首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deltorphin II (Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH2, Del II), an endogenous linear heptapeptide, is a highly selective agonist of the -opioid receptor. To study the effect of the position 4 residue (Glu) on the opioid activity of Del II, we designed and synthesized three analogues of Del II by solid-phase peptide synthesis. They were [Val4,Glu5]Del II, [Val4,Glu6]Del II and [Gly4,Glu7]Del II. To study the effect of spin labeling on peptide bioactivities, all the peptides were labeled using a free radical. The labeling material was a stable nitrogen–oxygen free radical which was linked to the N-terminal via an amide bond. We investigated the opioid bioactivities of these analogues both in vivo and in vitro, and concluded that the differences in opioid activity of Del II and its analogues were due to structural differences. When the Glu residue is at position 5 or 6, the internal hydrogen bonds in Del II are affected and there is a change in three-dimensional structure and opioid activity. The antinociceptive activity of all the peptides decreased after spin labeling. This indicates that the stable nitrogen–oxygen free radical is a dual-function spin-labeling molecule.  相似文献   

2.
The present study examines the effect of [Sar1, Ile8] angiotensin II ([Sar1, Ile8] ANG II) on the blood clearance rate of [Val5] angiotensin II ([Val5] ANG II) in conscious, sodium-replete sheep. Animals were infused simultaneously with [Val5] ANG II and [Sar1, Ile8] ANG II at a rate of 42 nmol/h and 6 μmol/h respectively. Blood [Val5] ANG II was quantitatively determined with care taken in separating [Val5] ANG II from [Sar1, Ile8] ANG II prior to radioimmunoassay. The blood clearance rate of [Val5] ANG II calculated from infusion rate/blood concentration was significantly different before and during [Sar1, Ile8] ANG II infusion, being 141 ± 13 L/h (n = 12) and 95 ± 10 L/h (n = 12) respectively. Plasma renin concentration remained suppressed after the commencement of [Sar1, Ile8] ANG II infusion. In-vitro studies showed no significant decrease in the rate of degradation of [Val5] ANG II in blood in the presence of [Sar1, Ile8] ANG II. Possible interpretation of this reduction of blood clearance rate of [Val5] ANG II by 45 ± 15 L/h (n = 6) was discussed.  相似文献   

3.
Vasopressin and nonmammalian hormone vasotocin are known to increase the water permeability of mammalian collecting ducts, frog skin and the urinary bladder. Neurohypophysial nonapeptides have also been shown to interfere with the regulation of renal ion transport. The subject of this study was a search for vasopressin and vasotocin analogues with selective effects on renal water, sodium and potassium excretion. During this study, we synthesised the following peptides: 13 vasotocin analogues modified at positions 4 (Thr or Arg), 7 (Gly or Leu) and 8 (d ‐Arg, Lys or Glu); 4 vasopressin analogues modified at positions 4 and 8; and 9 peptides shortened or extended at the C‐terminal or with substitutions for Gly‐NH2. Most of these peptides had mercaptopropionic acid (Mpa) instead of Cys in position 1. The effects of these nonapeptides on renal water, sodium and potassium transport were evaluated in in vivo experiments using Wistar rats. Some nonapeptides possessed antidiuretic, natriuretic and kaliuretic activities ([Mpa1]‐arginine vasotocin, [Mpa1, homoArg8]‐vasotocin, [Mpa1, Thr4]‐arginine vasotocin and [Mpa1, Arg4]‐arginine vasopressin). Substitutions at positions 4 and 8 increased the selectivity of peptide actions. The antidiuretic [d ‐Arg8]‐vasotocin analogues had no effects on sodium excretion. [Mpa1, Arg4]‐arginine vasotocin was antidiuretic and kaliuretic but not natriuretic. [Mpa1, Glu8]‐oxytocin had weak natriuretic activity without any effects on water and potassium transport. In accordance with the data obtained, synthesised vasotocin analogues could be good candidates for pharmaceuticals selectively regulating renal sodium and potassium transport, which is of clinical importance. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
The S-3-nitro-2-pyridinesulfenyl (SNpys) group in an affinity ligand can bind to a free thiol group of a cysteine residue in a target receptor molecule, forming a disulfide bond via the thiol-disulfide exchange reaction. SNpys-containing Leu-enkephalin analogues of [-Ala2, Leu5]-enkephalyl-Cys(Npys)6 and [-Ala2,Leu(CH2SNpys)5]enkephalin, and dynorphin A analogues of [-Ala2,Cys(Npys)12]dynorphin A-(1-13) amide and [-Ala2,Cys(Npys)8]dynorphin A-(1-9) amide have been found to affinity-label all of the δ, μ (rat brain), and κ (guinea pig brain) opioid receptor subtypes. In this study, using these chemically synthesized SNpys-containing analogues, we attempted to identify the analogues that affinity-label the cysteine residue at position 60 of the δ opioid receptor. We first established the assay procedure, principally based on the receptor binding assay to use COS-7 cells expressing the δ opioid receptor. Then, using a mutant δ receptor with the Cys60Ala substitution, we assayed the SNpys-containing analogues for their specific affinity-labeling. [-Ala2,Cys(Npys)12]dynorphin A-(1-13) amide was found to have drastically reduced labeling activity for this mutant receptor as compared to its activity for the wild-type δ receptor. Other analogues exhibited almost the same activity for both the wild-type and mutant δ receptors. These results indicate that the δ-Cys60 residue has a free thiol group, which is labeled by [-Ala2,Cys(Npys)12]dynorphin A-(1-13) amide.  相似文献   

