首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A review is given of the experimentally observed effects related to the resonant field amplification (RFA) and the Resistive Wall Mode (RWM) instability in tokamaks and reversed field pinches (RFPs). This includes the feedback rotation of RWM in RFX-mod RFP, dependence of the RWM growth rate on the plasma-wall separation observed in JT-60U, appearance of the slowly growing RWM precursors in JT-60U and similar phenomena in other devices. The experimental results are compared with theoretical predictions based on the model comprising the Maxwell equations, Ohm’s law for the conducting wall, the boundary conditions and assumption of linear plasma response to the external magnetic perturbations. The model describes the plasma reaction to the error field as essentially depending on two factors: the plasma proximity to the RWM stability threshold and the natural rotation frequency of the plasma mode. The linear response means that these characteristics are determined by the plasma equilibrium parameters only. It is shown that the mentioned effects in different devices under different conditions can be described on a common basis with only assumption that the plasma behaves as a linear system. To extend the range of the model validation, some predictions are derived with proposals for experimental studies of the RFA dynamics.  相似文献   

3.
A method is proposed for stability analysis of the locked and rotating resistive wall modes (RWMs) in tokamaks. The method is based on the relations describing the balance of energy permeating through the vessel wall. This is a natural extension of the traditional energy approach to the plasma stability tasks which allows incorporation of the energy outflow (absent in the classical energy principle) and its dissipation in the wall. The proposed method covers the locked and rotating modes with a complex growth rate. Its efficiency is proved by derivation of a general dispersion relation for such modes with further reduction to particular consequences for slow and fast RWMs. It is shown that in the latter case, when the skin depth becomes smaller than the wall thickness, the mode rotation essentially amplifies its damping, weakening and even suppressing the instability. This effect was earlier found in the frame of the slab model [V. D. Pustovitov, Phys. Plasmas 19, 062503 (2012)]. Here, it is confirmed with equations valid for toroidal geometry, which are obtained as a supplement to the standard energy principle. The presented results predict strong rotational stabilization of the fast RWMs, which occurs at the mode rotation frequency above a critical level. The estimates are given to allow comparison of these predictions with experimental results.  相似文献   

4.
The rate theory for enzyme-triggered coagulation reactions, such as the clotting of fibrin or casein, is extended to the case of an arbitrary rate of production of the clotting species. It is shown that the general expression for the growth of the weight-average molecular weight of the clotting product, -Mw, is given by -Mw = M1{1 + ks {∫0tP(t)2 dt}/P(t)}, where M1 is the “monomer” molecular weight, ks the smoluchowskian flocculation rate constant and P(t) the total number of monomers produced by the enzyme in t. In the purely smoluchowskian case P(t) stands for the total number of monomers at the beginning of the clotting process. Numerical examples in which the rate of enzymic production is governed by complete Michaelis-Menten kinetics, are compared to cases in which this rate equals Vmax- It is shown that after exhaustion of the substrate the system continues to coagulate in a purely smoluchowskian way. Turbidimetric experiments on the clotting of micelles of whole and κ-casein are presented which suggest inactivation of the enzyme by non-productive binding in the flocs formed.  相似文献   

5.
The effect of variations in the key parameter of short-wavelength turbulence—the ion-acoustic Larmor radius ρ s , which determines the position of the maximum of the drift instability growth rate over poloidal wavenumbers—was studied experimentally at the FT-2 tokamak. For this purpose, helium was injected to hydrogen plasma, which resulted in a change in the electron temperature at the plasma edge. The universality of the exponential shape of the turbulence spectra over radial wavenumbers q and a substantial excess of the characteristic turbulence scale L over the ion-acoustic Larmor radius was confirmed with the help of correlative diagnostics of enhanced scattering. This excess at the discharge periphery reaches a value of 3–5 at a low electron temperature, apparently, due to an increase in the dissipation of drift waves upon their cascade transfer toward short scale-lengths.  相似文献   

