首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The chemical relationships among particulate and colloidal organicmaterial and dissolved fulvic acid were examined in an alpine andsubalpine lake and two streams in Loch Vale Watershed, Rocky MountainNational Park. The alpine lake, Sky Pond, had the lowest dissolved organiccarbon (DOC) (0.37 mgC/L), the highest particulate carbon (POC) (0.13mgC/L), and high algal biomass. The watershed of Sky Pond is primarilytalus slope, and DOC and POC may be autochthonous. Both Andrews Creekand Icy Brook gain DOC as they flow through wet sedge meadows. Thesubalpine lake, The Loch, receives additional organic material from thesurrounding forest and had a higher DOC (0.66 mgC/L). Elemental analysis,stable carbon isotopic compositon, and 13C-NMR characterizationshowed that: 1) particulate material had relatively high inorganic contentsand was heterogeneous in compositon, 2) colloidal material was primarilycarbohydrate material with a low inorganic content at all sites; and 3)dissolved fulvic acid varied in compositon among sites. The lowconcentration and carbohydrate-rich character of the colloidal materialsuggests that this fraction is labile to microbial degradation and may beturning over more rapidly than particulate fractions or dissolved fulvic acid.Fulvic acid from Andrews Creek had the lowest N content and aromaticity,whereas Sky Pond fulvic acid had a higher N content and lower aromaticitythan fulvic acid from The Loch. The UV-visible spectra of the fulvic acidsdemonstrate that variation in characteristics with sources of organic carboncan explain to some extent the observed non-linear relationship betweenUV-B extinction coefficients and DOC concentrations in lakes.  相似文献   

2.
The sources of both dissolved organic carbon (DOC) and particulate organic carbon (POC) to an alpine (Sky Pond) and a subalpine lake (The Loch) in Rocky Mountain National Park were explored for four years. The importance of both autochthonous and allochthonous sources of organic matter differ, not only between alpine and subalpine locations, but also seasonally. Overall, autochthonous sources dominate the organic carbon of the alpine lake, while allochthonous sources are a more significant source of organic carbon to the subalpine lake. In the alpine lake, Sky Pond, POC makes up greater than one third of the total organic matter content of the water column, and is related to phytoplankton abundance. Dissolved organic carbon is a product of within-lake activity in Sky Pond except during spring snowmelt and early summer (May–July), when stable carbon isotope ratios suggest a terrestrial source. In the subalpine lake, The Loch, DOC is a much more important constituent of water column organic material than POC, comprising greater than 90% of the spring snowmelt organic matter, and greater than 75% of the organic matter over the rest of the year. Stable carbon isotope ratios and a very strong relation of DOC with soluble Al(tot) indicate DOC concentrations are almost entirely related to flushing of soil water from the surrounding watershed during spring snowmelt. Stable carbon isotope ratios indicate that, for both lakes, phytoplankton is an important source of DOC in the winter, while terrestrial material of plant or microbial origin contributes DOC during snowmelt and summer.  相似文献   

3.
We are studying the chemical quality of dissolved organic nitrogen (DON) in a high-elevation watershed in the Colorado Front Range. Samples were collected over the 2000 snowmelt runoff season at two sites across an alpine/subalpine ecotone to understand how the transition between the lightly vegetated alpine and forested reaches of the catchment influences the chemical character of DON. Samples were analyzed approximately weekly for dissolved organic material (DOM) content and chemical character. A subset of samples was analyzed for the elemental content of fulvic and hydrophilic acids. Concentrations of DON at both sites were highest in the spring at the initiation of snowmelt, decreased during snowmelt, and increased again during the late summer and fall. In contrast, concentrations of dissolved organic carbon (DOC) peaked on the ascending limb of the hydrograph and declined to seasonal minima on the descending limb of the hydrograph. The ratio of DOC:DON showed a seasonal shift at both sites with high values (40 to 55) during peak runoff in early summer and lower values (15 to 25) during low flows late in the runoff season. These results indicate that there was a seasonal change in the relative N content of DOM at both sites. Chemical fractionation of DOC showed that there were temporal and longitudinal changes in the chemical character of DOC. At the alpine site, the fulvic acid content of DOC decreased from 57% in June to 35% in September. The change in fulvic acid was less pronounced at the forested site, from 66% in June to 54% in September. Elemental analysis of fulvic and hydrophilic acids indicated that hydrophilic acids were N rich compared to fulvic acids. Additionally, fulvic and hydrophilic acids isolated at the alpine site had a lower C:N ratio than those isolated at the forested site. Similarly, the C:N ratio of organic acids at both sites was lower in September than in June during peak runoff. These differences appear to be a result of changes in both DOM precursor material and hydrologic flowpaths. Using C:N ratios of fulvic and hydrophilic acids, we estimate that nonhumic material carried between 54 to 73% of the organic N in surface water at the alpine site and 44 to 58% of the organic N in surface water at the subalpine site.  相似文献   

