首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SH3 and SH2 domains of hematopoietic cell kinase (Hck) play important roles in substrate targeting. To identify new components of Hck signaling pathways, we identified proteins that bind to the SH3 domain of Hck (Scott et al. (2002) J. Biol. Chem. 277, 28238). One such protein was ELMO1, the mammalian orthologue of the Caenorhabditis elegans gene, ced-12. ELMO1 is an approximately 80-kD protein containing a PH domain and a C-terminal Pro-rich sequence. In C. elegans, ced-12 is required for the engulfment of dying cells and for cell migration. In mammalian fibroblasts, ELMO1 binds to Dock180, and functions upstream of Rac during phagocytosis and cell migration. We previously showed that ELMO1 binds directly to the Hck SH3 domain and is phosphorylated by Hck. In this study, we used mass spectrometry to identify the following sites of ELMO1 phosphorylation: Tyr 18, Tyr 216, Tyr 511, Tyr 395, and Tyr 720. Mutant forms of ELMO1 lacking these sites were defective in their ability to promote phagocytosis and migration in fibroblasts. Single tyrosine mutations showed that Tyr 511 is particularly important in mediating these biological effects. These mutants displayed comparable binding to Dock180 and Crk as wild-type ELMO1, but gave a lowered activation of Rac. The data suggest that Src family kinase mediated tyrosine phosphorylation of ELMO1 might represent an important regulatory mechanism that controls signaling through the ELMO1/Crk/Dock180 pathway.  相似文献   

2.
EphA2 is a member of the Eph family of receptor tyrosine kinases. EphA2 mediates cell-cell communication and plays critical roles in a number of physiological and pathologic responses. We have previously shown that EphA2 is a key regulator of tumor angiogenesis and that tyrosine phosphorylation regulates EphA2 signaling. To understand the role of EphA2 phosphorylation, we have mapped phosphorylated tyrosines within the intracellular region of EphA2 by a combination of mass spectrometry analysis and phosphopeptide mapping using two-dimensional chromatography in conjunction with site-directed mutagenesis. The function of these phosphorylated tyrosine residues was assessed by mutational analysis using EphA2-null endothelial cells reconstituted with EphA2 tyrosine-to-phenylalanine or tyrosine-to-glutamic acid substitution mutants. Phosphorylated Tyr(587) and Tyr(593) bind to Vav2 and Vav3 guanine nucleotide exchange factors, whereas Tyr(P)(734) binds to the p85 regulatory subunit of phosphatidylinositol 3-kinase. Mutations that uncouple EphA2 with Vav guanine nucleotide exchange factors or p85 are defective in Rac1 activation and cell migration. Finally, EphA2 mutations in the juxtamembrane region (Y587F, Y593F, Y587E/Y593E), kinase domain (Y734F), or SAM domain (Y929F) inhibited ephrin-A1-induced vascular assembly. In addition, EphA2-null endothelial cells reconstituted with these mutants were unable to incorporate into tumor vasculature, suggesting a critical role of these phosphorylation tyrosine residues in transducing EphA2 signaling in vascular endothelial cells during tumor angiogenesis.  相似文献   

3.
A 58-kDa protein was detected in Xenopus egg lysate by SDS-PAGE and immunoblotting with an antibody raised against adaptor protein Shc, a well known tyrosine kinase substrate in numerous biological events. Tyrosine phosphorylation of the Xenopus Shc protein (p58 xShc) was found to increase 2.3 +/- 0.4-fold (n = 3) upon fertilization. Pretreatment of eggs with the tyrosine kinase inhibitor genistein effectively blocked the fertilization-dependent phosphorylation. Tyrosine phosphorylation of p58 xShc was also observed when eggs were activated parthenogenetically by an integrin-interacting RGDS-peptide which is known to cause egg activation accompanied by intracellular calcium release. On the other hand, other egg-activating treatments such as electrical shock and calcium ionophore, which directly induce the elevation of intracellular calcium, did not show such an effect. It is also suggested that the phosphorylated p58 xShc may play a role unique to the egg activation process because we found that there was no increase of Shc-Grb2 complex after fertilization. These results demonstrate that p58 xShc is a substrate of egg tyrosine kinases which may be activated by sperm-egg interaction and suggest that the phosphorylated p58 xShc may act upstream of the calcium-dependent pathway of egg activation.  相似文献   