5.
Corticosterone, aldosterone and cortisol were found to be present in lungfish plasma. Plasma levels of these hormones were measured in lungfish following separate single intramuscular injections of three forms of angiotensin II; [Asp1, Ile5], [Asp1, Val5] and [Asn1, Val5]. Aldosterone levels were significantly elevated in response to [Asp1, Ile5] AII and [Asn1, Val5] AII injection. [Asp1, Val5] AII increased plasma corticosterone levels. The difference between these data and the negative results previously reported by Blair-West et al. (1977) are discussed.Abbreviations AII angiotensin II - bw body weight - DOC deoxycorticosterone - RAS renin-angiotensin system - RIA radioimmuno assay  相似文献   

6.
Neb-colloostatin (SIVPLGLPVPIGPIVVGPR), an insect oostatic factor found in the ovaries of the flesh fly Neobellieria bullata, strongly induces apoptosis in insect haemocytes. To explain the role of Ser1 and Pro4 residues of Neb-colloostatin in the pro-apoptotic activity of this peptide, the synthesis of a series of analogs was performed, such as: [Ac-Ser1]- (1), [d-Ser1]- (2), [Thr1]- (3), [Asp1]- (4), [Glu1]- (5), [Gln1]- (6), [Ala1]- (7), [Val1]- (8), [d-Pro4]-(9), [Hyp4]- (10), [Acp4]- (11), [Ach4]- (12), [Ala4]- (13), [Ile4]- (14), and [Val4]-colloostatin (15). All peptides were bioassayed in vivo for the pro-apoptotic action on haemocytes of Tenebrio molitor. Additionally, the structural properties of Neb-colloostatin and its analogs were examined by the circular dichroism in water and methanol. Peptides 1, 4, 5, 7, 8, 10, 12, 14, and 15 strongly induce T. molitor haemocytes to undergo apoptosis and they show about 120–230% of the Neb-colloostatin activity at a dose of 1 nM. The CD conformational studies show that the investigated peptides seem to prefer the unordered conformation.  相似文献   

7.
Abstract

Previous work has suggested the existence of subtypes of the delta opioid receptor (DOR) which have been termed δ1 and δ2. [D-Ala2, Glu4]deltorphin has been suggested to selectively elicit antinociception via the δ2 receptor while [D-Pen2, D-Pen5]enkephalin (DPDPE) is thought to act via the δ1 receptor. Treatment with an antisense oligodeoxynucleotide (oligo) directed towards the N-terminal portion of the cloned DOR has been demonstrated to selectively inhibit the antinociceptive actions of [D-Ala2, Glu4]deltorphin, but not of DPDPE, suggesting that the cloned DOR corresponds to that pharmacologically defined as δ2. Here, an antisense oligo (or a mismatch sequence) was designed to target a conserved region of the cloned μ δ and opioid receptor. These oligos were employed in order to determine whether the antinociceptive effects of [DAla2, Glu4]deltorphin, as well as DPDPE, could be inhibited. The data indicate that the antinociceptive actions of both ligands were inhibited by treatment with this antisense, but not with the mismatch oligo. Taken together, the results of the treatments with oligos directed towards the N-terminal portion of the cloned DOR and with that directed to the conserved region of the opioid receptors suggest that (a) DPDPE effects are mediated by a subtype of the DOR which shares a domain common to the cloned opioid receptors, and (b) the N-terminal region differs between these putative DOR subtypes.  相似文献   

