首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The problem is considered of configurations of a strongly magnetized inviscid plasma around a rotating magnetized central body. Strong plasma magnetization implies that the Hall conductivity is much lower than the transverse conductivity, which in turn is much lower than the longitudinal conductivity. For such conditions, a self-consistent set of equations is derived that describes the conduction current density, the magnetic and electric fields, and the angular frequency of the plasma rotation under the assumptions that the components of the dielectric tensor of the plasma envelope are known functions of height and that the plasma mass velocity has only the azimuthal component. Under the assumption that the transverse conductivity is constant over a magnetic surface, the nonlinear equations derived are solved in quadratures within the class of angular frequency distributions that are symmetric about the equatorial plane. A particular solution for the plasma configurations in a dipole magnetic field is considered that corresponds to a model exponential dependence of the transverse conductivity on the number of the L-envelope (or, equivalently, on the number of the unperturbed magnetic surface).  相似文献   

2.

An exact solution is derived to the equations of vortex electron anisotropic hydrodynamics for a plasma that is unstable against the Weibel instability driven by the electron temperature anisotropy. This solution describes saturation of the Weibel instability in the single-mode regime with an arbitrary wavelength and corresponds to a standing helical wave of magnetic perturbations in which the amplitude of the generated magnetic field varies periodically over time. The longitudinal and transverse (with respect to the rotating anisotropy axis) plasma temperatures are subject to the same periodic variations. In this case, the maximum magnetic field energy can be on the order of the plasma thermal energy.

  相似文献   

3.
Self-consistent steady-state axisymmetric configurations of a plasma envelope with a uniform anisotropic conductivity around a rotating magnetized spherical body are considered. A set of electrodynamic and magnetohydrodynamic equations is analyzed under the assumption that the mass velocity of a moving weakly ionized plasma has only the azimuthal component. The equations describing the profile of the angular frequency of the rotating plasma envelope, the magnetic field, the conduction currents, and the plasma density distribution are solved in the limit of a strong anisotropy of the conductivity of a weakly ionized gas. The applicability of the results obtained to a qualitative interpretation of the phenomena occurring in the plasmaspheres of magnetized planets is discussed.  相似文献   

4.
The retrograde motion of an arc in a transverse magnetic field is attributed to the onset of a tangential flow of gas or vapor. The physics of a polarized plasma jet conducting the current between the cathode and anode is discussed.  相似文献   

5.
Results are presented from experimental studies on the unique beam-plasma generator of microwave radiation with a stochastically jumping phase (MWRSJP). To interpret the experimental results, a computer code was developed that allows one to simulate the process of gas ionization by electrons heated in the MWRSJP field and the behavior of plasma particles in such a field. The conditions for ignition and maintenance of a microwave discharge in air by MWRSJP are found both experimentally and theoretically, and the pressure range in which the power required for discharge ignition and maintenance is minimum are determined.  相似文献   

6.
Motivated by the lateral migration phenomena of fresh and glutaraldehyde-fixed red blood cells in a field flow fractionation (FFF) separation system, we studied the transverse hydrodynamic lift on a slightly flexible cylinder in a two-dimensional channel flow. The finite element method was used to analyze the flow field with the cylinder at different transverse locations in the channel. The shape of the cylinder was determined by the pressure on the surface of the cylinder from the flow field solution and by the internal elastic stress. The cylinder deformation and the flow field were solved simultaneously. The transverse lift exerted on the cylinder was then calculated. The axial and angular speed of the cylinder were iterated such that the drag and torque on the cylinder were nulled to represent a freely translating and rotating state. The results showed that the transverse lift on a deformable cylinder increased greatly and the equilibrium position moved closer to the center of the channel compared to a rigid cylinder. Also, with the same elastic modulus but a higher flow rate, a larger deformation and higher equilibrium location were found. The maximum deformation of the cylinder occurred when the cylinder was closest to the wall where a larger shear rate existed. The numerical results and experimental studies are discussed.  相似文献   

7.
A simplified wave equation is derived that describes both Suydam modes in a nonuniformly rotating plasma column in a helical magnetic field and related flute modes. A study is made of a low-pressure plasma under the assumption that the azimuthal component of the magnetic field is much weaker than the axial component. It is shown that, when the monotonic radial variation of the plasma rotation velocity is sufficiently sharp, the plasma core becomes stable against short-wavelength Suydam modes. The instabilities that can develop in a nonuniformly rotating plasma are classified.  相似文献   