4.
Ras GTPase-activating protein (GAP) contains two Src homology 2 (SH2) domains which are implicated in binding to tyrosine-phosphorylated sites in specific activated growth factor receptors and to a cytoplasmic tyrosine-phosphorylated protein, p62. We have used site-directed mutagenesis of the two GAP SH2 domains (SH2-N and SH2-C) to identify residues involved in receptor and p62 binding. A bacterial fusion protein containing the precise SH2-N domain, as defined by sequence homology, associated with both the activated beta platelet-derived growth factor receptor and epidermal growth factor receptor, and p62 in vitro. However, short deletions at either the N or C termini of the SH2-N domain abolished binding, suggesting that the entire SH2 sequence is required for formation of an active domain. Conservative substitutions of 2 highly conserved basic residues in the SH2-N domain, an arginine and a histidine, resulted in complete loss of receptor and p62 binding, whereas other basic residues, and residues at variable SH2 sites, were more tolerant of substitution. The conserved arginine and histidine therefore appear critical for association with phosphotyrosine-containing proteins, possibly through an interaction with phosphotyrosine. The GAP SH2-C domain, unlike SH2-N, does not bind efficiently to activated receptors or p62 in vitro. The SH2-C domain lacks 3 residues which are otherwise well conserved, and contribute to high affinity SH2-N binding. Replacement of 1 of these residues, a cysteine, with the consensus glycine, conferred SH2-C binding activity toward tyrosine-phosphorylated p62 and epidermal growth factor receptor. Loss-of-function and gain-of-function mutations in the GAP SH2 domains can therefore be used to identify residues that are critical for receptor and p62 binding.  相似文献   

5.
R E Thom  J E Casnellie 《FEBS letters》1987,222(1):104-108
The LSTRA cell line has been shown to have an exceptionally high level of a tyrosine protein kinase (pp56lck). We now report that LSTRA cells also have a much higher level of proteins phosphorylated on tyrosine residues in comparison to several other cell lines with normal levels of pp56lck. The level of phosphotyrosine-containing proteins in LSTRA cells was comparable to that seen in K562 cells, a cell line known to have a constitutively active tyrosine protein kinase. These results provide evidence that LSTRA cells have an elevated level of in vivo tyrosine protein kinase activity, probably due to the overexpression and activation of pp56lck.  相似文献   

6.
YopH is a 468-amino acid protein-tyrosine phosphatase that is produced by pathogenic Yersinia species. YopH is translocated into host mammalian cells via a type III protein secretion system. Translocation of YopH into human epithelial cells results in dephosphorylation of p130(Cas) and paxillin, disruption of focal adhesions, and inhibition of integrin-mediated bacterial phagocytosis. Previous studies have shown that the N-terminal 129 amino acids of YopH comprise a bifunctional domain. This domain binds to the SycH chaperone in Yersinia to orchestrate translocation and to tyrosine-phosphorylated target proteins in host cells to mediate substrate recognition. We used random mutagenesis in combination with the yeast two-hybrid system to identify residues in the YopH N-terminal domain that are involved in substrate-binding activity. Four single codon changes (Q11R, V31G, A33D, and N34D) were identified that interfered with binding of the YopH N-terminal domain to tyrosine-phosphorylated p130(Cas) but not to SycH. These mutations did not impair YopH translocation into HeLa cells infected with Yersinia pseudotuberculosis. Introduction of the V31G substitution into catalytically inactive (substrate-trapping) forms of YopH interfered with the ability of these proteins to bind to p130(Cas) and to localize to focal adhesions in HeLa cells. In addition, the V31G substitution reduced the ability of catalytically active YopH to dephosphorylate target proteins in HeLa cells. These data indicate that the substrate- and SycH-binding activities of the YopH N-terminal domain can be separated and that the former activity is important for recognition and dephosphorylation of substrates by YopH in vivo.  相似文献   