6.
We have investigated the potential of new methods of analysis of sedimentation velocity (SV) analytical ultracentrifugation (AUC) for the characterization of detergent-solubilized membrane proteins. We analyze the membrane proteins Ca++-ATPase and ExbB solubilized with DDM (dodecyl-β-d-maltoside). SV is extremely well suited for characterizing sample heterogeneity. DDM micelles (s 20w?=?3.1 S) and complexes (Ca++-ATPase: s 20w?=?7.3 S; ExbB: s 20w?=?4 S) are easily distinguished. Using different detergent and protein concentrations, SV does not detect any evidence of self-association for the two proteins. An estimate of bound detergent of 0.9 g/g for Ca++-ATPase and 1.5 g/g for ExbB is obtained from the combined analysis of SV profiles obtained using absorbance and interference optics. Combining s 20w with values of the hydrodynamic radius, R s?=?5.5 nm for Ca++-ATPase or R s?=?3.4 nm for ExbB, allows the determination of buoyant molar masses, M b. In view of their M b and composition, Ca++-ATPase and ExbB are monomers in our experimental conditions. We conclude that one of the main advantages of SV versus other techniques is the possibility to ascertain the homogeneity of the samples and to focus on a given complex even in the presence of other impurities or aggregates. The relative rapidity of SV measurements also allows experiments on unstable samples.  相似文献   

7.
The problem of drift stabilization of the internal resistive-wall modes (RWMs) in tokamaks is theoretically investigated. The basic assumption of the model is that, when the drift effects are neglected, these modes are unstable in the absence of a conducting wall and stable in the presence of a close-fitting perfectly conducting wall. In the former case, the instability condition is expressed as Δ′>0, where Δ′ is the matching parameter calculated under the assumption that the wall is removed to infinity. In the latter case, one has Δ W <0, where Δ W is the external matching parameter of tearing modes calculated assuming a perfectly conducting wall at the plasma boundary. In the case with a resistive wall, the relevant parameter can be either Δ′ or Δ W , depending on whether the value of the dimensionless parameter ωτs/2m is small or large, respectively (here ω is the mode frequency, τs is the resistive time constant of the wall, and m is the poloidal mode number). In the presence of drift effects, the mode frequency ω is approximately equal to the electron drift frequency, ω≈ω*e. The value of the parameter ω*eτs/2m, which therefore determines the behavior of internal RWMs, is estimated for several existing tokamaks, namely, AUG (ASDEX-Upgrade), DIII-D, JET, TFTR, and JT-60U, as well as for the projected ITER-FEAT. It is shown that, although drift effects do not stabilize internal RWMs in current devices, they should be efficient in suppressing these modes in reactor-grade tokamaks.  相似文献   

8.
On the basis of a two-component (two-fluid) hydrodynamic model, it is shown that the probable phenomenon of solar core rotation with a velocity higher than the average velocity of global rotation of the Sun, discovered by the SOHO mission, can be related to fast solid-body rotation of the light hydrogen component of the solar plasma, which is caused by thermonuclear fusion of hydrogen into helium inside the hot dense solar core. Thermonuclear fusion of four protons into a helium nucleus (α-particle) creates a large free specific volume per unit particle due to the large difference between the densities of the solar plasma and nuclear matter. As a result, an efficient volumetric sink of one of the components of the solar substance—hydrogen—forms inside the solar core. Therefore, a steady-state radial proton flux converging to the center should exist inside the Sun, which maintains a constant concentration of hydrogen as it burns out in the solar core. It is demonstrated that such a converging flux of hydrogen plasma with the radial velocity v r (r) = ?βr creates a convective, v r ?v φ/?r, and a local Coriolis, v r v φ/r,φ nonlinear hydrodynamic forces in the solar plasma, rotating with the azimuthal velocity v φ. In the absence of dissipation, these forces should cause an exponential growth of the solid-body rotation velocity of the hydrogen component inside the solar core. However, friction between the hydrogen and helium components of the solar plasma due to Coulomb collisions of protons with α-particles results in a steady-state regime of rotation of the hydrogen component in the solar core with an angular velocity substantially exceeding the global rotational velocity of the Sun. It is suggested that the observed differential (liquid-like) rotation of the visible surface of the Sun (photosphere) with the maximum angular velocity at the equator is caused by sold-body rotation of the solar plasma in the radiation zone and strong turbulence in the tachocline layer, where the turbulent viscosity reaches its maximum value at the equator. There, the tachocline layer exerts the most efficient drag on the less dense outer layers of the solar plasma, which are slowed down due to the interaction with the ambient space plasma (solar wind).  相似文献   