8.
Summary Conformationally restricted cyclic analogues of angiotensin II (ANG II), Asp1-Arg2-Val3-Tyr4-Val5-His6-Pro7-Phe8, with a link between positions 3 and 5 have considerable biological activity. It is proposed that the spatial arrangement of the pharmacophore groups of Tyr4, His6 and Phe8 side chains and the C-terminal carboxyl group in ANG II and active analogues is similar. Conformational analysis of ANG II and two cyclic analogues c[Sar1, Lys3,Glu5]ANG II and c[Sar1,Hcy3,Mpt5]ANG II was performed, and a geometrical comparison of the low-energy conformations of these compounds allowed one to propose a model of receptor-bound conformation in terms of the spatial arrangement of the pharmacophore groups. This model is characterised by the close spatial location of the His6-Phe8 side chains and the Tyr4 C-terminal carboxyl group and is stabilised by the electrostatic interaction of Arg2 and the C-terminal carboxyl group.Abbreviations ANG II angiotensin II - Hcy homocysteine - Mpt trans-4-mercaptoproline  相似文献   

9.
The vertebrate renin-angiotensin system controls cardiovascular, renal and osmoregulatory functions. Angiotensin II (ANG II) is the most potent hormone of the RAS but in some vertebrate animals angiotensin III (Val4-ANG III) may be a hormone. We studied the effects of some angiotensins and mammalian ANG II receptor antagonists on nasal salt gland function and arterial blood pressure in conscious white Pekin ducks. Nasal salt gland fluid secretion (NFS) was induced by a 10 ml · kg−1 bw i.v. injection of a NaCl solution (1000 mosmol · kg−1 H2O) and maintained by a continuous i.v. infusion of the same solution at a rate of 0.97 ml · min−1. There was a positive linear correlation between nasal fluid [Na+] and osmolality, between [Na+] and [K+], and also between the rate of NFS and [Na+] and [K+]. [Asp1,Val5]-ANG II (1 nmol · kg−1 i.v.) inhibited NFS but did not change ionic concentrations. Val4-ANG III (1 or 5 nmol · kg−1) and ANG I (1-7) (20 nmol · kg−1) had no effect on NFS. [Sar1, Ile8]-ANG II (SARILE) acted as an ANG II receptor agonist and resulted in a prolonged and complete inhibition of NFS. The AT1 receptor antagonist, losartan (DuP 753) and the AT2 receptor antagonist, PD 123319 both failed to block the inhibitory effect of [Asp1, Val5]-ANG II on the nasal salt glands. [Asp1,Val5]-ANG II (2 nmol · kg−1 i.v.) increased mean arterial blood pressure (MABP), whereas the same dose of [Asn1,Val5]-ANG II (teleost) had only 30% of the pressor potency of the avian ANG II. Neither 1 nor 5 nmol · kg−1 of Val4-ANG III i.v. nor 20 nmol · kg−1 of ANG I (1-7) had any measurable effect on MABP. SARILE blocked completely the pressor response to [Asp1,Val5]-ANG II but the AT1 antagonists losartan and CGP 48933 and the AT2 antagonist PD 123319 all failed to block the pressor response to [Asp1,Val5]-ANG II. These results have substantiated an important role of the nasal salt gland in potassium regulation and highlighted a pharmacological dimorphism of saralasin, namely agonist and antagonist to angiotensin II-mediated inhibition of nasal salt gland function and pressor response, respectively. Using specific nonpeptidergic angiotensin II receptor antagonists, we have confirmed the distinct pharmacology of the avian angiotensin II receptors in a nongallinaceous species and the absence of significant angiotensin I (1-7) and angiotensin II effects on the cardiovascular system and nasal salt gland. Accepted: 6 November 1997  相似文献   

10.
1. Vasoactive intestinal peptide (VIP) receptors were identified in crude rat hepatic membranes by 125I-labelled VIP binding and by the ability of VIP to stimulate adenylate cyclase activity. The specificity of these receptors was evaluated by the capacity of secretin, synthetic secretin analogues, and secretin fragments to inhibit 125I-labelled VIP binding and to stimulate adenylate cyclase. 2. The results were compatible with the existence of two classes of VIP binding sites that could be distinguised according to their affinity for VIP and their specificity. High-affinity sites were more specific for VIP as secretin was 175 times less potent than VIP for recognition of these sites while being only 33 times less potent than VIP for recognition of low-affinity sites. 3. Secretin analogues, monosubstituted in position 2, 3, 4, or 6 were less potent than secretin for adenylate cyclase stimulation as well as for the recognition of the two classes of receptors. [Val5]Secretin was more potent than secretin and appeared definitely more VIP-like than secretin; [Ala4, Val5]secretin were equipotent to secretin. 4. The fragment secretin (7–27) was unable to recognize VIP receptors and to stimulate adenylate cyclase. The substituted fragment [Gln[9,Asn15]secretin (5–27) recognized these receptors with weak potency but could not activate the enzyme.  相似文献   