7.
RELL1 and RELL2 are two newly identified RELT homologues that bind to the TNF receptor family member RELT. The expression of RELL1 at the mRNA level is ubiquitous, whereas expression of RELL2 mRNA is more restricted to particular tissues. RELT, RELL1, and RELL2 co-localized with one another at the plasma membrane. The three proteins interacted with one another as demonstrated by in vitro co-immunoprecipitation experiments. We propose that RELL1 and RELL2 be considered RELT family members based on their similar amino acid sequences and on their ability to physically interact with one another. OSR1 was identified through a yeast two-hybrid screen utilizing the intracellular portion of RELL1 as bait, and OSR1 was shown to interact with the three RELT family members by in vitro co-immunoprecipitation experiments. Additionally, OSR1 phosphorylated the RELT family members in an in vitro kinase assay. These results report two novel homologues of RELT that interact with RELT and are phosphorylated by the OSR1 kinase.  相似文献   

8.
Single-stranded DNA-binding proteins (SSBs) are required for repair, recombination and replication in all organisms. Eukaryotic SSBs are regulated by phosphorylation on serine and threonine residues. To our knowledge, phosphorylation of SSBs in bacteria has not been reported. A systematic search for phosphotyrosine-containing proteins in Streptomyces griseus by immunoaffinity chromatography identified bacterial SSBs as a novel target of bacterial tyrosine kinases. Since genes encoding protein-tyrosine kinases (PTKs) have not been recognized in streptomycetes, and SSBs from Streptomyces coelicolor (ScSSB) and Bacillus subtilis (BsSSB) share 38.7% identity, we used a B.subtilis protein-tyrosine kinase YwqD to phosphorylate two cognate SSBs (BsSSB and YwpH) in vitro. We demonstrate that in vivo phosphorylation of B.subtilis SSB occurs on tyrosine residue 82, and this reaction is affected antagonistically by kinase YwqD and phosphatase YwqE. Phosphorylation of B.subtilis SSB increased binding almost 200-fold to single-stranded DNA in vitro. Tyrosine phosphorylation of B.subtilis, S.coelicolor and Escherichia coli SSBs occured while they were expressed in E.coli, indicating that tyrosine phosphorylation of SSBs is a conserved process of post-translational modification in taxonomically distant bacteria.  相似文献   

9.
J Wower  P Maly  M Zobawa  R Brimacombe 《Biochemistry》1983,22(10):2339-2346
The detailed surface topography of the Escherichia coli 30S ribosomal subunit has been investigated, with iodination catalyzed by immobilized lactoperoxidase as the surface probe. Under mild conditions, only proteins S3, S7, S9, S18, and S21 were iodinated to a significant and reproducible extent. These proteins were isolated from the iodinated subunits, and in each case, the individual tyrosine residues that had reacted were identified by standard protein sequencing techniques. The targets of iodination that could be positively established were as follows: in protein S3 (232 amino acids), the tyrosines at positions 167 and 192; in S7 (153 amino acids), tyrosines 84 and 152; in S9 (128 amino acids), tyrosine 89; in S18 (74 amino acids), tyrosine 3 (tentative); in S21 (70 amino acids), tyrosines 37 and 70. The results represent part of a broader program to investigate ribosomal topography at the amino acid-nucleotide level.  相似文献   

