首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method has been developed to predict the enzymatic attribute of proteins by hybridizing the gene product composition and pseudo amino acid composition. As a demonstration, a working dataset was generated with a cutoff of 60% sequence identity to avoid redundancy and bias in statistical prediction. The dataset thus constructed contains 39989 protein sequences, of which 27469 are non-enzymes and 12520 enzymes that were further classified into 6 enzyme family classes according to their 6 main EC (Enzyme Commission) numbers (2314 are oxidoreductases, 3653 transferases, 3246 hydrolases, 1307 lyases, 676 isomerases, and 1324 ligases). The overall success rate by the jackknife test for the identification between enzyme and non-enzyme was 94%, and that for the identification among the 6 enzyme family classes was 98%. It is anticipated that, with the rapid increase of protein sequences entering into databanks, the current method will become a useful automated tool in identifying the enzymatic attribute of a newly found protein sequence.  相似文献   

2.
The functional domain composition is introduced to predict the structural class of a protein or domain according to the following classification: all-alpha, all-beta, alpha/beta, alpha+beta, micro (multi-domain), sigma (small protein), and rho (peptide). The advantage by doing so is that both the sequence-order-related features and the function-related features are naturally incorporated in the predictor. As a demonstration, the jackknife cross-validation test was performed on a dataset that consists of proteins and domains with only less than 20% sequence identity to each other in order to get rid of any homologous bias. The overall success rate thus obtained was 98%. In contrast to this, the corresponding rates obtained by the simple geometry approaches based on the amino acid composition were only 36-39%. This indicates that using the functional domain composition to represent the sample of a protein for statistical prediction is very promising, and that the functional type of a domain is closely correlated with its structural class.  相似文献   

3.
As a continuous effort to use the sequence approach to identify enzymatic function at a deeper level, investigations are extended from the main enzyme classes (Protein Sci. 2004, 13, 2857-2863) to their subclasses. This is indispensable if we wish to understand the molecular mechanism of an enzyme at a deeper level. For each of the 6 main enzyme classes (i.e., oxidoreductase, transferase, hydrolase, lyase, isomerase, and ligase), a subclass training dataset is constructed. To reduce homologous bias, a stringent cutoff was imposed that all the entries included in the datasets have less than 40% sequence identity to each other. To catch the core feature that is intimately related to the biological function, the sample of a protein is represented by hybridizing the functional domain composition and pseudo amino acid composition. On the basis of such a hybridization representation, the FunD-PseAA predictor is established. It is demonstrated by the jackknife cross-validation tests that the overall success rate in identifying the 21 subclasses of oxidoreductases is above 86%, and the corresponding rates in identifying the subclasses of the other 5 main enzyme classes are 94-97%. The high success rates imply that the FunD-PseAA predictor may become a useful tool in bioinformatics and proteomics of the post-genomic era.  相似文献   

4.
The study of rat proteins is an indispensable task in experimental medicine and drug development. The function of a rat protein is closely related to its subcellular location. Based on the above concept, we construct the benchmark rat proteins dataset and develop a combined approach for predicting the subcellular localization of rat proteins. From protein primary sequence, the multiple sequential features are obtained by using of discrete Fourier analysis, position conservation scoring function and increment of diversity, and these sequential features are selected as input parameters of the support vector machine. By the jackknife test, the overall success rate of prediction is 95.6% on the rat proteins dataset. Our method are performed on the apoptosis proteins dataset and the Gram-negative bacterial proteins dataset with the jackknife test, the overall success rates are 89.9% and 96.4%, respectively. The above results indicate that our proposed method is quite promising and may play a complementary role to the existing predictors in this area.  相似文献   

