首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of human serum high density lipoproteins (HDL) with mouse peritoneal macrophages and human blood monocytes was studied. Saturation curves for binding of apolipoprotein E-free [125I]HDL3 showed at least two components: non-specific binding and specific binding that saturated at approximately 40 micrograms HDL protein/ml. Scatchard analysis of specific binding of apo E-free [125I]-HDL3 to cultured macrophages yielded linear plots indicative of a single class of specific binding sites. Pretreatment of [125I]HDL3 with various apolipoprotein antibodies (anti apo A-I, anti apo A-II, anti apo C-II, anti apo C-III and anti apo E) and preincubation of the cells with anti-idiotype antibodies against apo A-I and apo A-II prior to the HDL binding studies revealed apolipoprotein A-I as the ligand involved in specific binding of HDL. Cellular cholesterol accumulation via incubation with acetylated LDL led to an increase in HDL binding sites as well as an increase in the activity of the cytoplasmic cholesterol esterifying enzyme acyl-CoA:cholesterol acyltransferase (ACAT). Incubation of the cholesterol-loaded cells in the presence of various ACAT inhibitors (Sandoz 58.035, Octimibate-Nattermann, progesterone) revealed a time- and dose-dependent amplification in HDL binding and HDL-mediated cholesterol efflux. It is concluded that the homeostasis of cellular cholesterol in macrophages is regulated in part by the number of HDL binding sites and that ACAT inhibitors enhance HDL-mediated cholesterol efflux from peripheral cells.  相似文献   

2.
Differential regulation has been suggested for cellular cholesterol and phospholipid release mediated by apolipoprotein A-I (apoA-I)/ABCA1. We investigated various factors involved in cholesterol mobilization related to this pathway. ApoA-I induced a rapid decrease of the cellular cholesterol compartment that is in equilibrium with the ACAT-accessible pool in cells that generate cholesterol-rich HDL. Pharmacological and genetic inactivation of ACAT enhanced the apoA-I-mediated cholesterol release through upregulation of ABCA1 and through cholesterol enrichment in the HDL generated. Pharmacological activation of protein kinase C (PKC) also decreased the ACAT-accessible cholesterol pool, not only in the cells that produce cholesterol-rich HDL by apoA-I (i.e., human fibroblast WI-38 cells) but also in the cells that generate cholesterol-poor HDL (mouse fibroblast L929 cells). In L929 cells, the PKC activation caused an increase in apoA-I-mediated cholesterol release without detectable change in phospholipid release and in ABCA1 expression. These results indicate that apoA-I mobilizes intracellular cholesterol for the ABCA1-mediated release from the compartment that is under the control of ACAT. The cholesterol mobilization process is presumably related to PKC activation by apoA-I.  相似文献   

3.
Eicosanoids have been implicated in the regulation of arterial smooth muscle cell (SMC) cholesteryl ester (CE) metabolism. These eicosanoids, which include prostacyclin (PGI2), stimulate CE hydrolytic activities. High-density lipoproteins (HDL), which promote cholesterol efflux, also stimulate PGI2 production, suggesting that HDL-induced cholesterol efflux is modulated by eicosanoid biosynthesis. To ascertain the role of endogenously synthesized eicosanoids produced by arterial smooth muscle cells in the regulation of CE metabolism, we examined the effects of cyclooxygenase inhibition on CE hydrolytic enzyme activities, cholesterol efflux, and cholesterol content in normal SMC and SMC-derived foam cells following exposure to HDL and another cholesterol acceptor protein, serum albumin. Alterations of these activities were correlated with cholesterol efflux in response to HDL or bovine serum albumin (BSA) in the presence or absence of aspirin. HDL stimulated PGI2 synthesis and CE hydrolases in a dose-dependent manner. Eicosanoid dependency was established by demonstrating that HDL-induced acid cholesteryl ester hydrolase (ACEH) activity was blocked by aspirin. CE enrichment essentially abrogated HDL-induced PGI2 production in cells which also exhibited decreased lysosomal and cytoplasmic CE hydrolase activities. In CE-enriched cells whose cytoplasmic CE pool was metabolically labeled with [3H]oleate or cLDL containing [3H]cholesteryl linoleate, aspirin did not alter HDL- or BSA-induced net CE hydrolysis or efflux, respectively. Finally, aspirin treatment did not alter the mass of either free or esterified cholesterol content of untreated or CE-enriched SMC following exposure to acceptor proteins. These data demonstrated that CE enrichment significantly reduced HDL-induced activation of CE hydrolytic activity via inhibition of endogenous PGI2 production.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Malondialdehyde modification and copper ion-induced autooxidation of the apo E-free HDL3 fraction of high-density lipoproteins were studied with respect to physico-chemical characteristics and physiological properties of the lipoprotein. Cu(2+)-oxidized HDL was much less modified than MDA-treated HDL, in terms of electrophoretic mobility, lipid peroxidation product content, Lys and Trp amino acid residue level and polymerization of apo A-I. With [3H]cholesteryl linoleate-labeled LDL, an inhibition of cholesterol efflux was observed in the presence of modified HDL, with a more marked effect with MDA-modified HDL. Competition studies with iodinated native HDL demonstrated a decreased binding of modified HDL to cell surface receptors. The decrease in cholesterol intracellular content, determined either by the isotopic equilibrium method or by the enzymatic cholesterol oxidase technic, was less marked in the presence of modified HDL than in the presence of native HDL. MDA-modified HDL was the less effective in decreasing cellular cholesterol content. It is thus suggested that malondialdehyde-induced alteration of HDL, or HDL peroxidation, if occurring in vivo, could contribute to the progress of atherogenesis by decreasing cholesterol efflux from peripheral tissues.  相似文献   

