首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The toxin HlyA is exported from Escherichia coli, without a periplasmic intermediate, by a type I system comprising an energized inner-membrane (IM) translocase of two proteins, HlyD and the traffic ATPase HlyB, and the outer-membrane (OM) porin-like TolC. These and the toxin substrate were expressed separately to reconstitute export and, via affinity tags on the IM proteins, cross-linked in vivo complexes were isolated before and after substrate engagement. HlyD and HlyB assembled a stable IM complex in the absence of TolC and substrate. Both engaged HlyA, inducing the IM complex to contact TolC, concomitant with conformational change in all three exporter components. The IM-OM bridge was formed primarily by HlyD, which assembled to stable IM trimers, corresponding to the OM trimers of TolC. The bridge was transient, components reverting to IM and OM states after translocation. Mutant HlyB that bound, but did not hydrolyse ATP, supported IM complex assembly, substrate recruitment and bridging, but HlyA stalled in the channel. A similar picture was evident when the HlyD C-terminus was masked. Export thus occurs via a contiguous channel which is formed, without traffic ATPase ATP hydrolysis, by substrate-induced, reversible bridging of the IM translocase to the OM export pore.  相似文献   

2.
M Lee  SY Jun  BY Yoon  S Song  K Lee  NC Ha 《PloS one》2012,7(7):e40460
The Hly translocator complex of Escherichia coli catalyzes type I secretion of the toxin hemolysin A (HlyA). In this complex, HlyB is an inner membrane ABC (ATP Binding Cassette)-type transporter, TolC is an outer membrane channel protein, and HlyD is a periplasmic adaptor anchored in the inner membrane that bridges HlyB to TolC. This tripartite organization is reminiscent of that of drug efflux systems such as AcrA-AcrB-TolC and MacA-MacB-TolC of E. coli. We have previously shown the crucial role of conserved residues located at the hairpin tip region of AcrA and MacA adaptors during assembly of their cognate systems. In this study, we investigated the role of the putative tip region of HlyD using HlyD mutants with single amino acid substitutions at the conserved positions. In vivo and in vitro data show that all mutations abolished HlyD binding to TolC and resulted in the absence of HlyA secretion. Together, our results suggest that, similarly to AcrA and MacA, HlyD interacts with TolC in a tip-to-tip manner. A general model in which these conserved interactions induce opening of TolC during drug efflux and type I secretion is discussed.  相似文献   

3.
HlyD has a single transmembrane domain (residues 59-80) and a large periplasmic domain, and is essential for the secretion of haemolysin from Escherichia coli. Using an antibody raised against HlyD, the protein was localised to the cell envelope by immunofluorescence and to the cytoplasmic membrane by sucrose gradient analysis. We have examined the stability of this protein in the presence and absence of other putative components of the translocator, HlyB and TolC. HlyD is normally highly stable but in the absence of TolC, the steady-state level of HlyD is greatly reduced and the protein has a half-life at 37° C of 36 min. In the absence of HlyB, HlyD is also unstable and specific degradation products are detected, which co-fractionate with the inner membrane, indicating in this case limited cleavage at specific sites. However, the effect of removing both HlyB and TolC is not additive. On the contrary, in the absence of both HlyB and TolC the half-life of HlyD is approximately 110 min. This result shows that in the presence of HlyB removal of TolC renders HlyD more unstable than it is in the absence of both HlyB and TolC. This suggests that the presence of HlyB induces a structural change in HlyD. In addition, HlyB itself appears to be less stable in the absence of HlyD. These results are consistent with an interaction between HlyD/TolC and HlyB/HlyD. A derivative of HlyD, HlyD22, lacking the 40 N-terminal residues of HlyD assembles into the inner membrane displaying the same stability with and without HlyB as wild type HlyD does. This N-terminal region therefore appears to play no role in stable localisation but is involved in secretion, since HlyD22 is completely secretion defective. Modification of the C-terminus on the other hand completely destabilised the molecule and HlyD was not detectable in the envelope. Secretion of active haemolysin is limited to a brief period during mid to late exponential phase. In contrast, HlyD is apparently synthesised constitutively throughout the growth phase, demonstrating that the production of this component of the translocator is not the limiting factor for growth phase-dependent secretion. Received: 10 July 1998 / Accepted: 19 October 1998  相似文献   