4.
Export of dissolved organic carbon (DOC) from forested catchmentsis governed by competing processes of production, decomposition, sorptionand flushing. To examine the sources of DOC, carbon isotopes (14Cand 13C) were analyzed in DOC from surface waters, groundwatersand soils in a small forested catchment on the Canadian Shield in centralOntario. A significant fraction (greater than 50%) of DOCin major inflows to the lake is composed of carbon incorporated into organicmatter, solubilized and flushed into the stream within the last 40 years. Incontrast, 14C in groundwater DOC was old indicating extensiverecycling of forest floor derived organic carbon in the soil column beforeelution to groundwater in the lower B and C soil horizons. A small uplandbasin had a wide range in 14C from old groundwater values atbaseflow under dry basin conditions to relatively modern values during highflow or wetter antecedent conditions. Wetlands export mainly recently fixedcarbon with little seasonal range. DOC in streams entering the small lakemay be composed of two pools; an older recalcitrant pool delivered bygroundwater and a young labile pool derived from recent organic matter.The relative proportion of these two pools changes seasonally due thechanges in the water flowpaths and organic carbon dynamics. Althoughchanges in local climate (temperature and/or precipitation) may alterthe relative proportions of the old and young pools, the older pool islikely to be more refractory to sedimentation and decomposition in thelake setting. Delivery of older pool DOC from the catchment andsusceptibility of this older pool to photochemical decomposition mayconsequently be important in governing the minimum DOC concentrationlimit in lakes.  相似文献   

5.
The emergent wetland and littoral components of the land-water zone are functionally coupled by the amounts and types of dissolved organic matter that are released, processed, transported to, and then further processed within the recipient waters. Operational couplings and integrations in freshwater ecosystems occur along physical and metabolic gradients of a number of scales from micrometer to kilometer dimensions. The operation and turnover of the microbial communities, largely associated with surfaces, generate the metabolic foundations for material fluxes along larger-scale gradients. Because of the predominance of small, shallow freshwater bodies, most dissolved organic carbon (DOC) of lacustrine and riverine ecosystems is derived from photosynthesis of higher plants and microflora associated with detritus, including sediments, and is only augmented by photosynthesis of phytoplankton. As the dissolved organic compounds generated in the wetland and littoral interface regions move toward the open-water regions of the ecosystems, partial utilization effects a selective increase in organic recalcitrance. Even though DOC from allochthonous and from interface sources is more recalcitrant than that produced by planktonic microflora, decomposition of the much larger interface quantities imported to the pelagic zone dominates ecosystem decomposition. The observed high sustained productivity of the land-water interface zone results from extensive recycling of essential resources (nutrients, inorganic carbon) and conservation mechanisms. On the average in lakes and streams, greater than 90 percent of the decomposition in the ecosystem is by bacteria utilizing DOM from non-pelagic sources of primary productivity. In addition to direct mineralization of DOC from non-pelagic sources, many of the organic compounds function indirectly to influence metabolism. New evidence is presented to demonstrate formation of complexes between humic and fulvic organic acids and extracellular enzymes. These complexes inhibit enzyme activity and can be transported within the ecosystem. The complex can be decoupled by mild ultraviolet photolysis with regeneration of enzyme activity in displaced locations.  相似文献   