8.
A model of ion collisions with gas atoms is constructed that takes into account resonant ion-atom charge exchange, polarization interaction, and short-range (gas-kinetic) collisions. The cross sections for resonant charge exchange of the ions of noble gases, as well as rubidium, cesium, and mercury ions, with atoms are calculated based on the experimental data and the results of numerical simulations of ion collisions with parent gas atoms in a uniform electric field. The effect of the electric field, the temperature of the buffer gas atoms, and the percentage composition of the gas mixture on the ion velocity distribution function is investigated.  相似文献   

9.
Direct measurements of magnetic fields in a plasma show that current sheets can form in magnetic configurations with an X line in the presence of a longitudinal magnetic field. It is found that, in a plane perpendicular to the X line and to the direction of the main current, the current sheet has two very different dimensions. The tangential and normal components of the magnetic field and current density in the sheet are determined. The influence of the initial conditions (such as the strength of the longitudinal magnetic field, the gradient of the transverse field, and the plasma ion mass) on the current sheet parameters is investigated.  相似文献   

10.
A set of Vlasov-Maxwell equations for collisionless electromagnetic drift instabilities of high-β plasma configurations with a nonuniform magnetic fields is solved. The effect of the transverse static magnetic field variation and magnetic field line curvature, as well as the plasma temperature and density gradients, is considered. It is shown that, in a nonuniform magnetic field, the behavior of the instabilities differs substantially from that in a uniform field. Electromagnetic modes propagating strictly transverse to the lines of the static magnetic field are analyzed in detail, and unstable solutions are obtained for both extraordinary and ordinary waves. Numerical results show that, in the latter case, instability occurs when the magnetic field decreases toward the periphery and the plasma temperature and density gradients are oppositely directed.  相似文献   

11.
Results are presented from experimental studies of the behavior of dust grains in a track plasma produced by an accelerated proton beam. Dynamic dust structures in such a plasma are obtained for the first time, and their spatiotemporal evolution is thoroughly investigated. The structures develop from a dust spiral, which abruptly transforms with increasing dust density into a differentially rotating dust cloud across which dust-sound waves (including spiral waves generated by the dense central core) propagate. As time elapses, the dust cloud loses its fragments and gradually vanishes. At constant experimental conditions, the lifetime of the structures attains a few minutes.  相似文献   

12.
Results of experimental studies of the effect of an external RF field on the excitation of oscillations in a magnetoplasmadynamic plasma accelerator are presented. It is found that applying an RF field can suppress the drift component of low-frequency oscillations in the ejected plasma flow. The experimental data agree with the concept of stabilization of the plasma accelerator by the magnetic component of the field generated by the RF current loop. The conditions under which the RF field stabilizes the generation of the plasma flow are determined, and the factors limiting the stabilization efficiency are revealed.  相似文献   

13.
Absorption of the electromagnetic energy in a semi-infinite electron plasma is calculated for an arbitrary degree of the electron gas degeneracy. Absorption is determined by solving the boundary-value problem on the oscillations of electron plasma in a half-space with mirror boundary conditions for electrons. The Vlasov?Boltzmann kinetic equation with the Bhatnagar–Gross–Krook collision integral for the electron distribution function and Maxwell’s equation for the electric field are employed. The electron distribution function and the electric field inside plasma are searched for in the form of expansions in the eigenfunctions of the initial set of equations. The expansion coefficients are found for the case of mirror boundary conditions. The contribution of the plasma surface to absorption is analyzed. Cases with different degrees of electron gas degeneracy are considered. It is shown that absorption of the electromagnetic energy near the surface depends substantially on the ratio between the electric field frequency and the volumetric electron collision frequency.  相似文献   

14.
The time evolution of the electric field in the leader channel and other characteristics of the leader plasma in long air gaps are simulated. Calculations are performed in the one-dimensional time-dependent model with allowance for the time-varying energy deposition in the channel, the channel expansion, and the nonequilibrium ionization kinetics in the leader plasma. The calculations show that, at a gas temperature of 4500–6000 K, associative ionization becomes a dominant ionization mechanism in the leader channel; as a result, the electric field decreases to 100–200 V/cm in 10?4–10?3 s under the conditions typical of the leader discharge. The calculated electric field agrees well with the data from the experimental modeling of long leaders by a spark discharge in short gaps.  相似文献   