11.
Incubation of heat-denatured plasma from the urodele, Amphiuma tridactylum (three-toed amphiuma) or from the anurans Rana ridibunda (European green frog) and Rana catesbeiana (American bullfrog) with either glass beads, porcine pancreatic kallikrein or trypsin did not generate bradykinin-like immunoreactivity. However, peptides were generated in kallikrein-treated amphiuma plasma that contracted vascular rings from the bullfrog systemic arch and had a spasmogenic action on the bullfrog urinary bladder. These peptides, which were not generated in trypsin-treated plasma, were purified to homogeneity by reverse-phase HPLC and their primary structures established as: Asp-Arg-Val-Tyr-Val-His-Pro-Phe ([Asp1,Val5]angiotensin II) and Asn-Arg-Val-Tyr-Val-His-Pro-Phe ([Asn1,Val5]angiotensin II). Incubation of synthetic [Asn1,Val5]angiotensin II with amphiuma plasma resulted in deamidation to [Asp1,Val5]angiotensin II. The data suggest, therefore, that amphiuma plasma contains an l-asparagine amidohydrolase (asparaginase), as previously described for the eel. Although bradykinin-related peptides have been isolated from frog skin, this study provides evidence that the kallikrein-kinin system may be absent from the blood of amphibia.  相似文献   

12.
Bhargava, H. N., S. Kumar and J. T. Bian. Up-regulation of brain N-methyl- -aspartate receptors following multiple intracerebroventricular injections of [ -Pen2, -Pen5]enkephalin and [ -Ala2, Glu4]deltorphin II in mice. Peptides 18(10) 1609–1613, 1997.—The effects of chronic administration of [ -Pen2, -Pen5]enkephalin and [ -Ala2, Glu4]deltorphin II, the selective agonists of the δ1- and δ2-opioid receptors, on the binding of [3H]MK-801, a noncompetitive antagonist of the N-methyl- -aspartate receptor, were determined in several brain regions of the mouse. Male Swiss-Webster mice were injected intracerebroventricularly (i.c.v.) with [ -Pen2, -Pen5]enkephalin or [ -Ala2, Glu4]deltorphin II (20 μg/mouse) twice a day for 4 days. Vehicle injected mice served as controls. Previously we have shown that the above treatment results in the development of tolerance to their analgesic activity. The binding of [3H]MK-801 was determined in brain regions (cortex, midbrain, pons and medulla, hippocampus, striatum, hypothalamus and amygdala). At 5 nM concentration, the binding of [3H]MK-801 was increased in cerebral cortex, hippocampus, and pons and medulla of [ -Pen2, -Pen5]enkephalin treated mice. In [ -Ala2, Glu4]deltorphin II treated mice, the binding of [3H]MK-801 was increased in cerebral cortex and hippocampus. The changes in the binding were due to increases in the Bmax value of [3H]MK-801. It is concluded that tolerance to δ1- and δ2-opioid receptor agonists is associated with up-regulation of brain N-methyl- -aspartate receptors, however, some brain areas affected differ with the two treatments. The results are consistent with the recent observation from this laboratory that N-methyl- -aspartate receptors antagonists block tolerance to the analgesic action of δ1- and δ2-opioid receptor agonists.  相似文献   

13.
Substitution of cyclopentylcarbonyl-(Cpc) for 1 in the effective and potent antiovulatory inhibitor, [D-Phe2, Pro3, D-Phe6]-LHRH (I) retained the in vitro potency. We know of no other inhibitor of the luteinizing hormone releasing hormone (LHRH) with a modification at position 1, which is as potent in vitro. This result agrees with the concept of the role of 1, D-Phe2, Pro3, D-Phe6]-LHRH did not inhibit ovulation in rats at the same dosage as did I; this result is under study to circumvent. Des-Gly10-[D-Phe2, Pro3, D-Phe6]-LHRH ethylamide and [Glu1, D-Phe2, Pro3, D-Phe6]-LHRH were significantly less active in vitro than I.  相似文献   