6.
1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams with or without lakes, (ii) factors influencing the temperature dependence of oxygen consumption rate, (iii) consequences of higher temperature and organic content in lake outlets on oxygen consumption rate, and (iv) possible consequences of forecasted global warming on degradation of organic matter. 2. High concentrations of easily degradable dissolved (DOC) and particulate organic carbon (POC) were found in open streams downstream of plankton‐rich lakes, while high concentrations of recalcitrant DOC were found in a forest brook draining a forest swamp. Concentrations of predominantly recalcitrant POC and DOC were low in a groundwater‐fed forest spring. Overall, DOC concentration was two to 18 times higher than POC concentrations. 3. Oxygen consumption rate at 20 °C was higher during summer than winter, higher in open than shaded streams and higher in lake outlets than inlets. Rate was closely related to concentrations of chlorophyll and POC but not to DOC. The ratio of oxygen consumption rate to total organic concentrations (DOC + POC), serving as a measure of organic degradability, was highest downstream of lakes, intermediate in open streams and lowest in forest streams. 4. Temperature coefficients describing the exponential increase of oxygen consumption rate between 4 and 20 °C averaged 0.121 °C?1 (Q10 of 3.35) in 70 measurements and showed no significant variations between seasons and stream sites or correlations with ambient temperature and organic content. 5. Oxygen consumption rate was enhanced downstream of lakes during summer because of higher temperature and, more significantly, greater concentrations of degradable organic carbon. Oxygen consumption rates were up to seven times higher in the stream with three impoundments than in a neighbouring unshaded stream and 21 times higher than in the groundwater‐fed forest spring. 6. A regional climate model has calculated a dramatic 4–5 °C rise in air temperature over Denmark by 2070–2100. If this is realised, unshaded streams are estimated to become 2–3 °C warmer in summer and winter and 5–7 °C warmer in spring and, thereby, increase oxygen consumption rates at ambient temperature by 30–40% and 80–130%, respectively. Faster consumption of organic matter and dissolved oxygen downstream of point sources should increase the likelihood of oxygen stress of the stream biota and lead to the export of less organic matter but more mineralised nutrients to the coastal waters.  相似文献   

7.
Geochemical processes in the Lake Fryxell Basin (Victoria Land,Antarctica)   总被引:2,自引:0,他引:2  
Major ion, nutrient, transition metal, and cadmium concentrations are presented for nine meltwater streams flowing into Lake Fryxell, a permanently stratified lake with an anoxic hypolimnion in Taylor Valley, Antarctica. For the major ions, stream compositions are considered in terms of dissolution of marine-derived salts and chemical weathering of local rocks. Although Lake Fryxell has undergone significant evaporative concentration, only calcite, of the simple salts, is predicted to precipitate. Geochemical budgets indicate, however, that large quantities of K, Mg, and SO4 have also been removed from the lake. Reverse weathering may be an important sink for K and Mg, although magnesium removal with calcium carbonate phases is also likely. Assuming constancy of composition over recent geologic time, all of the salts in the Fryxell water column could have been delivered under present flows in about three thousand years (chloride age).Comparison of nutrient concentrations in these meltwater streams with other flowing waters in the world reveals that the Fryxell streams are strikingly deficient in NO3-N but not PO4-P. The apparent nitrogen deficiency in Lake Fryxell itself can be attributed to the low annual stream loadings of this nutrient.Stream concentrations and loadings are also presented for Mn, Fe, Co, Ni, Cu, and Cd. Dissolved metal concentrations correlate roughly with average crustal abundances, suggesting that chemical weathering is the major source for these elements. Vertical metal profiles within Lake Fryxell itself appear to be governed by the formation of insoluble sulfide phases, or, in the case of Mn, by MnHPO4. However, dissolved nickel levels in sulfide-bearing waters are much higher than can be explained in terms of metal-sulfide equilibria, and we suspect that significant organic complexing of this metal is occurring in the deeper waters.  相似文献   

8.
Nanming River, the largest urban river in Guizhou Province, southwestern China plateau, has been severely polluted for decades. This study characterizes the organic materials and their sources in the upstream and downstream waters by dissolved organic carbon (DOC), excitation emission matrix (EEM) spectroscopy, parallel factor (PARAFAC) analysis and photo-microbial experiments. DOC concentrations were low (47–120 μM C) upstream and relatively high (146–462 μM C) downstream. The PARAFAC studies on the sample EEM spectra demonstrated that the upstream dissolved organic matter (DOM) was mostly composed of one component that had a fulvic acid-like substance; downstream DOM was composed of two components with mixtures of tryptophan-like and fulvic acid-like substances. From the results of the sewerage drainage samples collected along the bank of the river, it is evident that both household detergent-like and protein-like or tryptophan-like substances are predominantly present, indicating that untreated sewerage effluents are the major sources of organic matter pollution in Nanming River. The degradation experiments conducted on river, sewerage drainage and commercial detergent samples demonstrated that the detergent-like and tryptophan-like substances are both photochemically and microbiologically more decomposable than fulvic acid-like materials under sunlight and dark incubations. These results suggest that the input of the untreated sewerage effluents along the streams is the major pollution source in Nanming River, and the fluorescent DOM was efficiently affected by both photochemical and microbial processes.  相似文献   