5.
The kinetics of sterol efflux from human aortic smooth muscle cells equilibrated with a [(3)H]benzophenone-modified photoactivable free cholesterol analogue ((3)H-FCBP) did not differ significantly from those labeled with free cholesterol ((3)H-FC). Trypsin digestion of caveolin cross-linked by photoactivation of FCBP led to association of radiolabel in a single low molecular weight fraction, indicating relative structural homogeneity of caveolin-bound sterol. These findings were used to investigate the organization of sterols in caveolae and the ability of these domains to transfer sterols to apolipoprotein A-I (apo A-I), the major protein of human plasma high-density lipoproteins (HDL). During long-term (4-5 h) incubation with apo A-I, caveolin-associated (3)H-FC and (3)H-FCBP decreased, in parallel with an increase in apo A-I-associated sterol. Assay of caveolin-associated labeled sterols indicated that caveolae were a major source of sterol lost from the cells during HDL formation. Short-term changes of sterol distribution in caveolae were assayed using platelet-derived growth factor (PDGF). PDGF was without effect on FC efflux in the absence of apo A-I, but when apo A-I was present, PDGF increased FC efflux approximately 3-fold beyond the efflux rate catalyzed by apo A-I alone. At the same time, caveolin-associated FC decreased, and PDGF-dependent protein kinase activity was stimulated. Parallel results were obtained with (3)H-FCBP-equilibrated cells, in which apo A-I potentiated a PDGF-mediated reduction of radiolabel cross-linked to caveolin following photoactivation. These results suggest that sterols within caveolae are mobile and selectively transferred to apo A-I. They also suggest a novel role for sterol efflux in amplifying PDGF-mediated signal transduction.  相似文献   

6.
The pre-β HDL fraction constitutes a heterogeneous population of discoid nascent HDL particles. They transport from 1 to 25 % of total human plasma apo A-I. Pre-β HDL particles are generated de novo by interaction between ABCA1 transporters and monomolecular lipid-free apo A-I. Most probably, the binding of apo A-I to ABCA1 initiates the generation of the phospholipid-apo A-I complex which induces free cholesterol efflux. The lipid-poor nascent pre-β HDL particle associates with more lipids through exposure to the ABCG1 transporter and apo M. The maturation of pre-β HDL into the spherical α-HDL containing apo A-I is mediated by LCAT, which esterifies free cholesterol and thereby forms a hydrophobic core of the lipoprotein particle. LCAT is also a key factor in promoting the formation of the HDL particle containing apo A-I and apo A-II by fusion of the spherical α-HDL containing apo A-I and the nascent discoid HDL containing apo A-II. The plasma remodelling of mature HDL particles by lipid transfer proteins and hepatic lipase causes the dissociation of lipid-free/lipid-poor apo A-I, which can either interact with ABCA1 transporters and be incorporated back into pre-existing HDL particles, or eventually be catabolized in the kidney. The formation of pre-β HDL and the cycling of apo A-I between the pre-β and α-HDL particles are thought to be crucial mechanisms of reverse cholesterol transport and the expression of ABCA1 in macrophages may play a main role in the protection against atherosclerosis.  相似文献   