4.
W D Thomas  Jr  S P Wagner    R A Welch 《Journal of bacteriology》1992,174(21):6771-6779
The hydrophobic-rich NH2-terminal 34 amino acids of a tetracycline resistance determinant (TetC) were fused to the COOH-terminal 240 amino acids of the hemolysin transporter, HlyB, which contains a putative ATP-binding domain. This hybrid protein replaced the NH2-terminal 467-amino-acid portion of HlyB and could still export the Escherichia coli hemolysin (HlyA). Export by the hybrid protein was approximately 10% as efficient as transport by HlyB. Extracellular secretion of HlyA by the TetC-HlyB hybrid required HlyD and TolC. The extracellular and periplasmic levels of beta-galactosidase and beta-lactamase in strains that produced the hybrid were similar to the levels in controls. Thus, HlyA transport was specific and did not appear to be due to leakage of cytoplasmic contents alone. Antibodies raised against the COOH terminus of HlyB reacted with the hybrid protein, as well as HlyB. HlyB was associated with membrane fractions, while the hybrid protein was found mainly in soluble extracts. Cellular fractionation studies were performed to determine whether transport by the hybrid occurred simultaneously across both membranes like wild-type HlyA secretion. However, we found that HlyA was present in the periplasm of strains that expressed the TetC-HlyB hybrid. HlyA remained in the periplasm unless the hlyD and tolC gene products were present in addition to the hybrid.  相似文献   

5.
We have carried out an extensive mutational analysis of the C-terminal signal which targets the export of the 1024-residue haemolysin protein (HlyA) of Escherichia coli across both bacterial membranes into the surrounding medium. Over 60 variants of the HlyA C-terminal 53-amino-acid sequence were created by oligonucleotide-directed mutagenesis and fused to the HlyA N-terminal 830 residues. Transport of the HlyA derivatives by the HlyB/HlyD system was compared with the wild-type level and the data indicate that the HlyA C-terminal export signal lies within the last 48 amino acids and comprises three functional domains: an amphipathic, charged helix between residues 1,977 and R,996; a 13-amino-acid uncharged region from residue T,997 to S,1009; and an 8-amino-acid hydroxylated tail at the extreme C-terminus. Analogous features were found in the C-terminal sequences of an extended family of haemolysins, leukotoxins and proteases which are secreted by HlyB/HlyD-type translocators. In particular, all nine proteins which are secreted into the extracellular medium possess potential extended amphipathic helices. These results suggest a possible role for multiple regions of the HlyA C-terminal export signal in which the first two domains span the membranes and the third domain remains in the cytoplasm.  相似文献   

6.
The glycopeptide antibiotic vancomycin blocks cell wall synthesis in Escherichia coli only when it can reach its target site in the periplasm. In vivo, sensitivity to vancomycin is enhanced in the presence of the hemolysin (hly) determinant of E. coli or its translocator portion hlyBD. Two different mutations in hlyD alter the cell's susceptibility to vancomycin: mutations in the tolC-homologous region of hlyD increase vancomycin resistance, whereas mutations at the 3′-terminus of hlyD lead to hypersensitivity to vancomycin and to the accumulation of large periplasmic and cytoplasmic pools of this antibiotic in E. coli. These effects are only observed in the presence of functional HlyB and TolC, the two other components of the hemolysin secretion machinery. A defect in TolC causes hyperresistance to vancomycin, even when present together with a mutant HlyD protein which in the presence of TolC renders E. coli hypersensitive to vancomycin. Lipid bilayer experiments in vitro revealed specific interactions between TolC and vancomycin or HlyD protein. Second-site suppressor mutations in hlyD and hlyB were obtained, which abolish the hypersensitive phenotype caused by the 3′-terminal mutations in hlyD. Our results are compatible with the idea that (a) TolC, together with the TolC-homologous part of HlyD, forms a pore in the outer membrane through which hemolysin is released and vancomycin taken up; and (b) the C-terminal sequence of HlyD interacts with periplasmic loop(s) of HlyB to form a closed channel spanning the periplasm.  相似文献   