9.
Synthetic wastewaters were prepared with different influent concentrations of ammonia nitrogen (NH3–N) and COD and the treatment studies were conducted using a rotating biological contactor (RBC). If organic removal and nitrification can be simultaneously effected in one process, it will be an ideal solution to water pollution control. The RBC used in the present study was a four stage laboratory model and the discs were modified by attaching porous netlon sheets to enhance biofilm area. The COD loads (S 0) used were about 1000 and 1500?mg/l whereas NH3–N concentrations used were in the range of 20 to 185?mg/l. Hydraulic load (q) of 0.03?m3?.?m-2?.?d-1 and ammonia nitrogen loadings in the range of 0.66 to 5.5?g NH3–N?.?m-2?.?d-1 were used. The RBC was operated at two different rotating speeds of 6 and 12?rpm. The results showed that the nitrification and percentage of COD removal were not affected up to the value of the COD/NH3–N in the range from 47 to 23 at w=6?rpm and for an average influent COD of 1003?mg/l. Beyond that range only the nitrification rate decreased much whereas the percentage of COD removal was not affected. Similarly, at an influent COD load of 1557?mg/l, the nitrification and percentage COD removal were not affected for the value of the COD/NH3–N in the range from 44 to 23 but beyond that range only the nitrification rate decreased while the percentage of COD removal was approximately constant and still high. A correlation plot between the NH3–N removed and NH3–N applied was presented at a rotating speed of 6?rpm and it was found that the nitrification rate of 3.93?g NH3–N?.?m-2?.?d-1 was achieved at ammonia loading of 5.55?g NH3–N?.?m-2?.?d-1. Also the results at w=12?rpm showed improvement of nitrification rate over those at 6?rpm.  相似文献   

10.
The dissociation of the 7 S oligomer of nerve growth factor prepared from mouse submaxillary gland has been studied by sedimentation velocity as a function of added NaCl and/or EDTA at pH 6.8 in phosphate buffer. Dilution with or without EDTA results in a symmetrical dissociation to the 4.5 S protomer, in agreement with previous work. In the presence of increasing NaCl concentration the 7 S nerve growth factor oligomer undergoes limited dissociation which is characterized by complex boundary formation and the presence of a stable intermediate (weight-average s20, w for the system of 4. 1 S at 2 n NaCl). The dissociation mode is probably asymmetrical in NaCl with the system resulting in an equilibrium mixture of γ and α2β complex (s20,w about 4.7 S). The removal of zinc ion by EDTA causes only a small change in the native equilibrium but destabilizes the complex with respect to salt-mediated dissociation, leading to complete dissociation to subunits at relatively low concentrations of NaCl. Zinc ion also promotes reassociation of mixtures of isolated α + β or β + γ subunits. Thus, a structural role of zinc ion in stabilizing subunit interactions, probably α ? β or β ? γ, is proposed. The specificity of the interactions with zinc ion and the specificity of the ionic interactions stabilizing the oligomer are further evidence for a biological specificity, if not function, of the oligomer.  相似文献   

11.
To evaluate the efficiency of oxygen (O2) uptake from water through the fish gill lamellar system, a cost function (CF) representing mechanical power expenditure for water ventilation and blood circulation through the gill was formulated, by applying steady-state fluid mechanics to a homogeneous lamellar-channel model. This approach allowed us to express CF as the function of inter-lamellar water channel width (w) and to derive an analytical solution of the width (wmin) at the minimum CF. Morphometric and physiological data for rainbow trout in the literature were referred to calculate CF(w) curves and their wmin values at five intensity stages of swimming exercise. Obtained wmin values were evenly distributed around the standard measure of the width (ws = 24 μm) in this fish. Individual levels of CF(wmin) were also fairly close to the corresponding CF(ws) values within a 10% deviation, suggesting the reliability of approximating [CF(wmin) = CF(ws)]. The cost-performance of O2 uptake through the gill (ηg) was then assessed from reported data of total O2 uptake/CF(ws) at each intensity stage. The ηg levels at any swimming stage exceeded 95% of the theoretical maximum value, implying that O2 uptake is nearly optimally performed in the lamellar-channel system at all swimming speeds. Further analyses of O2 transport in this fresh water fish revealed that the water ventilation by the buccal/opercular pumping evokes a critical limit of swimming velocity, due to confined O2 supply to the peripheral skeletal muscles, which is avoided in ram ventilators such as tuna.  相似文献   