15.
Results are reported of experimental investigations that have revealed the presence of a plasma in the interaction region of a model wideband relativistic microwave amplifier—a dielectric Cherenkov maser. The electrodynamic properties of a hybrid system—a waveguide with an annular dielectric liner and a plasma layer adjacent to its inner wall—are analyzed. Experiments with a high-current accelerator have revealed that the power of the emitted microwaves at the output of the system increases strongly when an external microwave source at different frequencies in the X-band is switched on. However, this effect was found to be hard to reproduce. Indirect evidence is obtained of the fact that, during the transport of an electron beam and under the action of the signal from a high-power pulsed magnetron, the plasma in the system is created at the surface of the dielectric. In the model of a cold magnetized plasma, a dispersion relation is derived for axisymmetric waves in a system with a wall plasma layer. The spectra of the waveguide and plasma modes in the system and the transverse structure of their electromagnetic fields are investigated thoroughly as functions of the plasma density and layer thickness. It is shown that even a very thin layer of a high-density plasma results in a large frequency shift of the dispersion curve of the waveguide mode, in which case the coupling impedance at a fixed frequency decreases sharply. On the other hand, a layer of a moderately dense plasma increases the coupling impedance for the waveguide mode. It is established that, in a configuration with a wall plasma layer, the longitudinal component of the electric field of a plasma mode whose power flux in the dielectric is of a volumetric nature reverses direction across the layer.  相似文献   

16.
A conceptual design of a microwave gas-discharge plasma source is described. The possibility is considered of creating conditions under which microwave energy in the plasma resonance region would be efficiently converted into the energy of thermal and accelerated (fast) electrons. Results are presented from interferometric and probe measurements of the plasma density in a coaxial microwave plasmatron, as well as the data from probe measurements of the plasma potential and electron temperature. The dynamics of plasma radiation was recorded using a streak camera and a collimated photomultiplier. The experimental results indicate that, at relatively low pressures of the working gas, the nonlinear interaction between the microwave field and the inhomogeneous plasma in the resonance region of the plasmatron substantially affects the parameters of the ionized gas in the reactor volume.  相似文献   

17.
An argon plasma produced by a quasi-steady high-energy electron beam was studied experimentally. The plasma density was measured using an open barrel-shaped microwave cavity. The gas temperature was shown to be a few times higher than room temperature. Electron beam propagation, as well as heat-transfer and kinetic processes in plasma, is modeled self-consistently for the actual experimental conditions. It is shown that the plasma density is largely governed by the conversion rate of the atomic ions into molecular ones. The calculated results are compared to the experimental data.  相似文献   

18.
The influence of resonant charge exchange for ion-atom interaction on the viscosity of partially ionized plasma embedded in the magnetic field is investigated. The general system of equations used to derive the viscosity coefficients for an arbitrary plasma component in the 21-moment approximation of Grad’s method is presented. The expressions for the coefficients of total and partial viscosities of a multicomponent partially ionized plasma in the magnetic field are obtained. As an example, the coefficients of the parallel and transverse viscosities for the ionic and neutral components of the partially ionized hydrogen plasma are calculated. It is shown that the account for resonant charge exchange can lead to a substantial change of the parallel and transverse viscosity of the plasma components in the region of low degrees of ionization on the order of 0.1.  相似文献   

19.
Charge neutralization of a short ion bunch passing through a plasma slab is studied by means of numerical simulation. It is shown that a fraction of plasma electrons are trapped by the bunch under the action of the collective charge separation field. The accelerated electrons generated in this process excite beam?plasma instability, thereby violating the trapping conditions. The process of electron trapping is also strongly affected by the high-frequency electric field caused by plasma oscillations at the slab boundaries. It is examined how the degree of charge neutralization depends on the parameters of the bunch and plasma slab.  相似文献   

20.
A new type of plasma source with titanium hydride granules used as a hydrogen accumulator was employed to inject a dense, highly ionized plasma jet into the Globus-M spherical tokamak. The experiments have shown that the jet penetrates through the tokamak magnetic field and increases the plasma density, without disturbing the stability of the plasma column. It is found that, when the plasma jet is injected before a discharge, more favorable conditions (as compared to those during gas puffing) are created for the current ramp-up at a lower MHD activity in the plasma column. Plasma injection at the instant of maximum current results in a more rapid growth in the plasma density in comparison to gas puffing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号