7.
The ATP-binding cassette transporter A1 (ABCA1) plays a critical role in the biogenesis of high density lipoprotein (HDL) particles and in mediating cellular cholesterol efflux. The mechanism by which ABCA1 achieves these effects is not established, despite extensive investigation. Here, we present a model that explains the essential features, especially the effects of ABCA1 activity in inducing apolipoprotein (apo) A-I binding to cells and the compositions of the discoidal HDL particles that are produced. The apo A-I/ABCA1 reaction scheme involves three steps. First, there is binding of a small regulatory pool of apo A-I to ABCA1, thereby enhancing net phospholipid translocation to the plasma membrane exofacial leaflet; this leads to unequal lateral packing densities in the two leaflets of the phospholipid bilayer. Second, the resultant membrane strain is relieved by bending and by creation of exovesiculated lipid domains. The formation of highly curved membrane surface promotes high affinity binding of apo A-I to these domains. Third, this pool of bound apo A-I spontaneously solubilizes the exovesiculated domain to create discoidal nascent HDL particles. These particles contain two, three, or four molecules of apo A-I and a complement of membrane phospholipid classes together with some cholesterol. A key feature of this mechanism is that membrane bending induced by ABCA1 lipid translocase activity creates the conditions required for nascent HDL assembly by apo A-I. Overall, this mechanism is consistent with the known properties of ABCA1 and apo A-I and reconciles many of the apparently discrepant findings in the literature.  相似文献   

8.
Regulation of gene expression of ATP-binding cassette transporter (ABC)A1 and ABCG1 by liver X receptor/retinoid X receptor (LXR/RXR) ligands was investigated in the human intestinal cell line CaCo-2. Neither the RXR ligand, 9-cis retinoic acid, nor the natural LXR ligand 22-hydroxycholesterol alone altered ABCA1 mRNA levels. When added together, ABCA1 and ABCG1 mRNA levels were increased 3- and 7-fold, respectively. T0901317, a synthetic non-sterol LXR agonist, increased ABCA1 and ABCG1 gene expression 11- and 6-fold, respectively. ABCA1 mass was increased by LXR/RXR activation. T0901317 or 9-cis retinoic acid and 22-hydroxycholesterol increased cholesterol efflux from basolateral but not apical membranes. Cholesterol efflux was increased by the LXR/RXR ligands to apolipoprotein (apo)A-I or HDL but not to taurocholate/phosphatidylcholine micelles. Actinomycin D prevented the increase in ABCA1 and ABCG1 mRNA levels and the increase in cholesterol efflux induced by the ligands. Glyburide, an inhibitor of ABCA1 activity, attenuated the increase in basolateral cholesterol efflux induced by T0901317. LXR/RXR activation decreased the esterification and secretion of cholesterol esters derived from plasma membranes. Thus, in CaCo-2 cells, LXR/RXR activation increases gene expression of ABCA1 and ABCG1 and the basolateral efflux of cholesterol, suggesting that ABCA1 plays an important role in intestinal HDL production and cholesterol absorption.  相似文献   

9.
Adenosine triphosphate-binding cassette transporter subfamily A member 7 (ABCA7) performs incompletely understood biochemical functions that affect pathogenesis of Alzheimer's disease. ABCA7 is most similar in primary structure to ABCA1, the protein that mediates cell lipid efflux and formation of high-density lipoprotein (HDL). Lipid metabolic labeling/tracer efflux assays were employed to investigate lipid efflux in BHK-ABCA7(low expression), BHK-ABCA7(high expression) and BHK-ABCA1 cells. Shotgun lipid mass spectrometry was used to determine lipid composition of HDL synthesized by BHK-ABCA7 and BHK-ABCA1 cells. BHK-ABCA7(low) cells exhibited significant efflux only of choline-phospholipid and phosphatidylinositol. BHK-ABCA7(high) cells had significant cholesterol and choline-phospholipid efflux to apolipoprotein (apo) A-I, apo E, the 18A peptide, HDL, plasma and cerebrospinal fluid and significant efflux of sphingosine-lipid, serine-lipid (which is composed of phosphatidylserine and phosphatidylethanolamine in BHK cells) and phosphatidylinositol to apo A-I. In efflux assays to apo A-I, after adjustment to choline-phospholipid, ABCA7-mediated efflux removed ~4 times more serine-lipid and phosphatidylinositol than ABCA1-mediated efflux, while ABCA1-mediated efflux removed ~3 times more cholesterol than ABCA7-mediated efflux. Shotgun lipidomic analysis revealed that ABCA7-HDL had ~20 mol% less phosphatidylcholine and 3–5 times more serine-lipid and phosphatidylinositol than ABCA1-HDL, while ABCA1-HDL contained only ~6 mol% (or ~1.1 times) more cholesterol than ABCA7-HDL. The discrepancy between the tracer efflux assays and shotgun lipidomics with respect to cholesterol may be explained by an underestimate of ABCA7-mediated cholesterol efflux in the former approach. Overall, these results suggest that ABCA7 lacks specificity for phosphatidylcholine and releases significantly but not dramatically less cholesterol in comparison with ABCA1.  相似文献   

