首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polyclonal antiserum PG21 was used to detect androgen receptor (AR) protein in three motoneuronal pools of the male rat lumbar spinal cord. In gonadally intact, wild-type males, the spinal nucleus of the bulbocavernosus (SNB), dorsolateral nucleus (DLN), and retrodorsolateral nucleus (RDLN) all displayed immunolabeling of cell nuclei. The percentage of motoneurons displaying such labeling was highest in the SNB and lowest in the RDLN. This pattern of AR immunocytochemical labeling agrees well with previous steroid autoradiographic studies of androgen accumulation in the rat spinal cord. In contrast, virtually no motoneurons in any of the three pools displayed nuclear AR immunostaining in long-term gonadectomized males or in gonadally intact males carrying the Tfm mutation, which renders the AR incompetent. In gonadectomized males, labeling was restored in the SNB and DLN, but not the RDLN, 30 min after an injection of replacement testosterone. Eight hours of testosterone exposure restored immunolabeling in all three motor nuclei. Apparent cytoplasmic staining was seen in SNB motoneurons of untreated castrates and Tfm rats, but not intact rats, suggesting that AR residing in the cytoplasm translocates to the nucleus on binding to androgen in these motoneurons. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
Steroid hormones and neurotrophic factors exert profound and widespread effects on the developing nervous system, including regulation of the size, connectivity, and survival of neurons. Androgenic control of the survival of motoneurons in the spinal nucleus of the bulbocavernosus (SNB) of rats has been well documented. We previously found that ciliary neurotrophic factor (CNTF) mimics many effects of androgen on the developing SNB. Whether effects of CNTF depend on the presence of a functional androgen receptor was evaluated in the present study. Androgen-insensitive male rats bearing the testicular feminization mutation, Tfm, and female littermates were treated with CNTF or with vehicle alone from embryonic day 22 through postnatal day 3. On postnatal day 4 SNB cell number was elevated in both groups receiving CNTF. Volumes of the bulbocavernosus (BC) and levator ani (LA) muscles, targets of SNB motoneurons, were also markedly increased by CNTF. Since the BC appears to degenerate completely in untreated females, these results indicate that CNTF can delay or prevent muscle fiber death. The relative sparing of muscles and motoneurons did not differ for Tfm males and females, demonstrating that effects of CNTF on the SNB neuromuscular system do not require functional androgen receptors. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
A sexual dimorphism in the number of motoneurons in the spinal nucleus of the bulbocavernosus (SNB) of rats is engendered by a sex difference in ontogenetic cell death. Testicular secretions, specifically androgenic steroids, reduce SNB motoneuron death in males. The fate of the target muscles generally mirrors that of the motoneurons, and androgens appear to exert their effects upon the target muscles, sparing the motoneurons as a secondary consequence. Treatment with ciliary neurotrophic factor can also spare SNB motoneurons in newborn females, raising the possibility that this factor normally mediates androgen's effect upon motoneuron survival. The ontogeny of calcitonin gene-related peptide immunoreactivity is delayed in SNB cells compared with other motoneurons and is further delayed in the SNB cells of females. In both sexes, calcitonin gene-related peptide is detected after the period of SNB motoneuron death is complete. A sex difference in motoneuron number is also seen in the human homologue of the SNB and, because ontogenetic death of motoneurons in humans overlaps the period of androgen secretion, may arise in a manner similar to that in the rat SNB. © 1992 John Wiley & Sons, Inc.  相似文献   

4.
A sexual dimorphism in the number of motoneurons in the spinal nucleus of the bulbocavernosus (SNB) of rats is engendered by a sex difference in ontogenetic cell death. Testicular secretions, specifically androgenic steroids, reduce SNB motoneuron death in males. The fate of the target muscles generally mirrors that of the motoneurons, and androgens appear to exert their effects upon the target muscles, sparing the motoneurons as a secondary consequence. Treatment with ciliary neurotrophic factor can also spare SNB motoneurons in newborn females, raising the possibility that this factor normally mediates androgen's effect upon motoneuron survival. The ontogeny of calcitonin gene-related peptide immunoreactivity is delayed in SNB cells compared with other motoneurons and is further delayed in the SNB cells of females. In both sexes, calcitonin gene-related peptide is detected after the period of SNB motoneuron death is complete. A sex difference in motoneuron number is also seen in the human homologue of the SNB and, because ontogenetic death of motoneurons in humans overlaps the period of androgen secretion, may arise in a manner similar to that in the rat SNB.  相似文献   