14.
The catalytic activity of Staphylococcus aureus sortase A (SaSrtA) is dependent on Ca2+, because binding of Ca2+ to Glu residues distal to the active site stabilizes the substrate binding site. To obtain Ca2+‐independent SaSrtA, we substituted two Glu residues in the Ca2+‐binding pocket (Glu105 and Glu108). Although single mutations decreased SaSrtA activity, mutations of both Glu105 and Glu108 resulted in Ca2+‐independent activity. Kinetic analysis suggested that the double mutations affect the substrate binding site, without affecting substrate specificity. This approach will allow us to develop SaSrtA variants suitable for various applications, including in vivo site‐specific protein modification and labeling. Biotechnol. Bioeng. 2012; 109: 2955–2961. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
A triad of interacting group (TyrOH? His$ \underline\ominus$O2C) in angiotensin II (ANG II) has been postulated to create the tyrosinate anion pharmacophore (tyanophore) responsible for receptor activation/triggering (Biochim. Biophys. Acta 1991, 1065, 21). In the present study we investigated the effects on bioactivity of substituting the Tyr4 residue in [Sar1]ANG II with other anionic or electronegative amino acids, and with a number of aromatic amino acids lacking a hydroxyl group. [Sar1 Nva(δ-OH)4]ANG II, [Sar1 Nva(δ-OCH3)4]ANG II, [Sar1 Met4]ANG II, [Sar1 Gln4]ANG II, [Sar1 Glu4]ANG II and [Sar1 DL -Alg4]ANG II had agonist activities in the rat isolated uterus assay of 4, 3, 19, 10, > 0.1 and > 0.1%, respectively, of that of ANG II. [Sar1 Nal4]ANG II, [Sar1 Pal4]ANG II, [Sar1 DL -Phg(4′-F)4]ANG II, [Sar1 Phe(4′-F)4]ANG II, [Sar1 Phe(F5)4]ANG II and [Sar1 His4]ANG II had agonist activities of 4.5, 7, < 0.1, 0.2, 1 and 0.6%, respectively. All peptides investigated were devoid of measurable antagonist activity except [Sar1] Phe(4′-F)4 ANG II (pA2 = 7.7). These findings illustrate that anionic or electronegative aliphatic side chains replacing tyrosinate at position 4 can partially activate the angiotension receptor. For ANG II analogues containing an aromatic amino acid other than Tyr at position 4, ligand binding and agonist activity are not dependent on the electronegativity or dipole moment of the aromatic ring, or on the ability of the 4′ ring substituent to accept a proton. Modelling based on ab initio calculations of aromatic ring multipoles illustrate that the apparent binding affinity (PA2) of ANG II analogues is associated with a perpendicular electrostatic interaction of the position 4 aromatic ring with a receptor-based group. In addition, intramolecular interactions providing for the conformation of the ligand as it approaches its receptor appear to have a role in determining agonist vs antagonist activity.  相似文献   

16.
The importance of the N-terminal part of the secretin molecule for inducing fluid and potassium secretion from the pancreas was tested on anesthetized rats by comparing the biological capacity of bolus intravenous injections of secretin, secretin analogs, and the secretin (7–27) fragment. Except in one case, the relative potencies with which these peptides influenced fluid secretion correlated with the potencies on potassium secretion. [Glu3]secretin and [Asn3]secretin were 2–3 and 14 times less potent, respectively, than secretin. [Ala4]secretin, [D-Ala4]secretin and secretin were almost equipotent. [Val5]secretin was as potent as secretin on water secretion but 2-fold less potent on potassium secretion. Secretin (7–27) was at best a very weak agonist of secretin.  相似文献   

17.
《Life sciences》1994,55(2):PL37-PL43
Evidence in vivo has suggested the existence of subtypes of the δ opioid receptor (DOR), which have been termed δ1 and δ2. These proposed DOR subtypes are thought to be activated by [D-Pen2, D- Pen5]enkephalin (DPDPE, δ1) and [D-Ala2, Glu4]deltorphin (δ2). Recent work in which an antisense oligodeoxynucleotide (oligo) to a cloned DOR was administered by the intrathecal (i.th.) route has demonstrated a reduction in the antinociceptive actions of both i.th. DPDPE and [D-Ala2, Glu4]deltorphin, but not of [D-Ala2, NMPhe4, Gly-ol]enkephalin (DAMGO, μ agonist) in mice. The present investigation has extended these observations by administering the same DOR antisense oligo sequence by the intracerebroventricular (i.c.v.) route and evaluating the antinociceptive actions of i.c.v. agonist selective for δ, μ and κ receptors. I.th. treatment with DOR antisense oligo, but not mismatch oligo, significantly inhibited the antinociceptive actions of both i.th. DPDPE and [D-Ala2, Glu4deltorphin but not of i.th. DAMGO or U69, 593 (κ agonist), confirming previous data. In contrast, i.c.v. DOR antisense oligo, but not mismatch oligo, seletively inhibited the anitinociceptive response to i.c.v. [D-Ala2, Glu4]deltorphin without altering the antinociceptive actions of i.c.v. DPDPE, DAMGO or U69,593. The data suggest that the cloned DOR corresponds to that pharmacologically classified as δ2 and further, suggest that this δ receptor subtype may play a major role in eliciting spinal δ-mediated antinociception.  相似文献   