10.
Copper deficiency in rats produces a hypercholesterolemia with a marked increase in HDL fraction. This study investigated changes in the plasma distribution and composition of HDL subclasses as affected by copper deficiency. Plasma HDL were separated into the following three subclasses by heparin-affinity chromatography: HDL containing no apo E but high in apo A-I (HDL-E0); HDL with an intermediate level of apo E (HDL-E1); and HDL highly enriched in apo E but low in apo A-I (HDL-E2). The compositional analysis showed that the hypercholesterolemia observed in copper-deficient rats was due specifically to an increase in plasma cholesterol carried by HDL-E0. Copper deficiency did not alter the percent distribution of apo A-I in HDL-E0, but lowered the apo A-I content in HDL-E1 and HDL-E2, with an increase in apo E in these subclasses. The total plasma concentration of apo A-I was, however, significantly elevated in Cu-deficient rats, which was attributable to an increase in the total number of circulating HDL particles. No difference was noted between Cu-deficient and control groups in the distribution of free cholesterol or the ratio of free cholesterol to esterified cholesterol in any of the HDL subclasses. The present results and earlier observations suggest that copper deficiency may produce a defect in the plasma clearance or tissue uptake of the HDL subclass high in apo A-I but devoid of apo E (HDL-E0), which may be mediated by the specific apo A-I receptor or non-endocytotic transfer of HDL-E0 cholesterol to the liver. Such metabolic defects may partly explain the simultaneous increases in both plasma HDL cholesterol and apo A-I and altered cholesterol homeostasis observed in copper deficiency.  相似文献   

11.
Human plasma high-density lipoproteins (HDL) are important vehicles in reverse cholesterol transport, the cardioprotective mechanism by which peripheral tissue-cholesterol is transported to the liver for disposal. HDL is the target of serum opacity factor (SOF), a substance produced by Streptococcus pyogenes that turns mammalian serum cloudy. Using a recombinant (r) SOF, we studied opacification and its mechanism. rSOF catalyzes the partial disproportionation of HDL into a cholesteryl ester-rich microemulsion (CERM) and a new HDL-like particle, neo HDL, with the concomitant release of lipid-free (LF)-apo A-I. Opacification is unique; rSOF transfers apo E and nearly all neutral lipids of approximately 100,000 HDL particles into a single large CERM whose size increases with HDL-CE content (r approximately 100-250 nm) leaving a neo HDL that is enriched in PL (41%) and protein (48%), especially apo A-II. rSOF is potent; within 30 min at 37 degrees C, 10 nM rSOF opacifies 4 microM HDL. At respective low and high physiological HDL concentrations, LF-apo A-I is monomeric and tetrameric. CERM formation and apo A-I release have similar kinetics suggesting parallel or rapid sequential steps. According to the reaction products and kinetics, rSOF is a heterodivalent fusogenic protein that uses a docking site to displace apo A-I and bind to exposed CE surfaces on HDL; the resulting rSOF-HDL complex recruits additional HDL with its binding-delipidation site and through multiple fusion steps forms a CERM. rSOF may be a clinically useful and novel modality for improving reverse cholesterol transport. With apo E and a high CE content, CERM could transfer large amounts of cholesterol to the liver for disposal via the LDL receptor; neo HDL is likely a better acceptor of cellular cholesterol than HDL; LF-apo A-I could enhance efflux via the ATP-binding casette transporter ABCA1.  相似文献   