5.
Prediction of protease types in a hybridization space   总被引:2,自引:0,他引:2  
Regulating most physiological processes by controlling the activation, synthesis, and turnover of proteins, proteases play pivotal regulatory roles in conception, birth, digestion, growth, maturation, ageing, and death of all organisms. Different types of proteases have different functions and biological processes. Therefore, it is important for both basic research and drug discovery to consider the following two problems. (1) Given the sequence of a protein, can we identify whether it is a protease or non-protease? (2) If it is, what protease type does it belong to? Although the two problems can be solved by various experimental means, it is both time-consuming and costly to do so. The avalanche of protein sequences generated in the post-genetic era has challenged us to develop an automated method for making a fast and reliable identification. By hybridizing the functional domain composition and pseudo-amino acid composition, we have introduced a new method called "FunD-PseAA predictor" that is operated in a hybridization space. To avoid redundancy and bias, demonstrations were performed on a dataset where none of the proteins has >or=25% sequence identity to any other. The overall success rate thus obtained by the jackknife cross-validation test in identifying protease and non-protease was 92.95%, and that in identifying the protease type was 94.75% among the following six types: (1) aspartic, (2) cysteine, (3) glutamic, (4) metallo, (5) serine, and (6) threonine. Demonstration was also made on an independent dataset, and the corresponding overall success rates were 98.36% and 97.11%, respectively, suggesting the FunD-PseAA predictor is very powerful and may become a useful tool in bioinformatics and proteomics.  相似文献   

6.
Ensemble classifier for protein fold pattern recognition   总被引:4,自引:0,他引:4  
MOTIVATION: Prediction of protein folding patterns is one level deeper than that of protein structural classes, and hence is much more complicated and difficult. To deal with such a challenging problem, the ensemble classifier was introduced. It was formed by a set of basic classifiers, with each trained in different parameter systems, such as predicted secondary structure, hydrophobicity, van der Waals volume, polarity, polarizability, as well as different dimensions of pseudo-amino acid composition, which were extracted from a training dataset. The operation engine for the constituent individual classifiers was OET-KNN (optimized evidence-theoretic k-nearest neighbors) rule. Their outcomes were combined through a weighted voting to give a final determination for classifying a query protein. The recognition was to find the true fold among the 27 possible patterns. RESULTS: The overall success rate thus obtained was 62% for a testing dataset where most of the proteins have <25% sequence identity with the proteins used in training the classifier. Such a rate is 6-21% higher than the corresponding rates obtained by various existing NN (neural networks) and SVM (support vector machines) approaches, implying that the ensemble classifier is very promising and might become a useful vehicle in protein science, as well as proteomics and bioinformatics. AVAILABILITY: The ensemble classifier, called PFP-Pred, is available as a web-server at http://202.120.37.186/bioinf/fold/PFP-Pred.htm for public usage.  相似文献   

7.
Prediction of protein domain with mRMR feature selection and analysis   总被引:2,自引:0,他引:2  
Li BQ  Hu LL  Chen L  Feng KY  Cai YD  Chou KC 《PloS one》2012,7(6):e39308
The domains are the structural and functional units of proteins. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop effective methods for predicting the protein domains according to the sequences information alone, so as to facilitate the structure prediction of proteins and speed up their functional annotation. However, although many efforts have been made in this regard, prediction of protein domains from the sequence information still remains a challenging and elusive problem. Here, a new method was developed by combing the techniques of RF (random forest), mRMR (maximum relevance minimum redundancy), and IFS (incremental feature selection), as well as by incorporating the features of physicochemical and biochemical properties, sequence conservation, residual disorder, secondary structure, and solvent accessibility. The overall success rate achieved by the new method on an independent dataset was around 73%, which was about 28-40% higher than those by the existing method on the same benchmark dataset. Furthermore, it was revealed by an in-depth analysis that the features of evolution, codon diversity, electrostatic charge, and disorder played more important roles than the others in predicting protein domains, quite consistent with experimental observations. It is anticipated that the new method may become a high-throughput tool in annotating protein domains, or may, at the very least, play a complementary role to the existing domain prediction methods, and that the findings about the key features with high impacts to the domain prediction might provide useful insights or clues for further experimental investigations in this area. Finally, it has not escaped our notice that the current approach can also be utilized to study protein signal peptides, B-cell epitopes, HIV protease cleavage sites, among many other important topics in protein science and biomedicine.  相似文献   