9.
Forest harvesting alters the organic matter cycle by changing litter inputs and the decomposition regime. We hypothesized that these changes would result in differences in organic matter chemistry between clear-cut and uncut watershed ecosystems. We studied the chemistry of soil organic matter (SOM), and dissolved organic carbon (DOC) in soil solutions and stream samples in clear-cut and uncut sites at the Hubbard Brook Experimental Forest in New Hampshire using DOC fractionation techniques and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy.Alkyl-C (aliphatic compounds) and O-alkyl-C (carbohydrates) were the largest C fractions in soil and dissolved organic matter at Hubbard Brook. Alkyl-C ranged from 29–48% of soil C, 25–42% of soil solution C, and 22–42% of streamwater DOC. Carbohydrates comprised 32–49%, 36–43%, and 29–60% of C in soils, solutions, and streamwater, respectively. In both soils and soil solutions, the carbohydrate fraction decreased with increasing soil depth, while the aromaticity of organic matter increased with depth. There were no significant differences in the structural chemistry of SOM between clear-cut and uncut watersheds.The aromatic-C fractions in soil solutions at the clear-cut site ranged from 12–16%, approximately 40% greater than at the uncut site (8.5–11%). Thus, clear-cutting has resulted in the leaching of more highly decomposed organic matter, and depletion of more aliphatic compounds in the soluble organic pool. Because DOC fluxes are small compared to the SOM pool, large differences in soil solution chemistry do not substantially alter the overall composition of SOM. While the organic chemistry of stream DOC varied greatly among 3 sampling dates, there were no obvious clear-cutting effects. Thus, temporal variations in flowpaths and/or in-stream processes appear to be more important than disturbance in regulating the organic carbon chemistry of these streams.  相似文献   

10.
Organic acids and inorganic chemistry were examined in seventeen seepage lakes, seven streams, and one seep in central Maine. The objectives of this analysis were to determine the quantity and quality of dissolved organic carbon (DOC), and to assess the relationship between organic and inorganic surface water chemistry. Lakes and streams sampled were dilute (average conductivity of 20.3 μS cm?1) with a wide range of DOC (125–2593 μmol C L?1). Organic acids in DOC were evaluated by:
  • DOC fractionation (hydrophobic acids and neutrals, and hydrophilic acids, bases, and neutrals);
  • DOC isolation followed by FT-IR, base titration, and chemical analyses;
  • adsorption on solid phase extraction columns; and charge balance studies.
  • All lakes and streams were dominated by hydrophobic and hydrophilic acids (60 to 92% of DOC). Lakes and streams with low DOC had low hydrophobic to hydrophilic acid ratios (ca 1.2–1.3), regardless of pH and acid neutralizing capacities (ANC), compared to lakes and streams with moderate to high DOC concentrations (ca 1.9–2.4). Based on FT-IR spectroscopy and chemical analysis, organic acids were found to be dominated by a strong carboxylic character. Titration data of isolated DOC allowed accurate prediction of organic anions, which were strongly pH dependent (organic anions ranged from 14 to 198 μeq L?1). Exchange acidity averaged 11.3, 13.6, and 8.7 μeq mg C?1 for lake hydrophobic acids, lake hydrophilic acids, and stream hydrophobic acids, respectively. Overall evidence suggested that DOC and organic acid characteristics were related to their carboxylic functional group content and that the nature of these constituents was similar despite the source of origin (upland soils, wetlands, or Sphagnum deposits). Also, contact of soil leachates with B horizons seemed to be a controlling factor in DOC quantity and quality in the lakes and streams studied.  相似文献   

    11.
    Bacterial and viral abundances were measured in 24 lakes with dissolved organic carbon (DOC) concentrations ranging from 3 to 19 mg of C liter(-1). In addition, a laboratory experiment was performed to test the effects of different sources of carbon (i.e., glucose and fulvic acids) and nutrients on the dynamics of viruses and bacteria. In the lake survey, no correlation was found between virus abundance and DOC concentration, yet there was a significant positive correlation between bacterial abundance and DOC concentration. A negative correlation was found between the virus-to-bacteria ratio and DOC level. These results are in agreement with our findings in the laboratory, where virus counts were significantly lower in treatments with fulvic acid additions than in a control (mean, 67.4% +/- 6.5% of the control). Virus counts did not differ significantly among the control and treatments with glucose, indicating that it was the type of organic carbon and not quantity which had an impact on viruses. Results from this study suggest that the way viruses control bacterial assemblages in humic lakes is different from the mechanism in clear water systems.  相似文献   