5.
In adult male rats, axotomy of the spinal nucleus of the bulbocavernosus (SNB) motoneurons transiently down-regulates androgen receptor (AR) immunoreactivity. The present study investigates the importance of target reinnervation in the recovery of AR expression in axotomized SNB motoneurons after short (up to 5 days) and long (1 to 6 weeks) periods of recovery. In the long-term recovery experiment, animals were divided into two groups. In one, the two stumps of the cut pudendal nerve, which carries the axons of the SNB motoneurons, were sutured together immediately after axotomy. In the second group, the proximal stump was ligated immediately after axotomy to prevent target reinnervation. Axotomy of the SNB motoneurons caused a significant down-regulation in AR immunoreactivity within 3 days. At 6 weeks, AR immunoreactivity was still depressed in ligated animals but had recovered to control levels in resutured animals. The recovery in the resutured group was coincident with the first signs of reinnervation of the target perineal muscles, although reinnervation seemed to lag behind AR immunoreactivity. SNB soma size was significantly reduced 2 weeks after axotomy and returned to control levels after 6 weeks of recovery only in the resutured animals. These findings suggest that the target perineal muscles play a role in the regulation of AR expression and androgen sensitivity in the SNB motoneurons, perhaps mediated by muscle-derived trophic factors. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Cell number in the spinal nucleus of the bulbocavernosus (SNB) of rats was the first neural sex difference shown to differentiate under the control of androgens, acting via classical intracellular androgen receptors. SNB motoneurons reside in the lumbar spinal cord and innervate striated muscles involved in copulation, including the bulbocavernosus (BC) and levator ani (LA). SNB cells are much larger and more numerous in males than in females, and the BC/LA target muscles are reduced or absent in females. The relative simplicity of this neuromuscular system has allowed for considerable progress in pinpointing sites of hormone action, and identifying the cellular bases for androgenic effects. It is now clear that androgens act at virtually every level of the SNB system, in development and throughout adult life. In this review we focus on effects of androgens on developmental cell death of SNB motoneurons and BC/LA muscles; the establishment and maintenance of SNB motoneuron soma size and dendritic length; BC/LA muscle morphology and physiology; and behaviors controlled by the SNB system. We also describe new data on neurotherapeutic effects of androgens on SNB motoneurons after injury in adulthood.  相似文献   

7.
In rats, androgens in adulthood regulate the morphology of motoneurons in the spinal nucleus of the bulbocavernosus (SNB), including the size of their somata and the length of their dendrites. There are conflicting reports about whether androgens exert similar influences on SNB motoneurons in mice. We castrated or sham-operated C57BL6J mice at 90 days of age and, thirty days later, injected cholera toxin conjugated horseradish peroxidase into the bulbocavernosus muscle (to label SNB motoneurons) on one side, and into intrinsic foot muscles contralaterally (to label motoneurons of the retrodorsolateral nucleus (RDLN)). Castrated mice had significantly smaller SNB somas compared to sham-operated mice while there were no differences in soma size of RDLN motoneurons. Dendritic length in C57BL6J mice, estimated in 3-dimensions, also decreased significantly after adult castration. In rats, androgens act directly through androgen receptors (AR) in SNB motoneurons to control soma size and nearly all SNB motoneurons contain AR. Since SNB somata in C57BL6J mice shrank after adult castration, we used immunocytochemistry to characterize AR expression in SNB cells as well as motoneurons in the RDLN and dorsolateral nucleus (DLN). A pattern of labeling matched that seen previously in rats: the highest percentage of AR-immunoreactive motoneurons are in the SNB (98%), the lowest in the RDLN (25%) and an intermediate number in the DLN (78%). This pattern of AR labeling is consistent with the possibility that androgens also act directly on SNB motoneurons in mice to regulate soma size in mice.  相似文献   

