short (much shorter than the wakefield wavelength) electron bunch in both the trapping and acceleration stages. The analytical results obtained are shown to agree fairly well with the results from one-dimensional and three-dimensional simulations, provided that the electrons are injected into the region that is optimum for acceleration. The possibility is discussed of forming compressed bunches so as to ensure the high quality of the bunch in the course of its acceleration to high energies.  相似文献   

12.
When the dominant mechanism for ion acceleration is the laser radiation pressure, the conversion efficiency of the laser energy into the energy of relativistic ions may be very high. Stability analysis of a thin plasma layer accelerated by the radiation pressure shows that Raleigh-Taylor instability may enhance plasma inhomogeneity. In the linear stage of instability, the plasma layer decays into separate bunches, which are accelerated by the radiation pressure similarly to clusters accelerated under the action of an electromagnetic wave. The energy and luminosity of an ion beam accelerated in the radiation-pressure-dominated regime are calculated.  相似文献   

13.
The biological effectiveness of monoenergetic protons was investigated with the track-segment method. Protons were accelerated by a Tandem Van de Graaff accelerator and their final energies were 3.0 and 7.4 MeV. The biological system used was Chinese hamster V-79 cells and their survival ability following proton irradiation was investigated. Cobalt-60 gamma-rays were used as reference radiation to assess proton relative biological effectiveness (RBE). Survival curves were obtained for the gamma-ray and proton irradiations, and the relation S = exp (-alpha D-beta D2) was fitted to the data and the parameters alpha and beta were determined. The RBE values, calculated on the basis of the mean inactivation dose D and other pertinent parameters, were found to be 1.7 +/- 0.1 and 2.8 +/- 0.2 for 7.4 and 3.0 MeV protons, respectively. Comparisons were made with the results published by other investigators and it was concluded that in this low energy range the biological effectiveness increases substantially with decreasing proton energy.  相似文献   

14.
The process of electron trapping by a wake wave excited by a laser pulse in a plasma channel in the case where the electron bunches are injected into the vicinity of the maximum of the wakefield potential at a velocity lower than the wave phase velocity is considered. The mechanism for the formation of a compact electron bunch in the trapping region when only the electrons of the injected bunch that are trapped in the focusing phase mainly undergo the subsequent acceleration in the wakefield is analyzed. The influence of the spatial dimensions of the injected bunch and its energy spread on the length of the trapped electron bunch and the fraction of trapped electrons is studied analytically and numerically. For electron bunches with different ratios of their spatial dimensions to the characteristic dimensions of the wake wave, the influence of the injection energy on the parameters of the high-energy electron bunch trapped and accelerated in the wake-field is studied.  相似文献   

15.
Shielding of relativistic protons   总被引:2,自引:0,他引:2  
Protons are the most abundant element in the galactic cosmic radiation, and the energy spectrum peaks around 1 GeV. Shielding of relativistic protons is therefore a key problem in the radiation protection strategy of crewmembers involved in long-term missions in deep space. Hydrogen ions were accelerated up to 1 GeV at the NASA Space Radiation Laboratory, Brookhaven National Laboratory, New York. The proton beam was also shielded with thick (about 20 g/cm2) blocks of lucite (PMMA) or aluminium (Al). We found that the dose rate was increased 40–60% by the shielding and decreased as a function of the distance along the axis. Simulations using the General–Purpose Particle and Heavy-Ion Transport code System (PHITS) show that the dose increase is mostly caused by secondary protons emitted by the target. The modified radiation field after the shield has been characterized for its biological effectiveness by measuring chromosomal aberrations in human peripheral blood lymphocytes exposed just behind the shield block, or to the direct beam, in the dose range 0.5–3 Gy. Notwithstanding the increased dose per incident proton, the fraction of aberrant cells at the same dose in the sample position was not significantly modified by the shield. The PHITS code simulations show that, albeit secondary protons are slower than incident nuclei, the LET spectrum is still contained in the low-LET range (<10 keV/μm), which explains the approximately unitary value measured for the relative biological effectiveness.  相似文献   