7.
The glycopeptide antibiotic vancomycin blocks cell wall synthesis in Escherichia coli only when it can reach its target site in the periplasm. In vivo, sensitivity to vancomycin is enhanced in the presence of the hemolysin (hly) determinant of E. coli or its translocator portion hlyBD. Two different mutations in hlyD alter the cell's susceptibility to vancomycin: mutations in the tolC-homologous region of hlyD increase vancomycin resistance, whereas mutations at the 3′-terminus of hlyD lead to hypersensitivity to vancomycin and to the accumulation of large periplasmic and cytoplasmic pools of this antibiotic in E. coli. These effects are only observed in the presence of functional HlyB and TolC, the two other components of the hemolysin secretion machinery. A defect in TolC causes hyperresistance to vancomycin, even when present together with a mutant HlyD protein which in the presence of TolC renders E. coli hypersensitive to vancomycin. Lipid bilayer experiments in vitro revealed specific interactions between TolC and vancomycin or HlyD protein. Second-site suppressor mutations in hlyD and hlyB were obtained, which abolish the hypersensitive phenotype caused by the 3′-terminal mutations in hlyD. Our results are compatible with the idea that (a) TolC, together with the TolC-homologous part of HlyD, forms a pore in the outer membrane through which hemolysin is released and vancomycin taken up; and (b) the C-terminal sequence of HlyD interacts with periplasmic loop(s) of HlyB to form a closed channel spanning the periplasm. Received: 7 April 1997 / Accepted: 28 May 1997  相似文献   

8.
In the secretion of polypeptides from Gram-negative bacteria, the outer membrane constitutes a specific barrier which has to be circumvented. In the majority of systems, secretion is two-step process, with initial export to the periplasm involving an N-terminal signal sequence. Transport across the outer membrane then involves a variable number of ancillary polypeptides including both periplasmic and outer membrane. While such ancillary proteins are probably specific for each secreted protein, the mechanism of movement across the outer membrane is unknown. In contrast to these systems, secretion of theE. coli hemolysin (HlyA) has several distinctive features. These include a novel targeting signal located within the last 50 or so C-terminal amino acids, the absence of any periplasmic intermediates in transfer, and a specific membrane-bound translocator, HlyB, with important mammalian homologues such as P-glycoprotein (Mdr) and the cystic fibrosis protein. In this review we discuss the nature of the HlyA targeting signal, the structure and function of HlyB, and the probability that HlyA is secreted directly to the medium through a trans-envelope complex composed of HlyB and HlyD.  相似文献   

9.
The relatively simple type 1 secretion system in Gram-negative bacteria is nevertheless capable of transporting polypeptides of up to 800 kDa across the cell envelope in a few seconds. The translocator is composed of an ABC-transporter, providing energy through ATP hydrolysis (and perhaps the initial channel across the inner membrane), linked to a multimeric Membrane Fusion Protein (MFP) spanning the initial part of the periplasm and forming a continuous channel to the surface with an outer membrane trimeric protein. Proteins targeted to the translocator carry an (uncleaved), poorly conserved secretion signal of approximately 50 residues. In E. coli the HlyA toxin interacts with both the MFP (HlyD) and the ABC protein HlyB, (a half transporter) triggering, via a conformational change in HlyD, recruitment of the third component, TolC, into the transenvelope complex. In vitro, HlyA, through its secretion signal, binds to the nucleotide binding domain (NBD or ABC-ATPase) of HlyB in a reaction reversible by ATP that may mimic initial movement of HlyA into the translocation channel. HlyA is then transported rapidly, apparently in an unfolded form, to the cell surface, where folding and release takes place. Whilst recent structural studies of TolC and MFP-like proteins are providing atomic detail of much of the transport path, structural analysis of the HlyB NBD and other ABC ATPases, have revealed details of the catalytic cycle within an NBD dimer and a glimpse of how the action of HlyB is coupled to the translocation of HlyA.  相似文献   