8.
Motoneuron death in the spinal nucleus of the bulbocavernosus (SNB) and the dorsolateral nucleus (DLN) of the lumbar spinal cord is androgen regulated. As a result, many more SNB and DLN motoneurons die in perinatal female rats than in males, whereas treatment of newborn females with androgen results in a permanent sparing of the motoneurons and their target muscles. We previously observed that a neurotrophic molecule, ciliary neurotrophic factor (CNTF), also arrests the death of SNB motoneurons and their target musculature, at least in the short term. The present study compares the short- and long-term consequences of perinatal CNTF treatment on motoneuron number in the SNB, the DLN, and the retrodorsolateral nucleus (RDLN), a motor pool in the lower lumbar cord that does not exhibit hormone-regulated cell death. Female pups were treated with CNTF or vehicle alone from embryonic day 22 through postnatal day 6 (P6). Motoneuron number in each nucleus was then determined immediately after treatment on P7, or 10 weeks later (P77). CNTF treatment significantly elevated motoneuron number in the SNB and DLN on P7; the volume of SNB target muscles on P7 was also greater in the CNTF-treated group. These effects were transient, however, as motoneuron number and ratings of muscle size were not different in CNTF- and vehicle-treated females on P77. Perinatal CNTF treatment did not alter cell number in the RDLN at either age. The finding that effects of CNTF on SNB and DLN motoneuron number are short lived contrasts with the permanent effects of early androgen treatment, and has implications for molecular models of the actions of androgen and neurotrophic factors on the developing spinal cord. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Androgens are thought to mediate sexual differentiation of spinal nucleus of the bulbocavernosus (SNB) motoneurons via actions on androgen receptors (ARs) within their target muscles bulbocavernosus and levator ani (LA). However, the cells within these muscles which mediate masculinization of the SNB remain undefined. Until recently, myocytes were thought to be the most likely candidate cell type. However, genetic tests of AR function in myocytes have failed to support a sufficient role for these cells in producing masculine SNB morphology, suggesting the involvement of other cell types. To identify other candidate cell types in the LA, we evaluated whether satellite cells or fibroblasts express AR. Fluorescent immunohistochemistry and confocal microscopy were used to evaluate whether satellite cells and fibroblasts express AR in neonatal male and female rats in the LA and an adjacent sexually monomorphic control muscle (CM). We found that a small proportion of satellite cells in the LA express AR and that this proportion is significantly greater in the LA compared to the CM. No sex differences were found between the proportions of satellite cells expressing AR in either muscle. Less colocalization of satellite cells and AR was seen in postnatal day 3 muscle than in postnatal day 1 muscle. In contrast, only negligible amounts of fibroblasts labeled with S100A4 express AR in either the LA or the CM. Together, findings support satellite cells, but not fibroblasts, as a candidate cell type involved in the sexual differentiation of the SNB neuromuscular system. © 2012 Wiley Periodicals, Inc. Develop Neurobiol 73: 448–454, 2013.  相似文献   

10.
We have previously demonstrated that brain‐derived neurotrophic factor (BDNF) interacts with testosterone to regulate dendritic morphology of motoneurons in the highly androgen‐sensitive spinal nucleus of the bulbocavernosus (SNB). Additionally, in adult male rats testosterone regulates BDNF in SNB motoneurons and its target muscle, the bulbocavernosus (BC). Because BDNF is retrogradely transported from skeletal muscles to spinal motoneurons, we hypothesized that testosterone could regulate BDNF in SNB motoneurons by acting locally at the BC muscle. To test this hypothesis, we restricted androgen manipulation to the SNB target musculature. After castration, BDNF immunolabeling in SNB motoneurons was maintained at levels similar to those of gonadally intact males by delivering testosterone treatment directly to the BC muscle. When the same implant was placed interscapularly in castrated males it was ineffective in supporting BDNF immunolabeling in SNB motoneurons. Furthermore, BDNF immunolabeling in gonadally intact adult males given the androgen receptor blocker hydroxyflutamide delivered directly to the BC muscle was decreased compared with that of gonadally intact animals that had the same hydroxyflutamide implant placed interscapularly, or when compared with castrated animals that had testosterone implants at the muscle. These results demonstrate that the BC musculature is a critical site of action for the androgenic regulation of BDNF in SNB motoneurons and that it is both necessary and sufficient for this action. Furthermore, the local action of androgens at the BC muscle in regulating BDNF provides a possible mechanism underlying the interactive effects of testosterone and BDNF on motoneuron morphology. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 587–598, 2013  相似文献   