16.
Developmental capacities of Artemia eggs have been studied after exposure to 645 MeV or 9.2 GeV protons. Effects of proton irradiation were studied in comparison with 60Co gamma ray irradiation, endpoints being emergence, hatching and 4-5 day old live nauplii percentages. Effectiveness of 645 MeV protons is greater than that of 9.2 GeV protons. R.b.e. values calculated for nauplius survival is 2.3 for 645 MeV protons and 1.5 for 9.2 GeV protons. These results can be taken into account in radiation hazard estimation during space flights.  相似文献   

17.
The acceleration of solar-wind protons in a current sheet in the Earth's magnetotail, in which the geomagnetic field lines reconnect, is investigated numerically using the dynamic current sheet model proposed by S.I. Syrovatski $\overset{\lower0.5em\hbox{$\overset{\lower0.5em\hbox{ . The dynamics of current sheets in the Earth's magnetotail is analyzed. In addition to the known solutions, the solution describing a contracting current sheet is derived. The time evolution of the magnetic field structure in Syrovatski $\overset{\lower0.5em\hbox{$\overset{\lower0.5em\hbox{ 's model is calculated numerically. The energy spectrum of the protons that are accelerated in the sheet by induction electric fields during rapid changes in the sheet topology is calculated and analyzed. A study is made of proton acceleration up to the time when the current sheet ruptures in the course of its evolution.  相似文献   

18.
Proton radiography is a novel imaging modality that allows direct measurement of the proton energy loss in various tissues. Currently, due to the conversion of so-called Hounsfield units from X-ray Computed Tomography (CT) into relative proton stopping powers (RPSP), the uncertainties of RPSP are 3–5% or higher, which need to be minimized down to 1% to make the proton treatment plans more accurate.In this work, we simulated a proton radiography system, with position-sensitive detectors (PSDs) and a residual energy detector (RED). The simulations were built using Geant4, a Monte Carlo simulation toolkit. A phantom, consisting of several materials was placed between the PSDs of various Water Equivalent Thicknesses (WET), corresponding to an ideal detector, a gaseous detector, silicon and plastic scintillator detectors. The energy loss radiograph and the scattering angle distributions of the protons were studied for proton beam energies of 150 MeV, 190 MeV and 230 MeV. To improve the image quality deteriorated by the multiple Coulomb scattering (MCS), protons with small angles were selected. Two ways of calculating a scattering angle were considered using the proton’s direction and position.A scattering angle cut of 8.7 mrad was applied giving an optimal balance between quality and efficiency of the radiographic image. For the three proton beam energies, the number of protons used in image reconstruction with the direction method was half the number of protons kept using the position method.  相似文献   

19.
Results are presented from theoretical analysis and 2D PIC simulations of electron acceleration in a breaking wake plasma wave generated by a short intense laser pulse during its interaction with a finite-length underdense plasma layer. The high energy electron energy spectrum and transverse emittance are obtained. It is shown that, for laser pulse lengths above the plasma wake wavelength, the wakefield-accelerated electrons are further accelerated by the electromagnetic wave. Published in Russian in Fizika Plazmy, 2006, Vol. 32, No. 4, pp. 291–310. The text was submitted by the authors in English.  相似文献   

20.
A comparison of imino proton NMR spectra of yeast tRNAPhe recorded at various solution conditions indicates, that polyamines have a limited effect on the structure of this tRNA molecule. Polyamines are found to catalyse the solvent exchange of several imino protons in yeast tRNAPhe not only of non hydrogen bonded imino protons, but also of imino protons of the GU and of some AU and tertiary base pairs. It is concluded that at low levels of catalysing components the exchange rates of the latter protons are not determined by the base pair lifetime. In the presence of high levels of spermidine the solvent exchange rates of imino protons of several base pairs in the molecule were assessed as a function of the temperature. Apparent activation energies derived from these rates were found to be less than 80 kJ/mol, which is indicative for (transient) independent opening of the corresponding base pairs. In the acceptor helix the GU base pair acts as a dynamic dislocation. The AU base pairs at one side of the GU base pair exhibit faster transient opening than the GC base pairs on the other side of this wobble pair. The base pairs m2GC10 and GC11 from the D stem and GC28 from the anticodon stem show relatively slow opening up to high temperatures. Model studies suggest that 1-methyladenosine, an element of tRNA itself, catalyses imino proton solvent exchange in a way similar to polyamines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号