8.
The identification and annotation of protein domains provides a critical step in the accurate determination of molecular function. Both computational and experimental methods of protein structure determination may be deterred by large multi-domain proteins or flexible linker regions. Knowledge of domains and their boundaries may reduce the experimental cost of protein structure determination by allowing researchers to work on a set of smaller and possibly more successful alternatives. Current domain prediction methods often rely on sequence similarity to conserved domains and as such are poorly suited to detect domain structure in poorly conserved or orphan proteins. We present here a simple computational method to identify protein domain linkers and their boundaries from sequence information alone. Our domain predictor, Armadillo (http://armadillo.blueprint.org), uses any amino acid index to convert a protein sequence to a smoothed numeric profile from which domains and domain boundaries may be predicted. We derived an amino acid index called the domain linker propensity index (DLI) from the amino acid composition of domain linkers using a non-redundant structure dataset. The index indicates that Pro and Gly show a propensity for linker residues while small hydrophobic residues do not. Armadillo predicts domain linker boundaries from Z-score distributions and obtains 35% sensitivity with DLI in a two-domain, single-linker dataset (within +/-20 residues from linker). The combination of DLI and an entropy-based amino acid index increases the overall Armadillo sensitivity to 56% for two domain proteins. Moreover, Armadillo achieves 37% sensitivity for multi-domain proteins, surpassing most other prediction methods. Armadillo provides a simple, but effective method by which prediction of domain boundaries can be obtained with reasonable sensitivity. Armadillo should prove to be a valuable tool for rapidly delineating protein domains in poorly conserved proteins or those with no sequence neighbors. As a first-line predictor, domain meta-predictors could yield improved results with Armadillo predictions.  相似文献   

9.
Lin WZ  Fang JA  Xiao X  Chou KC 《PloS one》2011,6(9):e24756
DNA-binding proteins play crucial roles in various cellular processes. Developing high throughput tools for rapidly and effectively identifying DNA-binding proteins is one of the major challenges in the field of genome annotation. Although many efforts have been made in this regard, further effort is needed to enhance the prediction power. By incorporating the features into the general form of pseudo amino acid composition that were extracted from protein sequences via the "grey model" and by adopting the random forest operation engine, we proposed a new predictor, called iDNA-Prot, for identifying uncharacterized proteins as DNA-binding proteins or non-DNA binding proteins based on their amino acid sequences information alone. The overall success rate by iDNA-Prot was 83.96% that was obtained via jackknife tests on a newly constructed stringent benchmark dataset in which none of the proteins included has ≥25% pairwise sequence identity to any other in a same subset. In addition to achieving high success rate, the computational time for iDNA-Prot is remarkably shorter in comparison with the relevant existing predictors. Hence it is anticipated that iDNA-Prot may become a useful high throughput tool for large-scale analysis of DNA-binding proteins. As a user-friendly web-server, iDNA-Prot is freely accessible to the public at the web-site on http://icpr.jci.edu.cn/bioinfo/iDNA-Prot or http://www.jci-bioinfo.cn/iDNA-Prot. Moreover, for the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results.  相似文献   

10.
Cell membranes are crucial to the life of a cell. Although the basic structure of biological membrane is provided by the lipid bilayer, most of the specific functions are carried out by membrane proteins. Knowledge of membrane protein type often offers important clues toward determining the function of an uncharacterized protein. Therefore, predicting the type of a membrane protein from its primary sequence, or even just identifying whether the uncharacterized protein belongs to a membrane protein or not, is an important and challenging problem in bioinformatics and proteomics. To deal with these problems, the GO-PseAA predictor is introduced that is operated in a hybridization space by combining the gene ontology and pseudo amino acid composition. Meanwhile, to test the prediction quality, a dataset was constructed that contains 6476 non-membrane proteins and 5122 membrane proteins classified into five different types. To avoid redundancy and bias, none of the proteins included has > or = 40% sequence identity to any other. It has been observed that the overall success rate by the jackknife cross-validation test in identifying non-membrane proteins and membrane proteins was 94.76%, and that in identifying the five membrane protein types was 95.84%. The high success rates suggest that the GO-PseAA predictor can catch the core feature of the statistical samples concerned and may become an automated high throughput toll in molecular and cell biology.  相似文献   

11.
Recent advances in large-scale genome sequencing have led to the rapid accumulation of amino acid sequences of proteins whose functions are unknown. Since the functions of these proteins are closely correlated with their subcellular localizations, many efforts have been made to develop a variety of methods for predicting protein subcellular location. In this study, based on the strategy by hybridizing the functional domain composition and the pseudo-amino acid composition (Cai and Chou [2003]: Biochem. Biophys. Res. Commun. 305:407-411), the Intimate Sorting Algorithm (ISort predictor) was developed for predicting the protein subcellular location. As a showcase, the same plant and non-plant protein datasets as investigated by the previous investigators were used for demonstration. The overall success rate by the jackknife test for the plant protein dataset was 85.4%, and that for the non-plant protein dataset 91.9%. These are so far the highest success rates achieved for the two datasets by following a rigorous cross validation test procedure, further confirming that such a hybrid approach may become a very useful high-throughput tool in the area of bioinformatics, proteomics, as well as molecular cell biology.  相似文献   