11.
During development, survival of the sexually dimorphic spinal nucleus of the bulbocavernosus (SNB) and its target perineal muscles, the bulbocavernosus (BC) and the levator ani (LA) is androgen-dependent. To define androgen's site of action in masculinizing SNB system structures, we examined whether or not androgen receptors are present in SNB motoneurons and/or BC/LA muscles of neonatal male rats. Using a receptor binding assay, we have identified androgen-binding factors in the neonatal BC/LA (Bmax = 13.5 fmol/mg protein; Kd = 4.69 nM) for the first time. In contrast, androgen autoradiography provided no evidence that neonatal spinal motoneurons accumulate androgens. These results support the hypothesis that BC/LA muscles are a primary site of androgen action for masculinizing SNB system structures, and that androgen need not interact with SNB motoneurons directly to sexually differentiate them.  相似文献   

12.
In androgen-sensitive motoneurons of the spinal nucleus of the bulbocavernosus (SNB), we investigated the interaction of BDNF (brain-derived neurotrophic factor) and testosterone to understand whether each factor gates the ability of the other to regulate androgen receptor expression and soma size, and whether each factor requires the presence of the other for its action. We axotomized SNB motoneurons and applied BDNF or PBS (phosphate-buffered saline) to the cut ends of the axons in rats that were castrated and treated with either testosterone or placebo. Control groups were either not castrated or not axotomized, or had intact SNB axons and were castrated and treated with testosterone or placebo. We found that testosterone determined the expression of nuclear androgen receptor, and this effect was enhanced by both BDNF and contact with the target muscles. The effect of BDNF on androgen receptor expression was seen only when testosterone was present. In the regulation of soma size, BDNF dominated. The application of BDNF completely compensated for the loss of testosterone in castrated males so that the testosterone effect on soma size was seen only in intact SNB motoneurons and in axotomized motoneurons treated with PBS. Moreover, testosterone increased androgen receptor and soma size in axotomized SNB motoneurons, indicating that testosterone can act on sites other than the target muscles of the SNB to regulate each of these. These results indicate that the regulation of androgen receptor by testosterone does not require BDNF, but the regulation of androgen receptor by BDNF does require testosterone. The regulation of soma size by BDNF does not require high expression of nuclear androgen receptor.  相似文献   

13.
The dorsolateral nucleus (DLN) and the spinal nucleus of the bulbocavernosus (SNB) of the rat lumbar spinal cord are sexually dimorphic groups of motoneurons that innervate striated perineal muscles involved in male copulatory behavior. Androgens control the development of these motoneurons and their target muscles, and continue to influence the system in adulthood. Given that several features of SNB motoneuron morphology have been shown to be androgen sensitive in adult male rats, we examined the effects of androgen manipulations on the morphology of motoneurons in the DLN in adult rats. Adult male rats were castrated and implanted with testosterone-filled or blank implants, or were subjected to a sham-castration procedure. Six weeks after treatment, motoneurons in the DLN were retrogradely labeled with cholera toxin-horseradish peroxidase (HRP) after injection into the ischiocavernosus (IC) muscle and their morphology assessed. Measures of the radial extent and coverage of the dendritic arbor of DLN motoneurons projecting to the IC (DLN-IC motoneurons) were similar across the groups, indicating comparable degrees of HRP transport. However, DLN-IC motoneurons in castrates with blank implants possessed both shorter dendritic lengths and smaller somas than those of castrates treated with testosterone. Castrates with testosterone implants had DLN-IC motoneurons that were significantly larger than those of sham castrates in dendritic length and soma area. These results suggest that motoneurons in the DLN, like those in the SNB, possess a significant degree of structural plasticity in adulthood which is influenced by androgens.  相似文献   