10.
Tai N  Ding Y  Schmitz JC  Chu E 《Nucleic acids research》2002,30(20):4481-4488
Previous studies have shown that human dihydrofolate reductase (DHFR) acts as an RNA-binding protein, in which it binds to its own mRNA and, in so doing, results in translational repression. In this study, we used RNA gel mobility shift and nitrocellulose filter-binding assays to further investigate the specificity of the interaction between human DHFR protein and human DHFR mRNA. Site-directed mutagenesis was used to identify the critical amino acid residues on DHFR protein required for RNA recognition. Human His-Tag DHFR protein specifically binds to human DHFR mRNA, while unrelated proteins including thymidylate synthase, p53 and glutathione-S-transferase were unable to form a ribonucleoprotein complex with DHFR mRNA. The Cys6 residue is essential for RNA recognition, as mutation at this amino acid with either an alanine (C6A) or serine (C6S) residue almost completely abrogated RNA-binding activity. Neither one of the cysteine mutant proteins was able to repress the in vitro translation of human DHFR mRNA. Mutations at amino acids Ile7, Arg28 and Phe34, significantly reduced RNA-binding activity. An RNA footprinting analysis identified three different RNA sequences, bound to DHFR protein, ranging in size from 16 to 45 nt, while a UV cross-linking analysis isolated an ~16 nt RNA sequence bound to DHFR. These studies begin to identify the critical amino acid residues on human DHFR that mediate RNA binding either through forming direct contact points with RNA or through maintaining the protein in an optimal structure that allows for the critical RNA-binding domain to be accessible.  相似文献   

11.
Reversible protein-phosphorylation is emerging as a key player in the regulation of mitochondrial functions. In particular tyrosine phosphorylation represents a promising field to highlight new mechanisms of bioenergetic regulation. Utilizing immunoaffinity enrichment of phosphotyrosine-containing peptides coupled to mass spectrometric analysis we detected new tyrosine phosphorylated proteins in rat brain mitochondria after peroxovanadate treatment. By bioinformatic predictions we provide suggestions about the potential role of tyrosine phosphorylation in mitochondrial physiology. Our results indicate a primary role of tyrosine phosphorylation in regulating energy production at the mitochondrial level. Moreover, tyrosine phosphorylation might regulate the mitochondrial membrane permeability targeting protein complexes containing ADP/ATP translocase, VDAC, creatine kinase and hexokinase.  相似文献   

12.
The extracellular homophilic-binding domain of the cadherins consists of 5 cadherin repeats (EC1-EC5). Studies on cadherin specificity have implicated the NH(2)-terminal EC1 domain in the homophilic binding interaction, but the roles of the other extracellular cadherin (EC) domains have not been evaluated. We have undertaken a systematic analysis of the binding properties of the entire cadherin extracellular domain and the contributions of the other EC domains to homophilic binding. Lateral (cis) dimerization of the extracellular domain is thought to be required for adhesive function. Sedimentation analysis of the soluble extracellular segment of C-cadherin revealed that it exists in a monomer-dimer equilibrium with an affinity constant of approximately 64 microm. No higher order oligomers were detected, indicating that homophilic binding between cis-dimers is of significantly lower affinity. The homophilic binding properties of a series of deletion constructs, lacking successive or individual EC domains fused at the COOH terminus to an Fc domain, were analyzed using a bead aggregation assay and a cell attachment-based adhesion assay. A protein with only the first two NH(2)-terminal EC domains (CEC1-2Fc) exhibited very low activity compared with the entire extracellular domain (CEC1-5Fc), demonstrating that EC1 alone is not sufficient for effective homophilic binding. CEC1-3Fc exhibited high activity, but not as much as CEC1-4Fc or CEC1-5Fc. EC3 is not required for homophilic binding, however, since CEC1-2-4Fc and CEC1-2-4-5Fc exhibited high activity in both assays. These and experiments using additional EC combinations show that many, if not all, the EC domains contribute to the formation of the cadherin homophilic bond, and specific one-to-one interaction between particular EC domains may not be required. These conclusions are consistent with a previous study on direct molecular force measurements between cadherin ectodomains demonstrating multiple adhesive interactions (Sivasankar, S., W. Brieher, N. Lavrik, B. Gumbiner, and D. Leckband. 1999. PROC: Natl. Acad. Sci. USA. 96:11820-11824; Sivasankar, S., B. Gumbiner, and D. Leckband. 2001. Biophys J. 80:1758-68). We propose new models for how the cadherin extracellular repeats may contribute to adhesive specificity and function.  相似文献   