12.
《Biophysical journal》2022,121(20):3874-3882
The purpose of this study was to clarify the glass-transition behavior of bacteria (Cronobacter sakazakii) as a function of water activity (aw). From the water sorption isotherm (298 K) for C. sakazakii, monolayer water content and monolayer aw were determined to be 0.0724 g/g-dry matter and 0.252, respectively. Mechanical relaxation was investigated at 298 K. In a higher aw range of over 0.529, the degree of mechanical relaxation increased with an increase in aw. From the effect of aw on the degree of mechanical relaxation, the mechanical awc (aw at which mechanical glass transition occurs at 298 K) was determined to be 0.667. Mean-square displacement of atoms in the bacteria was investigated by incoherent elastic neutron scattering. The mean-square displacement increased gradually with an increase in temperature depending on the aw of samples. From the linear fitting, two or three dynamical transition temperatures (low, middle, and high Tds) were determined at each aw. The low-Td values (142–158 K) were almost independent from aw. There was a minor effect of aw on the middle Td (214–234 K) except for the anhydrous sample (261 K). The high Td (252–322 K) largely increased with the decrease in aw. From the aw dependence of the high Td, the dynamical awc was determined to be 0.675, which was almost equivalent to the mechanical awc. The high Td was assumed to be the glass-transition temperature (Tg), and anhydrous Tg was estimated to be 409 K. In addition, molecular relaxation time (τ) of the bacteria was calculated as a function of aw. From the result, it is suggested that the progress of metabolism in the bacterial system requires a lower τ than approximately 6 × 10?5 s.  相似文献   

13.
Water deficits during seed filling often decrease seed size in soybean (Glycine max L.). The physiological basis for this response is not known but may result from direct effects of low seed water potential (Ψw) on the seed filling process. To determine whether low Ψw occurred in reproductive tissues of soybean, we monitored the water status (Ψw, Ψs, and Ψp) of leaf, pericarp, and seed (embryo and testa) tissue of greenhouse-grown plants subjected to a brief water deficit during the linear period of seed growth. Water deficits were imposed by withholding water and monitored in the reproductive tissues by thermocouple psychrometry. When water was abundant, leaf, pericarp, and seed Ψw were −0.5 to −0.7 megapascal at midday. When water was withheld, leaf Ψw decreased to −2.3 megapascals within 6 days. Pericarp Ψw also decreased to −1.9 megapascal during this time. Pericarp Ψs followed the decline in Ψw, but osmotic adjustment was not evident as the pericarp lost turgor completely by day 6. However, seed Ψw, Ψs, and Ψp were not significantly different from the controls. These results indicate that the water status of the developing seeds of soybean is not altered by short-term water deficits severe enough to inhibit the metabolic activity of the maternal plant. Maintenance of a favorable water status may be important for the conservation of seed growth rate exhibited by soybean under dry conditions.  相似文献   

14.
Cell wall proteins at low water potentials   总被引:13,自引:9,他引:4       下载免费PDF全文
We investigated the proteins extractable from cell walls of stem tissues when plants were subjected to low water potentials (low ψw). Dark-grown soybean seedlings (Glycine max [L.] Merr.) showed decreased stem growth when the roots were exposed to vermiculite having low water content (ψw = −3 bar). After a time, growth resumed but at a reduced rate relative to the controls. The extractable protein increased in the cell walls as ψw decreased, especially a 28-kilodalton protein in the young tissue. In contrast, a 70 kilodalton protein, mainly extractable from mature cell walls, appeared to decrease slightly at low ψw. No hydroxyproline was present in either protein, which shows that neither protein is related to extensin. The level of the 28 kilodalton protein increased in the cell wall of the dividing region soon after the initial growth inhibition, and it appeared in the elongating tissue at about the time growth resumed. The correlation between growth and these protein changes suggests that the two events could be related.  相似文献   