12.
Probucol is a widely prescribed lipid-lowering agent, the major effects of which are to lower cholesterol in both low- and high-density lipoproteins (LDL and HDL, respectively). The mechanism of action of probucol on HDL apolipoprotein (apo) A-I kinetics was investigated in rabbits, with or without cholesterol feeding. 125I-labeled HDL was injected intravenously, and blood samples were taken periodically for 6 days. Kinetic parameters were calculated from the apo A-I-specific radioactivity decay curves. Fractional catabolic rate (FCR) and synthetic rate (SR) of apo A-I in rabbits fed a normal chow and normal chow with 1% probucol were similar. Apo A-I FCR of the rabbits fed 0.5% cholesterol was significantly increased but there were no changes in SR, compared to findings in the normal chow-fed group. Apo A-I FCR of the rabbits fed 1% probucol with 0.5% cholesterol (both 1 month and 2 months) was significantly increased compared to findings in rabbits fed the normal chow as well as 0.5% cholesterol diet group, while SR of apo A-I was significantly reduced in the former groups. Kinetics at 1 month after discontinuation of 1% probucol (under cholesterol feeding) showed a similar FCR of HDL-apo A-I to that of the rabbits fed 0.5% cholesterol, but the SR of apo A-I remained lower. Apo A-I isoproteins kinetics assessed by autoradiography of isoelectric focusing slab gels showed that the synthesis of proapo A-I was significantly reduced in the 1% probucol with 0.5% cholesterol administered, compared to the 0.5% cholesterol group. Thus, the action of probucol on HDL apo A-I kinetics was only prominent in case of higher serum cholesterol levels. The decreased HDL or apo A-I seen with probucol was apparently the result of an increase in FCR and a decrease in SR of HDL-apo A-I. A decreased synthesis of apo A-I remained evident even 1 month after discontinuing probucol. The action of probucol on the intracellular synthetic processes of apo A-I was revealed by the reduced synthesis of proapo A-I.  相似文献   

13.
The distribution of apolipoprotein (apo) A-I between human high-density lipoproteins (HDL) and water is an important component of reverse cholesterol transport and the atheroprotective effects of HDL. Chaotropic perturbation (CP) with guanidinium chloride (Gdm-Cl) reveals HDL instability by inducing the unfolding and transfer of apo A-I but not apo A-II into the aqueous phase while forming larger apo A-I deficient HDL-like particles and small amounts of cholesteryl ester-rich microemulsions (CERMs). Our kinetic and hydrodynamic studies of the CP of HDL species separated according to size and density show that (1) CP mediated an increase in HDL size, which involves quasi-fusion of surface and core lipids, and release of lipid-free apo A-I (these processes correlate linearly), (2) >94% of the HDL lipids remain with an apo A-I deficient particle, (3) apo A-II remains associated with a very stable HDL-like particle even at high levels of Gdm-Cl, and (4) apo A-I unfolding and transfer from HDL to water vary among HDL subfractions with the larger and more buoyant species exhibiting greater stability. Our data indicate that apo A-I's on small HDL (HDL-S) are highly dynamic and, relative to apo A-I on the larger more mature HDL, partition more readily into the aqueous phase, where they initiate the formation of new HDL species. Our data suggest that the greater instability of HDL-S generates free apo A-I and an apo A-I deficient HDL-S that readily fuses with the more stable HDL-L. Thus, the presence of HDL-L drives the CP remodeling of HDL to an equilibrium with even larger HDL-L and more lipid-free apo A-I than with either HDL-L or HDL-S alone. Moreover, according to dilution studies of HDL in 3 M Gdm-Cl, CP of HDL fits a model of apo A-I partitioning between HDL phospholipids and water that is controlled by the principal of opposing forces. These findings suggest that the size and relative amount of HDL lipid determine the HDL stability and the fraction of apo A-I that partitions into the aqueous phase where it is destined for interaction with ABCA1 transporters, thereby initiating reverse cholesterol transport or, alternatively, renal clearance.  相似文献   