13.
Hendra virus (HeV) is an emerging paramyxovirus capable of infecting and causing disease in a variety of mammalian species, including humans. The virus infects its host cells through the coordinated functions of its fusion (F) and attachment (G) glycoproteins, the latter of which is responsible for binding the virus receptors ephrinB2 and ephrinB3. In order to identify the receptor binding site, a panel of G glycoprotein constructs containing mutations was generated using an alanine-scanning mutagenesis strategy. Based on a predicted G structure, charged amino acids residing in regions that could be homologous to those in the measles virus H attachment glycoprotein known to be involved in its protein receptor interaction were targeted. Using a coprecipitation-based assay, seven single-amino-acid substitutions in HeV G were identified as having significantly impaired binding to both the ephrinB2 and ephrinB3 viral receptors: D257A, D260A, G439A, K443A, G449A, K465A, and D468A. The impairment of receptor interaction conferred a concomitant diminution in their abilities to promote membrane fusion when coexpressed with F. The G glycoprotein mutants were also recognized by three or more conformation-dependent monoclonal antibodies of a panel of five, were expressed on the cell surface, and retained their abilities to bind and coprecipitate F. Interestingly, some of these mutant G glycoproteins coprecipitated with F more efficiently than wild-type G. Taken together, these data provide strong biochemical and functional evidence that some of these residues could be part of a conformation-dependent, discontinuous, and overlapping ephrinB2 and -B3 binding domain within the HeV G glycoprotein.  相似文献   

14.
Lipocortin I is a 39-kilodalton membrane-associated protein that in A431 cells is phosphorylated on tyrosine in response to epidermal growth factor (EGF). We have used recombinant human lipocortin I as a substrate for several protein kinases and identified phosphorylated residues by a combination of peptide mapping and sequence analysis. Lipocortin I was phosphorylated near the amino terminus at Tyr-21 by recombinant pp60c-src. The same tyrosine residue was phosphorylated by polyoma middle T/pp60c-src complex, by recombinant pp50v-abl, and with A431 cell membranes by the EGF receptor/kinase. The primary site of phosphorylation by protein kinase C was also near the amino terminus at Ser-27. The major site of phosphorylation by adenosine cyclic 3',5'-phosphate dependent protein kinase was on the carboxy-terminal half of the molecule at Thr-216. These sites are compared to the phosphorylation sites previously located in the structurally related protein lipocortin II.  相似文献   

15.
Myelin basic protein serves as a convenient substrate for detection of a 44 kDa protein-serine/threonine kinase (p44mpk) that is activated near the time of germinal vesicle breakdown in maturing echinoderm and amphibian oocytes. In vitro phosphorylation by purified p44mpk from sea star oocytes was primarily on threonine residues on a single tryptic peptide of bovine brain myelin basic protein. Amino acid composition analysis of the isolated posphopeptide revealed that it was rich in proline residues. Automated solid-phase sequencing by Edman degradation identified the major site as Thr-97 in the sequence NIVTPRTPPPSQGK, which corresponds to residues 91-104 in bovine brain myelin basic protein. Thr-94 was also phosphorylated by p44mpk to a very minor extent.  相似文献   

16.
Forty-two-kilodalton proteins that contain phosphotyrosine in metaphase-arrested Xenopus laevis eggs are closely related to p42, a protein that is phosphorylated at tyrosine when somatic cells are exposed to mitogenic stimuli.  相似文献   