12.
A new approach of predicting structural classes of protein domain sequences is presented in this paper. Besides the amino acid composition, the composition of several dipeptides, tripeptides, tetrapeptides, pentapeptides and hexapeptides are taken into account based on the stepwise discriminant analysis. The result of jackknife test shows that this new approach can lead to higher predictive sensitivity and specificity for reduced sequence similarity datasets. Considering the dataset PDB40-B constructed by Brenner and colleagues, 75.2% protein domain sequences are correctly assigned in the jackknife test for the four structural classes: all-alpha, all-beta, alpha/beta and alpha + beta, which is improved by 19.4% in jackknife test and 25.5% in resubstitution test, in contrast with the component-coupled algorithm using amino acid composition alone (AAC approach) for the same dataset. In the cross-validation test with dataset PDB40-J constructed by Park and colleagues, more than 80% predictive accuracy is obtained. Furthermore, for the dataset constructed by Chou and Maggiona, the accuracy of 100% and 99.7% can be easily achieved, respectively, in the resubstitution test and in the jackknife test merely taking the composition of dipeptides into account. Therefore, this new method provides an effective tool to extract valuable information from protein sequences, which can be used for the systematic analysis of small or medium size protein sequences. The computer programs used in this paper are available on request.  相似文献   

13.
The extremely complicated nature of many biological problems makes them bear the features of fuzzy sets, such as with vague, imprecise, noisy, ambiguous, or input-missing information For instance, the current data in classifying protein structural classes are typically a fuzzy set To deal with this kind of problem, the AAPCA (Amino Acid Principal Component Analysis) approach was introduced. In the AAPCA approach the 20-dimensional amino acid composition space is reduced to an orthogonal space with fewer dimensions, and the original base functions are converted into a set of orthogonal and normalized base functions The advantage of such an approach is that it can minimize the random errors and redundant information in protein dataset through a principal component selection, remarkably improving the success rates in predicting protein structural classes It is anticipated that the AAPCA approach can be used to deal with many other classification problems in proteins as well.  相似文献   

14.
With the rapid increment of protein sequence data, it is indispensable to develop automated and reliable predictive methods for protein function annotation. One approach for facilitating protein function prediction is to classify proteins into functional families from primary sequence. Being the most important group of all proteins, the accurate prediction for enzyme family classes and subfamily classes is closely related to their biological functions. In this paper, for the prediction of enzyme subfamily classes, the Chou's amphiphilic pseudo-amino acid composition [Chou, K.C., 2005. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21, 10-19] has been adopted to represent the protein samples for training the 'one-versus-rest' support vector machine. As a demonstration, the jackknife test was performed on the dataset that contains 2640 oxidoreductase sequences classified into 16 subfamily classes [Chou, K.C., Elrod, D.W., 2003. Prediction of enzyme family classes. J. Proteome Res. 2, 183-190]. The overall accuracy thus obtained was 80.87%. The significant enhancement in the accuracy indicates that the current method might play a complementary role to the exiting methods.  相似文献   

15.
Nanni L  Lumini A 《Amino acids》2008,35(3):573-580
Given a particular membrane protein, it is very important to know which membrane type it belongs to because this kind of information can provide clues for better understanding its function. In this work, we propose a system for predicting the membrane protein type directly from the amino acid sequence. The feature extraction step is based on an encoding technique that combines the physicochemical amino acid properties with the residue couple model. The residue couple model is a method inspired by Chou’s quasi-sequence-order model that extracts the features by utilizing the sequence order effect indirectly. A set of support vector machines, each trained using a different physicochemical amino acid property combined with the residue couple model, are combined by vote rule. The success rate obtained by our system on a difficult dataset, where the sequences in a given membrane type have a low sequence identity to any other proteins of the same membrane type, are quite high, indicating that the proposed method, where the features are extracted directly from the amino acid sequence, is a feasible system for predicting the membrane protein type.  相似文献   