14.
Effect of coconut oil on plasma apo A-I levels in WHHL and NZW rabbits   总被引:1,自引:0,他引:1  
Age-matched Watanabe (WHHL) and New Zealand White (NZW) rabbits were fed a coconut oil-enriched diet (14%, w/w) for 2 weeks. Lipid and apolipoprotein (apo) A-I levels in plasma and lipoprotein fractions were monitored. Within 3 days after the start of the coconut oil diet, plasma apo A-I and high-density lipoprotein (HDL)-apo A-I levels increased 3-fold in the WHHL rabbits. A smaller but significant increase (63%) in apo A-I and HDL-apo A-I levels was also observed in the NZW rabbits. HDL cholesterol levels also increased from 16 +/- 3 mg/dl during a regular diet to 46 +/- 16 mg/dl (288%) during the coconut oil diet in the WHHL rabbits and from 37 +/- 7 mg/dl to 69 +/- 19 mg/dl (186%), respectively, in the NZW rabbits. Apo A-I and HDL cholesterol levels fell sharply to the original levels soon after switching back to a regular diet (within 3 days for WHHL rabbits and within 5 days for NZW rabbits). The fractional catabolic rate calculated from 125I-HDL kinetic studies indicated that the turnover rate for HDL was significantly slower in WHHL rabbits fed the coconut oil diet than the control diet (0.018 +/- 0.004 h-1 vs. 0.027 +/- 0.007 h-1, P less than 0.01). No changes were found in the NZW rabbits fed either diet. Trilaurin, the main component of the coconut oil (46.9%) supplemented diet (6.5%, w/w), was also used in this study. The effect of trilaurin on plasma apo A-I and HDL-cholesterol levels is discussed.  相似文献   

15.
HDL particles may enter atherosclerotic lesions having an acidic intimal fluid. Therefore, we investigated whether acidic pH would affect their structural and functional properties. For this purpose, HDL(2) and HDL(3) subfractions were incubated for various periods of time at different pH values ranging from 5.5 to 7.5, after which their protein and lipid compositions, size, structure, and cholesterol efflux capacity were analyzed. Incubation of either subfraction at acidic pH induced unfolding of apolipoproteins, which was followed by release of lipid-poor apoA-I and ensuing fusion of the HDL particles. The acidic pH-modified HDL particles exhibited an enhanced ability to promote cholesterol efflux from cholesterol-laden primary human macrophages. Importantly, treatment of the acidic pH-modified HDL with the mast cell-derived protease chymase completely depleted the newly generated lipid-poor apoA-I, and prevented the acidic pH-dependent increase in cholesterol efflux. The above-found pH-dependent structural and functional changes were stronger in HDL(3) than in HDL(2). Spontaneous acidic pH-induced remodeling of mature spherical HDL particles increases HDL-induced cholesterol efflux from macrophage foam cells, and therefore may have atheroprotective effects.  相似文献   

16.
C Talussot  G Ponsin 《Biochimie》1991,73(9):1173-1178
Recent reports have shown that apolipoprotein A-I (apo A-I), the major protein of high density lipoprotein (HDL) may exist in different conformational states. We studied the effects of apolipoprotein A-II and/or cholesterol on the conformation of apo A-I in reassembled HDL. Analysis of tryptophan fluorescence quenching in the presence of iodine suggested that cholesterol increased the number of apo A-I tryptophan residues accessible to the aqueous phase, but decreased their mean degree of hydration. These observations cannot be totally explained on the basis of the effect of cholesterol on phospholipid viscosity as determined by fluorescence anisotropy of diphenyl hexatriene. We did not observe any effect of apo A-II on the conformation of apo A-I.  相似文献   

17.
Rat apolipoprotein (apo) A-I and A-IV, isolated from both lymph chylomicrons and serum high density lipoproteins (HDL) were analyzed by isoelectric focusing. Lymph chylomicron apo A-I consisted for 81 +/- 2% of the pro form and for 19 +/- 2% of the mature form, while apo A-I isolated from serum HDL was present for 36 +/- 4% in the pro form and for 64 +/- 4% in the mature form. Apo A-IV also showed two major protein bands after analysis by isoelectric focusing. The most prominent component is the more basic protein that amounts to 80 +/- 2% in apo A-IV isolated from lymph chylomicrons and to 60 +/- 3% in apo A-IV isolated from serum HDL. Apo A-I (or apo A-IV), isolated from both sources (lymph chylomicrons or serum HDL), was iodinated and the radioactive apolipoproteins were incorporated into rat serum lipoproteins. The resulting labeled HDL was isolated from serum by molecular sieve chromatography on 6% agarose columns and injected intravenously into rats. No difference in the fractional turnover rate or the tissue uptake of the two labeled HDL preparations was observed, neither for apo A-I nor for apo A-IV. It is concluded that the physiological significance of the extracellular pro apo A-I conversion or the post-translational modification of apo A-IV is not related to the fractional turnover rate in serum or to the rate of catabolism in liver and kidneys.  相似文献   