18.
The specific binding of VIP to guinea pig brain membranes was tested by 1/ the ability of eight VIP and secretin analogs and fragments to inhibit the binding of 125I-VIP and 2/ the capacity of the same peptides to influence basal and VIP-stimulated adenylate cyclase activities. Among all peptides tested, only VIP, secretin, [Val5] secretin, and [Gln9, Asn15] secretin (5–27) were able to inhibit 125I-VIP binding. The adenylate cyclase activity was stimulated by VIP, secretin and [Val5] secretin. [Gln9, Asn15] secretin (5–27) although inactive per se was able to inhibit the VIP-stimulated adenylate cyclase activity competitively.  相似文献   

19.
Summary Total retro-inverso (TRI) analogues of bradykinin (BK), the B2a -selective kinin antagonistd-Arg0[Hyp3,d-Phe7,Leu8]BK, angiotensin II (AT II) and the AT II antagonist Saralasin ([Sar1, Val5, Ala8]AT II) were prepared by conventional solid-phase synthesis. Molecular recognition of TRI peptidomimetics by G-protein-coupled receptors was studied by competitive radioligand displacement experiments. TRI analogues ofd-Arg0[Hyp3,d-Phe7,Leu8]BK specifically bound to the kidney medulla B2a bradykinin receptor with affinities (K d ) ranging from 64 μM to 4 μM. Conversely, TRI analogues of BK, AT II and Saralasin did not bind to either the B2a bradykinin receptor or the rat AT1a AT II receptor, respectively. These studies indicate that the TRI strategy is more compatible with the synthesis of antagonists than ‘agonists’. Three TRI peptidomimetics ofd-Arg0[Hyp3,d-Phe7,Leu8]BK were weak inhibitors of angiotensin converting enzyme. All other TRI peptidomimetics had no effect upon ACE activity. These data endorse the utility of the TRI strategy for the synthesis of protease-resistant antagonists of peptide hormones and neuropeptides.  相似文献   

20.
《Life sciences》1994,55(4):PL79-PL84
The selective δ2 receptor antagonist Naltriben (NTB) has played an important role in the identification of subtypes of the δ opioid receptor, termed δ1 and δ2, and their role in antinociception. However, the majority of these studies have been conducted in the mouse. The present study determined the opioid receptor selectivity of subcutaneously (s.c.) administered NTB in the rat. Five minute pretreatment with 1 mg/kg s.c. NTB antagonized the increase in TFL produced by i.t. administration of equieffective doses of the δ2 receptor agonist [D-Ala2, Glu4]deltorphin (DELT) or the δ1 receptor agonist [D-Pen2, D-Pen5]enkephalin (DPDPE), but did not antagonize the μ receptor agonist [D-Ala2, MePhe4, Gly-ol5]enkephalin (DAMGO). These data confirm previous reports that NTB is a selective δ opioid receptor antagonist. However, this dose of NTB antagonized DELT and DPDPE to an equivalent extent, suggesting that its selectivity for the δ2 receptor is not maintained after s.c. administration in the rat. A lower dose of NTB (0.56 mg/kg s.c.) was ineffective. When the dose of NTB was increased to 3 mg/kg s.c. the antagonism of DELT and of DPDPE was unexpectedly lost. Pretreatment with the κ receptor antagonist nor-binaltorphimine (nor-BNI) partially restored the antagonism of DELT, but not DPDPE by this dose of NTB and did not modify the antagonism of DAMGO by NTB. These data suggest that high doses of NTB have κ receptor agonist-like activity and support the proposal that κ opioid agonists diminish the actions of δ receptor antagonists. They also suggest that nor-BNI-sensitive κ opioid receptors interact with δ2, but not δ1 opioid receptors in the spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号