14.
The dorsolateral nucleus (DLN) and the spinal nucleus of the bulbocavernosus (SNB) of the rat lumbar spinal cord are sexually dimorphic groups of motoneurons that innervate striated perineal muscles involved in male copulatory behavior. Androgens control the development of these motoneurons and their target muscles, and continue to influence the system in adulthood. Given that several features of SNB motoneuron morphology have been shown to be androgen sensitive in adult male rats, we examined the effects of androgen manipulations on the morphology of motoneurons in the DLN in adult rats. Adult male rats were castrated and implanted with testosterone-filled or blank implants, or were subjected to a sham-castration procedure. Six weeks after treatment, motoneurons in the DLN were retrogradely labeled with cholera toxin-horseradish peroxidase (HRP) after injection into the ischiocavernosus (IC) muscle and their morphology assessed. Measures of the radial extent and coverage of the dendritic arbor of DLN motoneurons projecting to the IC (DLN-IC motoneurons) were similar across the groups, indicating comparable degrees of HRP transport. However, DLN-IC motoneurons in castrates with blank implants possessed both shorter dendritic lengths and smaller somas than those of castrates treated with testosterone. Castrates with testosterone implants had DLN-IC motoneurons that were significantly larger than those of sham castrates in dendritic length and soma area. These results suggest that motoneurons in the DLN, like those in the SNB, possess a significant degree of structural plasticity in adulthood which is influenced by androgens.  相似文献   

15.
16.
The striated bulbocavernosus (BC) muscles of the rodent perineum are innervated by motoneurons in the spinal nucleus of the bulbocavernosus (SNB). In adulthood, the BC muscles are present in males only. However, newborn female rats have BC muscles, and SNB cells have made both anatomical and functional contact with them. Nevertheless, both motoneurons and muscles will degenerate unless androgens are administered perinatally. Such androgen treatment appears to be acting primarily on the BC muscles themselves, since the muscles are spared by androgen even after the loss of supraspinal neural afferents or even the entire lumbosacral spinal cord. Furthermore, androgen can spare SNB motoneurons that are themselves androgen insensitive. Perinatal steroid treatments can also alter the final spinal location of SNB cells as determined by retrograde tracing studies. Androgen continues to modify the morphology of the SNB system in adulthood, altering the size of both motoneurons and targets, which may be important for the reproductive function of BC muscles. Finally, the sexually dimorphic character of motoneuronal groups innervating perineal muscles seems to be common in mammals, since the homologue of the SNB, Onuf's nucleus, has more cells in males than in females in both dogs and humans.  相似文献   

17.
This study examined the effect of testosterone and two of its metabolites on the size of motoneurons in the sexually dimorphic spinal nucleus of the bulbocavernosus (SNB) in adult male rats. Treatment of castrates with either testosterone or dihydrotestosterone maintained SNB cell size, although testosterone was more effective in this regard. However, estradiol, either alone or in conjunction with dihydrotestosterone treatment, had no effect on the size of the somata or nuclei of SNB motoneurons. These results indicate that testosterone affects SNB cell size by interacting with androgen receptors and that aromatized metabolites of testosterone are not involved in this aspect of motoneuronal plasticity in adulthood. Because the penile reflexes mediated by the SNB neuromuscular system are also sensitive to androgen but not estrogen treatment, morphological changes in SNB cells may contribute to the androgenic modulation of these reflexes.  相似文献   