18.
The ability of HDL to support macrophage cholesterol efflux is an integral part of its atheroprotective action. Augmenting this ability, especially when HDL cholesterol efflux capacity from macrophages is poor, represents a promising therapeutic strategy. One approach to enhancing macrophage cholesterol efflux is infusing blood with HDL mimics. Previously, we reported the synthesis of a functional mimic of HDL (fmHDL) that consists of a gold nanoparticle template, a phospholipid bilayer, and apo A-I. In this work, we characterize the ability of fmHDL to support the well-established pathways of cellular cholesterol efflux from model cell lines and primary macrophages. fmHDL received cell cholesterol by unmediated (aqueous) and ABCG1- and scavenger receptor class B type I (SR-BI)-mediated diffusion. Furthermore, the fmHDL holoparticle accepted cholesterol and phospholipid by the ABCA1 pathway. These results demonstrate that fmHDL supports all the cholesterol efflux pathways available to native HDL and thus, represents a promising infusible therapeutic for enhancing macrophage cholesterol efflux. fmHDL accepts cholesterol from cells by all known pathways of cholesterol efflux: unmediated, ABCG1- and SR-BI-mediated diffusion, and through ABCA1.  相似文献   

19.
Previously, the authors have shown that the molecular interaction between caveolin-1 and ATP-binding cassette transporter A1 (ABCA1) is associated with the high-density lipoprotein (HDL)-mediated cholesterol efflux pathway in aortic endothelial cells (ECs). This study analyzed the role ABCA1 plays in caveolin-1-mediated cholesterol efflux in aortic ECs. Knockdown of ABCA1 by siRNA in primary rat aortic ECs after cholesterol treatment did not affect caveolin-1 expression but led to the retention of caveolin-1 in the Golgi apparatus, impaired caveolin-1 oligomerization, and reduced cholesterol efflux. Immunoblotting assay and immunofluorescence microscopy demonstrated that HDL transiently up-regulated ABCA1 expression, induced caveolin-1 oligomerization, and promoted its Golgi exit, thereby enhancing cholesterol efflux. These HDL-induced events, however, were inhibited by down-regulation of ABCA1. It is concluded that HDL up-regulates ABCA1 expression, which in turn modulates the oligomerization and Golgi exit of caveolin-1 to enhance cholesterol efflux in aortic ECs.  相似文献   

20.
Two sandwich-type enzyme immunoassays have been developed to measure apolipoproteins A-I and E in rabbit serum. Specific goat antibodies were purified by affinity chromatography and used both for coating and for preparing antibody-peroxydase conjugates. The sensitivity of these assays is sufficient to allow studies of apo A-I and E distribution in lipoproteins fractionated by gel filtration from 50 microliters of serum. In WHHL rabbits, apo A-I is 5-fold lower (5.2 +/- 2.5 mg/dl) and apo E is 8-fold higher (9.9 +/- 3.5 mg/dl) than in normolipidemic rabbits (29 +/- 4.3 mg/dl and 1.3 +/- 0.5 mg/dl, respectively). In hyperlipidemic rabbits, fed 2 months on a 0.5% cholesterol diet, the apo A-I level was similar (32 +/- 12 mg/dl) to that of normolipidemic rabbits, but the apo E level is 12-fold higher (15.1 +/- 5.5 mg/dl). In addition, HDL particles were enriched with cholesterol and apo E. The bulk of apo E and cholesterol is located in large beta-VLDL in diet-induced hyperlipidemia, whereas they are mainly located in smaller size beta-VLDL in WHHL rabbits. In normolipidemic rabbits apo E occurs mainly in HDL, and cholesterol is distributed in the main three lipoprotein fractions VLDL, LDL and HDL. Interestingly, HDL of WHHL rabbit are deficient in apo A-I. These results are compatible with profound perturbations of lipoprotein composition and metabolism in atherogenic hyperlipidemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号