    12.
    Incubation experiments using filtered waters from Lake Kasumigaura were conducted to examine bacterial contribution to a dissolved organic carbon (DOC) pool. Bacterial abundance, bacterial production, concentrations of DOC, total dissolved amino acids (TDAA), and total dissolved neutral sugars (TDNS) were monitored during the experiments. Bacterial production during the first few days was very high (20 to 35 μg C liter−1 day−1), accounting for 40 to 70% of primary production. The total bacterial production accounted for 34 to 55% of the DOC loss during the experiment, indicating high bacterial activities in Lake Kasumigaura. The DOC degradation was only 12 to 15%, whereas the degradation of TDAA and TDNS ranged from 30 to 50%, suggesting the preferential usage of TDAA and TDNS. The contribution of bacterially derived carbon to a DOC pool in Lake Kasumigaura was estimated using d-amino acids as bacterial biomarkers and accounted for 30 to 50% of the lake DOC. These values were much higher than those estimated for the open ocean (20 to 30%). The ratio of bacterially derived carbon to bulk carbon increased slightly with time, suggesting that the bacterially derived carbon is more resistant to microbial degradation than bulk carbon. This is the first study to estimate the bacterial contribution to a DOC pool in freshwater environments. These results indicate that bacteria play even more important roles in carbon cycles in freshwater environments than in open oceans and also suggests that recent increases in recalcitrant DOC in various lakes could be attributed to bacterially derived carbon. The potential differences in bacterial contributions to dissolved organic matter (DOM) between freshwater and marine environments are discussed.  相似文献   

    13.
    Bacterial and viral abundances were measured in 24 lakes with dissolved organic carbon (DOC) concentrations ranging from 3 to 19 mg of C liter−1. In addition, a laboratory experiment was performed to test the effects of different sources of carbon (i.e., glucose and fulvic acids) and nutrients on the dynamics of viruses and bacteria. In the lake survey, no correlation was found between virus abundance and DOC concentration, yet there was a significant positive correlation between bacterial abundance and DOC concentration. A negative correlation was found between the virus-to-bacteria ratio and DOC level. These results are in agreement with our findings in the laboratory, where virus counts were significantly lower in treatments with fulvic acid additions than in a control (mean, 67.4% ± 6.5% of the control). Virus counts did not differ significantly among the control and treatments with glucose, indicating that it was the type of organic carbon and not quantity which had an impact on viruses. Results from this study suggest that the way viruses control bacterial assemblages in humic lakes is different from the mechanism in clear water systems.  相似文献   

    14.
    The microbial loop in flowing waters   总被引:7,自引:0,他引:7  
    The microbial loop in flowing waters is dependent on allochthonous sources of carbon, which vary in quality. The proportion of dissolved organic carbon (DOC) that can be degraded ranges from <1 to over 50%, and the bioavailability of DOC (micrograms bacterial biomass produced per milligram DOC present) ranges over two orders of magnitude. Bioavailability of DOC is predictable from the ratio of H/C and O/C of the DOC, but further work is needed to develop simple predictors of bioavailability of DOC in a range of environments. Consumers of bacteria in streams range in size from protists to insect larvae, with highest rates of bacterial consumption found among the meiofauna and certain filter feeders and grazers. Because there appear to be fewer trophic transfers in the lotic microbial loop, it functions more as a link in flowing waters than it appears to do in the marine plankton.  相似文献   