10.
The relatively simple type 1 secretion system in gram-negative bacteria is nevertheless capable of transporting polypeptides of up to 800 kDa across the cell envelope in a few seconds. The translocator is composed of an ABC-transporter, providing energy through ATP hydrolysis (and perhaps the initial channel across the inner membrane), linked to a multimeric Membrane Fusion Protein (MFP) spanning the initial part of the periplasm and forming a continuous channel to the surface with an outer membrane trimeric protein. Proteins targeted to the translocator carry an (uncleaved), poorly conserved secretion signal of approximately 50 residues. In E. coli the HlyA toxin interacts with both the MFP (HlyD) and the ABC protein HlyB, (a half transporter) triggering, via a conformational change in HlyD, recruitment of the third component, TolC, into the transenvelope complex. In vitro, HlyA, through its secretion signal, binds to the nucleotide binding domain (NBD or ABC-ATPase) of HlyB in a reaction reversible by ATP that may mimic initial movement of HlyA into the translocation channel. HlyA is then transported rapidly, apparently in an unfolded form, to the cell surface, where folding and release takes place. Whilst recent structural studies of TolC and MFP-like proteins are providing atomic detail of much of the transport path, structural analysis of the HlyB NBD and other ABC ATPases, have revealed details of the catalytic cycle within an NBD dimer and a glimpse of how the action of HlyB is coupled to the translocation of HlyA.  相似文献   

11.
Secretion of Escherichia coli hemolysin is mediated by a sec-independent pathway which requires the products of at least three genes, hlyB, hlyD and tolC. Two regions of HlyD were studied. The first region (region A), consisting of the 33-amino acid, C-terminal part of the HlyD protein, is predicted to form a potential helix-loop-helix structure. This sequence is conserved among HlyD analogues of similar transport systems of other bacterial species. Using site-directed mutagenesis, we showed that the amino acids Leu475, Glu477 and Arg478 of this region are essential for HlyD function. The last amino acid of HlyD, Arg478, is possibly involved in the release of the HlyA protein, since cells bearing a hlyD gene mutant at this position produce similar amounts of HlyA to the wild-type strain, but most of the protein remains cell-associated. Competition experiments between wild-type and mutant HlyD proteins indicate that region A interacts directly with a component of the secretion apparatus. The second region of HIyD (region B), located between amino acids Leul27 and Leu170, is highly homologous to the otherwise unrelated outer membrane protein TolC. Deletion of this region abolishes secretion of hemolysin. This sequence of HlyD also seems to interact with a component of the hemolysin secretion machinery since a hybrid HIyD protein carrying the corresponding TolC sequence, although inactive in the transport of HlyA, is able to displace wild-type HlyD from the secretion apparatus.  相似文献   

12.
A recombinant (r-) Salmonella typhimurium aroA vaccine that secretes the naturally secreted protein of Mycobacterium bovis strain BCG, Ag85B, by means of the HlyB/HlyD/TolC export machinery (termed p30 in the following) was constructed. In contrast to r-S. typhimurium control, oral vaccination of mice with the r-S. typhimurium p30 construct induced partial protection against an intravenous challenge with the intracellular pathogen Mycobacterium tuberculosis, resulting in similar vaccine efficacy comparable to that of the systemically administered attenuated M. bovis BCG strain. The immune response induced by r-S. typhimurium p30 was accompanied by augmented interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) levels produced by restimulated splenocytes. These data suggest that the HlyB/HlyD/TolC-based antigen delivery system with attenuated r-S. typhimurium as carrier is capable of inducing an immune response against mycobacterial antigens.  相似文献   