15.
Nonami H  Boyer JS 《Plant physiology》1990,93(4):1610-1619
Measurements with a guillotine psychrometer (H Nonami, JS Boyer [1990] Plant Physiol 94: 1601-1609) indicate that the inhibition of stem growth at low water potentials (low ψw) is accompanied by decreases in cell wall extensibility and tissue hydraulic conductance to water that eventually limit growth rate in soybean (Glycine max L. Merr.). To check this conclusion, we measured cell wall properties and cell hydraulic conductivities with independent techniques in soybean seedlings grown and treated the same way, i.e. grown in the dark and exposed to low ψw by transplanting dark grown seedlings to vermiculite of low water content. Wall properties were measured with an extensiometer modified for intact plants, and conductances were measured with a cell pressure probe in intact plants. Theory was developed to relate the wall measurements to those with the psychrometer. In the elongation zone, the plastic deformability of the walls decreased when measured with the extensiometer while growth was inhibited at low ψw. It increased during a modest growth recovery. This behavior was the same as that for the wall extensibility observed previously with the psychrometer. Tissue that was killed before measurement with the extensiometer also showed a similar response, indicating that changes in wall extensibility represented changes in wall physical properties and not rates of wall biosynthesis. The elastic compliance (reciprocal of bulk elastic modulus) did not change in the elongating or mature tissue. The hydraulic conductivity of cortical cells decreased in the elongating tissue and increased slightly during growth recovery in a response similar to that observed with the psychrometer. We conclude that the plastic properties of the cell walls and the conductance of the cells to water were decreased at low ψw but that the elastic properties of the walls were of little consequence in this response.  相似文献   

16.
A modified Rotating Biological Contactor (RBC) was used for the treatability studies of synthetic tapioca wastewaters. The RBC used was a four stage laboratory model and the discs were modified by attaching porous nechlon sheets to enhance biofilm area. Synthetic tapioca wastewaters were prepared with influent concentrations from 927 to 3600 mg/l of COD. Three hydraulic loads were used in the range of 0.03 to 0.09 m3·m–2·d–1 and the organic loads used were in the range of 28 to 306 g COD· m–2·d–1. The percentage COD removal were in the range from 97.4 to 68. RBC was operated at a rotating speed of 18 rpm which was found to be the optimal rotating speed. Biokinetic coefficients based on Kornegay and Hudson models were obtained using linear analysis. Also, a mathematical model was proposed using regression analysis.List of Symbols A m2 total surface area of discs - d m active depth of microbial film onany rotating disc - K s mg ·l–1 saturation constant - P mg·m–2·–1 area capacity - Q l·d–1 hydraulic flow rate - q m3·m–2·d–1 hydraulic loading rate - S 0 mg·l–1 influent substrate concentration - S e mg·l–1 effluent substrate concentration - w rpm rotational speed - V m3 volume of the reactor - X f mg·l–1 active biomass per unit volume ofattached growth - X s mg·l–1 active biomass per unit volume ofsuspended growth - X mg·l–1 active biomass per unit volume - Y s yield coefficient for attachedgrowth - Y A yield coefficient for suspendedgrowth - Y yield coefficient, mass of biomass/mass of substrate removed Greek Symbols hr mean hydraulic detention time - (max)A d–1 maximum specific growth rate forattached growth - (max)s d–1 maximum specific growth rate forsuspended growth - max d–1 maximum specific growth rate - d–1 specific growth rate - v mg·l–1·hr–1 maximum volumetric substrateutilization rate coefficient  相似文献   