    15.
    Quantitative and qualitative characterizations of dissolved organic matter (DOM) were carried out at the watershed level in central Japan by measuring dissolved organic carbon (DOC) concentration and the three-dimensional excitation–emission matrix (3-D EEM). DOC concentration was low (mean 37 ± 19 µM C) in the upstream waters, whereas, in general, it increased toward the downstream areas (mean 92 ± 47 µM C). Significant variations in DOC concentration were detected among rivers and channels. DOC concentration in the epilimnion of Lake Biwa increased during the summer period and decreased during the winter period. The lake hypolimnion has lower DOC concentration (mean 87 ± 7 µM C) compared with the epilimnion (107 ± 15 µM C). Fulvic acid (FA)-like substances in the DOM were directly characterized by 3-D EEM. The fluorescence peak for upstream DOM was found in regions with longer wavelengths (excitation/emission 386 ± 6/476 ± 5 nm) compared with downstream and lake DOM (351 ± 12/446 ± 15 nm and 341 ± 6/434 ± 6 nm, respectively). The DOC concentration is correlated with fluorescence peak intensity of FA-like substances in DOM in river waters. Such a relationship was not found in lake DOM. A blueshift of the fluorescence peak from upstream to lake DOM was observed. A decrease in fluorescence intensities was also detected during the summer period. These results may suggest that the degradation of FA-like substances in DOM occurs from natural solar irradiation. Protein-like fluorescence was significantly detected in the lake epilimnion during the summer period. A linear relationship between DOC concentration and protein-like fluorescence indicated that an autochthonous input of DOM gave rise to the increase in DOC concentration in the lake epilimnion during the summer. These results may suggest that the 3-D EEM can be used as a tool for the investigation of DOM dynamics at the watershed level with concurrent measurement of DOC concentration and the fluorescence properties of fulvic acid-like and protein-like substances.  相似文献   

    16.
    Organic acids including humic, fulvic, aliphatic and aromatic acids comprise part of the dissolved organic carbon (DOC) present in soil solution. They act as ligands for trace metals and are effective detoxifiers of monomeric aluminium (Al). Solid phase extraction (SPE) techniques permit fractionation of the DOC into organic classes but yield no information on the pre-existing Al/organic acid complexes. Aliphatic and aromatic acids may be separated and determined by High Performance Liquid Chromatography (HPLC); however, the conditions used dissociate the organic acid Al complexes. Humic and fulvic acids are of a variable and ill-defined nature and only limited information exists regarding their binding of Al. This paper reports on fractionation studies of soil solutions, using both SPE and molecular weight cut-off filters, to characterise the DOC components and on the subsequent development of a size exclusion chromatography (SEC) system for the separation of organically complexed Al into different species using a low ionic strength mobile phase at pH 4.2. Model complexes of Al and Cu citrate were used to evaluate chromatographic performance of a Fractogel TSK HW-40(S) column (1×30 cm). For soil solution samples, the column eluate, after passing through a UV detector, was directly coupled to an Inductively Coupled Plasma Atomic Emission Spectrometer (ICPAES) for on-line multi-element detection to characterise DOC and trace metal distribution.Fractionation studies revealed that polysaccharides constituted the major proportion of the DOC which passed the 10000 dalton molecular weight cut-off filter. Analysis of soil solutions from an organically amended soil by the SEC-ICPAES system showed that Al, Fe and Mn eluted as multiple peaks prior to the bed volume, indicating their presence as complexes with organic ligands.  相似文献   

    17.
    The Yenisei river passes every type of permafrost regime, from south to north, being characterized by increasing continuity of the permafrost and by decreasing thickness of the active layer. We used that situation to test the hypothesis that amounts and properties of dissolved organic matter (DOM) in small streams draining forested catchments respond to different permafrost regimes. Water samples were taken from eight tributaries along the Yenisei between 67°30′N and 65°49′N latitude. The samples were analysed for dissolved organic carbon (DOC) and nitrogen (DON) and DOM was characterized by its chemical composition (XAD‐8 fractionation, sugars, lignin phenols, amino acids, protein, UV and fluorescence spectroscopy), and its biodegradability. Most properties of the tributary waters varied depending on latitude. The higher the latitude, the higher were DOC, DON and the proportion of the hydrophobic fraction of DOC. The contribution of hexoses and pentoses to DOC were higher in southern tributaries; on the other hand, phenolic compounds were more abundant in northern tributaries. Mineralizable DOC ranged between 4% and 28% of total DOC. DOM in northern tributaries was significantly (P<0.05) less biodegradable than that in southern tributaries reflecting the differences in the chemical properties of DOM. Our results suggest that the differences in DOM properties are mainly attributed to differences of permafrost regime, affecting depth of active layer, soil organic matter accumulation and vegetation. Soil organic matter and vegetation determine the amount and composition of DOM produced in the catchments while the depth of the active layer likely controls the quantity and quality of DOM exported to streams. Sorptive interactions of DOM with the soil mineral phase typically increase with depth. The results imply that a northern shift of discontinuous permafrost likely will change in the long term the input of DOM into the Yenisei and thus probably into the Kara Sea.  相似文献   