13.
A simple and efficient procedure for the construction of secreted fusion proteins inEscherichia coli is described that uses a new minitransposon, termed TnhlyAs, carrying the secretion signal (HlyAs) ofE. coli hemolysin (HlyA). This transposon permits the generation of random gene fusions encoding proteins that carry the HlyAs at their C-termini. For the construction of model gene fusions we usedlacZ, encoding the cytoplasmicβ-galactosidase (β-Gal), andphoA, encoding the periplasmic alkaline phosphatase, as target genes. Our data suggest that allβ-Gal-HlyAs fusion proteins generated are secreted, albeit with varying efficiencies, by the HlyB/HlyD/TolC hemolysin secretion machinery under Sec-proficient conditions. In contrast, the PhoA-HlyAs fusion proteins are efficiently secreted in asecA mutant strain only under SecA-deficient conditions.  相似文献   

14.
The Escherichia coli toxin exporter HlyB comprises an integral membrane domain fused to a cytoplasmic domain of the ATP-binding casette (ABC) super-family, and it directs translocation of the 110kDa haemolysin protein out of the bacterial cell without using an N-terminal secretion signal peptide. We have exploited the ability to purify the soluble HlyB ABC domain as a fusion with glutathione S-transferase to obtain a direct correlation of the in vivo export of protein by HlyB with the degree of ATP binding and hydrolysis measured in vitro. Mutations in residues that are invariant or highly conserved in the ATP-binding fold and glycine-rich linker peptide of prokaryotic and eukaryotic ABC transporters caused a complete less of both HlyB exporter function and ATPase activity in proteins still able to bind ATP effectively and undergo ATP-induced conformational change. Mutation of less-conserved residues caused reduced export and ATP hydrolysis, but not ATP binding, whereas substitutions of poorly conserved residues did not impair activity either in vivo or in vitro. The data show that protein export by HlyB has an absolute requirement for the hydrolysis of ATP bound by its cytoplasmic domain and indicate that comparable mutations that disable other prokaryotic and eukaryotic ABC transporters also cause a specific loss of enzymatic activity.  相似文献   

15.
Summary Alkaline phosphatase (AP) is secreted into the medium when the carboxy-terminal 25 amino acids are replaced by the 60 amino acid carboxy-terminal signal peptide (HlyAs) ofEscherichia coli haemolysin (HlyA). Secretion of the AP-HlyAs fusion protein is dependent on HlyB and HlyD but independent of SecA and SecY. The efficiency of secretion by HlyB/HlyD is decreased when AP carries its own N-terminal signal peptide. Translocation of this fusion protein into the periplasm is not observed even in the absence of HlyB/HlyD. The failure of the Sec export machinery to transport the latter protein into the periplasm seems to be due in part to the loss of the carboxy-terminal sequence of AP since even AP derivatives which do not carry the HlyA signal peptide but lack the 25 C-terminal amino acids of AP are localized in the membrane but not translocated into the periplasm.  相似文献   

16.
The hemolysin toxin (HlyA) is secreted across both the cytoplasmic and outer membranes of pathogenic Escherichia coli and forms membrane pores in cells of the host immune system, causing cell dysfunction and death. The processes underlying the interaction of HlyA with the bacterial and mammalian cell membranes are remarkable. Secretion of HlyA occurs without a periplasmic intermediate and is directed by an uncleaved C-terminal targetting signal and the HlyB and HlyD translocator proteins, the former being a member of a transporter superfamily central to import and export of a wide range of substrates by prokaryotic and eukaryotic cells. The separate process by which HlyA is targetted to mammalian cell membranes is dependent upon fatty acylation of a non-toxic precursor, proHlyA. This is achieved by a novel mechanism directed by the activator protein HlyC, which binds to an internal proHlyA recognition sequence and provides specificity for the transfer of fatty acid from cellular acyl carrier protein.  相似文献   