17.
D D Pittman  J H Wang  R J Kaufman 《Biochemistry》1992,31(13):3315-3325
Sulfated tyrosine residues within recombinant human factor VIII were identified by [35S]sulfate biosynthetic labeling of Chinese hamster ovary cells which express human recombinant factor VIII. Alkaline hydrolysis of purified [35S]sulfate-labeled factor VIII showed that greater than 95% of the [35S]sulfate was incorporated into tyrosine. [3H]Tyrosine and [35S]sulfate double labeling was used to quantify the presence of 6 mol of tyrosine sulfate per mole of factor VIII. Amino acid sequence analysis of thrombin and tryptic peptides isolated from [35S]sulfate-labeled factor VIII demonstrated tyrosine sulfate at residue 346 in the factor VIII heavy chain and at residues 1664 and 1680 in the factor VIII light chain. In addition, the carboxyl-terminal half of the A2 domain contained three tyrosine sulfate residues, likely at positions 718, 719, and 723. Interestingly, all sites of tyrosine sulfation border thrombin cleavage sites. The functional importance of tyrosine sulfation was examined by treatment of cells expressing factor VIII with sodium chlorate, a potent inhibitor of tyrosine sulfation. Increasing concentrations of sodium chlorate inhibited sulfate incorporation into factor VIII without affecting its synthesis and/or secretion. However, factor VIII secreted in the presence of sodium chlorate exhibited a 5-fold reduction in procoagulant activity, although the protein was susceptible to thrombin cleavage. These results suggest that tyrosine sulfation is required for full factor VIII activity and may affect the interaction of factor VIII with other components of the coagulation cascade.  相似文献   

18.
The UvrB protein is the central recognition protein in bacterial nucleotide excision repair. We have shown previously that the highly conserved beta-hairpin motif in Bacillus caldotenax UvrB is essential for DNA binding, damage recognition, and UvrC-mediated incision, as deletion of the upper part of the beta-hairpin (residues 97-112) results in the inability of UvrB to be loaded onto damaged DNA, defective incision, and the lack of strand-destabilizing activity. In this work, we have further examined the role of the beta-hairpin motif of UvrB by a mutational analysis of 13 amino acids within or in the vicinity of the beta-hairpin. These amino acids are predicted to be important for the interaction of UvrB with both damaged and non-damaged DNA strands as well as the formation of salt bridges between the beta-hairpin and domain 1b of UvrB. The resulting mutants were characterized by standard functional assays such as oligonucleotide incision, electrophoretic mobility shift, strand-destabilizing, and ATPase assays. Our data indicated a direct role of Tyr96, Glu99, and Arg123 in damage-specific DNA binding. In addition, Tyr93 plays an important but less essential role in DNA binding by UvrB. Finally, the formation of salt bridges between the beta-hairpin and domain 1b, involving amino acids Lys111 bound to Glu307 and Glu99 bound to Arg367 or Arg289, are important but not essential for the function of UvrB.  相似文献   

19.
20.
P Maly  J Wower  M Zobawa  R Brimacombe 《Biochemistry》1983,22(13):3157-3162
Further to our studies on the Escherichia coli 30S ribosomal subunit, the detailed surface topography of both 50S subunits and 70S ribosomes has been investigated by using iodination catalyzed by immobilized lactoperoxidase as the surface probe. In the 50S subunit, only proteins L2, L5, L10, and L11 were iodinated to a significant and reproducible extent. The targets of iodination were identified, after isolation of the individual iodinated proteins, and were as follows: in protein L2 (271 amino acids), tyrosine-102 and -160; in protein L5 (178 amino acids), tyrosine-142; in protein L10 (165 amino acids), tyrosine-132; in protein L11 (142 amino acids), tyrosine-7 and -61. In the 70S ribosome, only protein L5 was still iodinated to a significant extent from the 50S subunit, whereas in the 30S subunit the same spectrum of iodinated proteins was observed as that from iodinated isolated 30S subunits, with the exception that S21 was no longer present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号