    18.
    Batch cultures of aquatic bacteria and dissolved organic matter were used to examine the impact of carbon source concentration on bacterial growth, biomass, growth efficiency, and community composition. An aged concentrate of dissolved organic matter from a humic lake was diluted with organic compound-free artificial lake water to obtain concentrations of dissolved organic carbon (DOC) ranging from 0.04 to 2.53 mM. The bacterial biomass produced in the cultures increased linearly with the DOC concentration, indicating that bacterial biomass production was limited by the supply of carbon. The bacterial growth rate in the exponential growth phase exhibited a hyperbolic response to the DOC concentration, suggesting that the maximum growth rate was constrained by the substrate concentration at low DOC concentrations. Likewise, the bacterial growth efficiency calculated from the production of biomass and CO(2) increased asymptotically from 0.4 to 10.4% with increasing DOC concentration. The compositions of the microbial communities that emerged in the cultures were assessed by separation of PCR-amplified 16S rRNA fragments by denaturing gradient gel electrophoresis. Nonmetric multidimensional scaling of the gel profiles showed that there was a gradual change in the community composition along the DOC gradient; members of the beta subclass of the class Proteobacteria and members of the Cytophaga-Flavobacterium group were well represented at all concentrations, whereas members of the alpha subclass of the Proteobacteria were found exclusively at the lowest carbon concentration. The shift in community composition along the DOC gradient was similar to the patterns of growth efficiency and growth rate. The results suggest that the bacterial growth efficiencies, the rates of bacterial growth, and the compositions of bacterial communities are not constrained by substrate concentrations in most natural waters, with the possible exception of the most oligotrophic environments.  相似文献   

    19.
    Sources of organic nitrogen,phosphorus and carbon in antarctic streams   总被引:2,自引:2,他引:0  
    Dissolved and particulate organic materials were analysed in 14 streamwaters of the McMurdo Sound region of Antarctica. These streams are fed by glacial meltwaters and pass through catchments largely devoid of terrestrial vegetation. Nonetheless they contained measurable amounts of organic material in both dissolved and particulate form. Most of the dissolved organic carbon (DOC) values lay in the range 1–3 g C m–3. Higher values were recorded close to penguin rookeries on the coast. Dissolved organic nitrogen (DON) concentrations were generally two orders of magnitude less than DOC and in flowing waters with rich blue-green algal growth DON increased with distance downstream. Dissolved organic phosphorus levels were generally much lower than DON, but highly variable. Particulate organic carbon concentrations (both fine and coarse) were unexpectedly high. Five sources of organic matter were identified: birdlife (only near the coast), autochthonous algal production (especially important for DON), streambed soils (important at first flows), lacustrine and marine sediments, through which certain streams and glaciers cut, and the glacial ice, which received organic input from wind-blown particulates, snowfall and the underlying bedrock of sedimentary origin. Highest organic levels were recorded in the first melt down the glacier face, suggesting that winter deposition of organic materials may be especially important.  相似文献   

    20.
    Increased color in surface waters, or browning, can alter lake ecological function, lake thermal stratification and pose difficulties for drinking water treatment. Mechanisms suggested to cause browning include increased dissolved organic carbon (DOC) and iron concentrations, as well as a shift to more colored DOC. While browning of surface waters is widespread and well documented, little is known about why some lakes resist it. Here, we present a comprehensive study of Mälaren, the third largest lake in Sweden. In Mälaren, the vast majority of water and DOC enters a western lake basin, and after approximately 2.8 years, drains from an eastern basin. Despite 40 years of increased terrestrial inputs of colored substances to western lake basins, the eastern basin has resisted browning over this time period. Here we find the half-life of iron was far shorter (0.6 years) than colored organic matter (A420 ; 1.7 years) and DOC as a whole (6.1 years). We found changes in filtered iron concentrations relate strongly to the observed loss of color in the western basins. In addition, we observed a substantial shift from colored DOC of terrestrial origin, to less colored autochthonous sources, with a substantial decrease in aromaticity (-17%) across the lake. We suggest that rapid losses of iron and colored DOC caused the limited browning observed in eastern lake basins. Across a wider dataset of 69 Swedish lakes, we observed greatest browning in acidic lakes with shorter retention times (< 1.5 years). These findings suggest that water residence time, along with iron, pH and colored DOC may be of central importance when modeling and projecting changes in brownification on broader spatial scales.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号