18.
S J Wieland  T O Fox 《Cell》1979,17(4):781-787
The reduced level of putative androgen receptor in the mouse mutant, testicular feminization (Tfm), chromatographs on DNA-cellulose differently from the bulk of wild-type receptors. While the elution maximum for extracts of Tfm/Y kidney is in the 180–190 mM NaCl range, wild-type kidney extracts exhibit two maxima of elution at 140–150 mM NaCl and 180–190 mM NaCl, respectively. For hypothalamus-preoptic area, Tfm/Y has one elution maximum at approximately 180 mM NaCl, while the wild-type exhibits a major elution maximum at 140–150 mM NaCl, with a minor peak at approximately 180 mM NaCl. Mixing experiments between wild-type and Tfm/Y cytosols reveal that the different characteristic elution patterns are intrinsic to the binding complexes and are not conveyed simply by other soluble factors. The distinctive pattern for Tfm indicates that the mutation does not cause merely a reduced level of wild-type receptor. Rather the residual receptor of the mutant may be either an abnormal protein or a minor form of wild-type receptor, not readily seen in wild-type tissue due to the presence of more preponderant species. Differences in the elution profiles of androgen receptor species of wild-type kidney with the two bound androgens, testosterone and dihydrotestosterone, are also presented. A model of the androgen receptor system is proposed which includes several binding classes for androgen ligands and metabolites. In light of aromatization of androgens to estrogens and its probable role in some androgenic responses, we include the “estrogen receptor” in this mechanism.  相似文献   

19.
The spinal cord of rats contains the sexually dimorphic motoneurons of the spinal nucleus of the bulbocavernosus (SNB). In males, SNB dendrites fail to grow after castration, but androgen or estrogen treatment supports dendritic growth in castrated males. Estrogenic support of SNB dendrite growth is mediated by estrogen receptors (ER) in the target muscle. ERα expression in cells lacking a basal lamina (referred to as “extra‐muscle fiber cells”) of the SNB target musculature coincides with the period of estrogen‐dependent SNB dendrite growth. In the SNB target muscle, extra‐muscle fiber ERα expression declines with age and is typically absent after postnatal (P) day 21 (P21). Given that estradiol downregulates ERα in skeletal muscle, we tested the hypothesis that depleting gonadal hormones would prevent the postnatal decline in ERα expression in the SNB target musculature. We castrated male rats at P7 and assessed ERα immunolabeling at P21; ERα expression was significantly greater in castrated males compared with normal animals. Because ERα expression in SNB target muscles mediates estrogen‐dependent SNB dendrogenesis, we further hypothesized that the castration‐induced increase in muscle ERα would heighten the estrogen sensitivity of SNB dendrites. Male rats were castrated at P7 and treated with estradiol from P21 to P28; estradiol treatment in castrates resulted in dendritic hypertrophy in SNB motoneurons compared with normal males. We conclude that early castration results in an increase in ERα expression in the SNB target muscle, and this upregulation of ERα supports estrogen sensitivity of SNB dendrites, allowing for hypermasculinization of SNB dendritic arbors. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 921–935, 2013  相似文献   

20.
Motoneuron loss is a significant medical problem, capable of causing severe movement disorders or even death. We have been investigating the effects of motoneuron loss on surviving motoneurons in a lumbar motor nucleus, the spinal nucleus of the bulbocavernosus (SNB). SNB motoneurons undergo marked dendritic and somal atrophy following the experimentally induced death of other nearby SNB motoneurons. However, treatment with testosterone at the time of lesioning attenuates this atrophy. Because testosterone can be metabolized into the estrogen estradiol (as well as other physiologically active steroid hormones), it was unknown whether the protective effect of testosterone was an androgen effect, an estrogen effect, or both. In the present experiment, we used a retrogradely transported neurotoxin to kill the majority of SNB motoneurons on one side of the spinal cord only in adult male rats. Some animals were also treated with either testosterone, the androgen dihydrotestosterone (which cannot be converted into estradiol), or the estrogen estradiol. As seen previously, partial motoneuron loss led to reductions in soma area and in dendritic length and extent in surviving motoneurons. Testosterone and dihydrotestosterone attenuated these reductions, but estradiol had no protective effect. These results indicate that the neuroprotective effect of testosterone on the morphology of SNB motoneurons following partial motoneuron depletion is an androgen effect rather than an estrogen effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号