16.
One major problem with the existing algorithm for the prediction of protein structural classes is low accuracies for proteins from α/β and α+β classes. In this study, three novel features were rationally designed to model the differences between proteins from these two classes. In combination with other rational designed features, an 11-dimensional vector prediction method was proposed. By means of this method, the overall prediction accuracy based on 25PDB dataset was 1.5% higher than the previous best-performing method, MODAS. Furthermore, the prediction accuracy for proteins from α+β class based on 25PDB dataset was 5% higher than the previous best-performing method, SCPRED. The prediction accuracies obtained with the D675 and FC699 datasets were also improved.  相似文献   

17.
Information of protein subcellular location plays an important role in molecular cell biology. Prediction of the subcellular location of proteins will help to understand their functions and interactions. In this paper, a different mode of pseudo amino acid composition was proposed to represent protein samples for predicting their subcellular localization via the following procedures: based on the optimal splice site of each protein sequence, we divided a sequence into sorting signal part and mature protein part, and extracted sequence features from each part separately. Then, the combined features were fed into the SVM classifier to perform the prediction. By the jackknife test on a benchmark dataset in which none of proteins included has more than 90% pairwise sequence identity to any other, the overall accuracies achieved by the method are 94.5% and 90.3% for prokaryotic and eukaryotic proteins, respectively. The results indicate that the prediction quality by our method is quite satisfactory. It is anticipated that the current method may serve as an alternative approach to the existing prediction methods.  相似文献   

18.
3D domain swapping is a protein structural phenomenon that mediates the formation of the higher order oligomers in a variety of proteins with different structural and functional properties. 3D domain swapping is associated with a variety of biological functions ranging from oligomerization to pathological conformational diseases. 3D domain swapping is realised subsequent to structure determination where the protein is observed in the swapped conformation in the oligomeric state. This is a limiting step to understand this important structural phenomenon in a large scale from the growing sequence data. A new machine learning approach, 3dswap-pred, has been developed for the prediction of 3D domain swapping in protein structures from mere sequence data using the Random Forest approach. 3Dswap-pred is implemented using a positive sequence dataset derived from literature based structural curation of 297 structures. A negative sequence dataset is obtained from 462 SCOP domains using a new sequence data mining approach and a set of 126 sequencederived features. Statistical validation using an independent dataset of 68 positive sequences and 313 negative sequences revealed that 3dswap-pred achieved an accuracy of 63.8%. A webserver is also implemented using the 3dswap-pred Random Forest model. The server is available from the URL: http://caps.ncbs.res.in/3dswap-pred.  相似文献   

19.
基于不同标度伪氨基酸组成预测脂肪酶的类型   总被引:1,自引:0,他引:1  
从序列出发预测某蛋白质是否为脂肪酶以及属于哪种脂肪酶具有重要的理论和应用价值.提出了基于Z标度和T标度的伪氨基酸组成方法提取序列特征值,采用了k-近邻算法回答上述问题.经参数选择后,三种方法在各自最优运行参数下,其1倍交叉验证的结果为:对脂肪酶和非脂肪酶预测精度分别为92.8%、91.4%和91.3%;对脂肪酶类型预测的精度分别为92.3%、90.3%和89.7%.其中基于Z标度伪氨基酸组成效果最佳.基于T标度的次之,但均明显优于其他6种常见的特征值提取方法,并对其可能的原因进行了探讨.  相似文献   

20.
Guo J  Lin Y  Liu X 《Proteomics》2006,6(19):5099-5105
This paper proposes a new integrative system (GNBSL--Gram-negative bacteria subcellular localization) for subcellular localization specifized on the Gram-negative bacteria proteins. First, the system generates a position-specific frequency matrix (PSFM) and a position-specific scoring matrix (PSSM) for each protein sequence by searching the Swiss-Prot database. Then different features are extracted by four modules from the PSFM and the PSSM. The features include whole-sequence amino acid composition, N- and C-terminus amino acid composition, dipeptide composition, and segment composition. Four probabilistic neural network (PNN) classifiers are used to classify these modules. To further improve the performance, two modules trained by support vector machine (SVM) are added in this system. One module extracts the residue-couple distribution from the amino acid sequence and the other module applies a pairwise profile alignment kernel to measure the local similarity between every two sequences. Finally, an additional SVM is used to fuse the outputs from the six modules. Test on a benchmark dataset shows that the overall success rate of GNBSL is higher than those of PSORT-B, CELLO, and PSLpred. A web server GNBSL can be visited from http://166.111.24.5/webtools/GNBSL/index.htm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号