17.
The Caatinga is one of the world's richest dry forests. This forest occurs only in Brazil, but is the least studied and protected Brazilian ecosystem. There are few reports about drought tolerance mechanisms in Caatinga trees. This work evaluates water relations of six adult species in the middle of the dry season to further understand water relations in this ecosystem, which will be important for future reforestation and management projects. Based on results, the trees were classified into four groups: (I), Mimosa caesalpiniifolia had low leaf water potential (Ψw) at predawn and no significant decrease at midday. Stomatal conductance (gs) analyses indicates that plants have reached its lowest Ψw; (II), Caesalpinia pyramidalis and Auxemma oncocalyx had low Ψw at predawn and significant decrease at midday. For these species the recuperation of water status at night may have been sufficient for maintaining stomata open during the day; (III), Caesalpinia ferrea and Calliandra spinosa had relatively high Ψw at predawn and a significant decrease at midday. These species might maintain their water status similar to individuals of group II, but they might also have deeper root systems; and (IV), Tabebuia caraiba with the highest Ψw at predawn and no significant decrease at midday, possibly indicating a combination of good stomatal control of water loss and a deeper root system. Moreover, except for individuals of group I, both in species with lower and higher Ψw at predawn it was not observed strong inhibition of gs.  相似文献   

18.
A model of growth and substrate utilization for ferrous-iron-oxidizing bacteria attached to the disks of a rotating biological contactor was developed and tested. The model describes attached bacterial growth as a saturation function in which the rate of substrate utilization is determined by a maximum substrate oxidation rate constant (P), a half-saturation constant (Ks), and the concentration of substrate within the rotating biological contactor (S1). The maximum oxidation rate constant was proportional to flow rate, and the substrate concentration in the reactor varied with influent substrate concentration (S0). The model allowed the prediction of metabolic constants and included terms for both constant and growth-rate-dependent maintenance energies. Estimates for metabolic constants of the attached population of acidophilic, chemolithotrophic, iron-oxidizing bacteria limited by ferrous iron were: maximum specific growth rate (μmax), 1.14 h−1; half-saturation constant (Ks) for ferrous iron, 54.9 mg/liter; constant maintenance energy coefficient (m1), 0.154 h−1; growth-rate-dependent maintenance energy coefficient (m′), 0.07 h−1; maximum yield (Yg), 0.063 mg of organic nitrogen per mg of Fe(II) oxidized.  相似文献   

19.
A stress-relaxation method has been developed to measure the mechanical property of the plant cell wall, as a physically defined terms. In the method, the stress relaxation property of the cell wall is simulated with a Maxwell viscoelastic model whose character is represented by four parameters; the minimum relaxation time, To, the relaxation rate, b, the maximum relaxation time, Tm and the residual stress, c. Thus, the mechanical property of the cell wall is represented by the four parameters. Physical and physiological meanings of the parameters are discussed. Auxin effects on the parameters were also studied. The cell elongation is simply thought to be extension of the cell wall under a force. The extension of the cell wall can be simulated by the mechanical property of the cell wall. However, the calculated extension was found to be incomparable to the real cell growth, indicating that there has to be other factors limiting the rate of cell growth. Major factors governing cell growth are discussed to be the cell wall mechanical property, the osmotic potential and water movement in the apoplast. A possibility to predict cell expansion with the three factors was discussed and a novel equation representing cell growth was obtained: $$1/R = 1/R_w + 1/R_p $$ whereR is the rate of cell elongation,R w is the rate of cell wall extension due to the osmotic pressure andR p is the rate of cell elongation determined by water conductivity.  相似文献   

20.
The behavior of the intrinsic toroidal rotation of the plasma column during the growth and eventual saturation of m/n = 2/1 magnetic islands, triggered by programmed density rise, has been carefully investigated in disruptive discharges in TCABR. The results show that, as the island starts to grow and rotate at a speed larger than that of the plasma column, the angular frequency of the intrinsic toroidal rotation increases and that of the island decreases, following the expectation of synchronization. As the island saturates at a large size, just before a major disruption, the angular speed of the intrinsic rotation decreases quite rapidly, even though the island keeps still rotating at a reduced speed. This decrease of the toroidal rotation is quite reproducible and can be considered as an indicative of disruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号