17.
In this work, we have investigated whether the bacterial type I secretion pathway, which does not have a periplasmic intermediate of the secreted protein, allows the formation of disulphide bridges. To this end, the formation of disulphide bonds has been studied in an antibody single-chain Fv (scFv) fragment secreted by the Escherichia coli haemolysin (Hly) transporter (a paradigm of type I secretion). The scFv antibody fragment was used as a disulphide bond and protein-folding reporter, as it contains two disulphide bridges that are required for its correct folding (i.e. to preserve its antigen-binding activity). We show that an scFv-HlyA hybrid secreted by Hly type I transporter (TolC, HlyB, HlyD) is accumulated in the extracellular medium with the disulphide bonds correctly formed. Neither periplasmic and inner membrane-bound Dsb enzymes (e.g. DsbC, DsbG, DsbB and DsbD) nor cytoplasmic thioredoxins (TrxA and TrxC) were required for scFv-HlyA oxidation. However, a mutation of the thioredoxin reductase gene (trxB), which leads to the cytoplasmic accumulation of the oxidized forms of thioredoxins, had a specific inhibitory effect on the Hly-dependent secretion of disulphide-containing proteins. These data suggest that premature cytoplasmic oxidation of the substrate may interfere with the secretion process. Taken together, these results indicate not only that the type I system tolerates secretion of disulphide-containing proteins, but also that disulphide bonds are specifically formed during the passage of the polypeptide through the export conduit.  相似文献   

18.
Analysis of the haemolysin secretion system by PhoA-HlyA fusion proteins   总被引:4,自引:0,他引:4  
Summary We studied the efficiency of the pHly152-derived haemolysin transport system using PhoA-HlyA fusion proteins and different constructs which provide HlyB/HlyD in trans. The optimal C-terminal HlyA signal consists of the last 60 amino acids. Longer stretches of HlyA do not improve the transport efficiency of PhoA-HlyA fusion proteins. The introduction of deletions and/or replacements in the 60 amino acid HlyA signal domain revealed at least three functional regions with different degrees of specificity. Amino acids 1–21 (numbered from the N-terminal part of the 60 amino acid HlyA signal), termed region I, could be replaced by a Pro-containing peptide. The other two regions II and III (amino acids 22–40 and 41–60, respectively) seem to interact directly with the HlyB/HlyD translocator since a PhoA fusion protein which contains either of the two regions was still secreted in a HlyB/HlyD-dependent mode, albeit at low efficiency. An efficient trans-complementing HlyB/HlyD system was only obtained from the pHLy152-encoded hly determinant when the regulatory hlyR element was provided in cis. Secretion of the PhoA-HlyA fusion protein did not interfere with the secretion of HlyA even when the fusion protein was induced to a high level. This suggests that the capacity of the HlyB/HlyD translocation system is high and not normally saturated by its natural HlyA substrate.Dedicated to Prof., Dr. F. Lingens on the occasion of his 65th birthday  相似文献   

19.
Bacterial multidrug efflux pumps operate by periplasmic recruitment and opening of TolC family outer membrane exit ducts by cognate inner membrane translocases. Directed evolution of active hybrid pumps was achieved by challenging a library of mutated, shuffled TolC variants to adapt to the non-cognate Pseudomonas MexAB translocase, and confer resistance to the efflux substrate novobiocin. Amino acid substitutions in MexAB-adapted TolC variants that endowed high resistance were recreated independently, and revealed that MexAB-adaptation was conferred only by substitutions located in the lower alpha-helical barrel of TolC, specifically the periplasmic equatorial domain and entrance coiled coils. These changes converge to the native MexAB partner OprM, and indicate an interface key to the function and diversity of efflux pumps.  相似文献   

20.
TolC is an outer membrane porin protein and an essential component of drug efflux and type-I secretion systems in Gram-negative bacteria. TolC comprises a periplasmic alpha- helical barrel domain and a membrane-embedded beta-barrel domain. TdeA, a functional and structural homolog of TolC, is required for toxin and drug export in the pathogenic oral bacterium Actinobacillus actinomycetemcomitans. Here, we report the expression of the periplasmic domain of TdeA as a soluble protein by substitution of the membraneembedded domain with short linkers, which enabled us to purify the protein in the absence of detergent. We confirmed the structural integrity of the TdeA periplasmic domain by size-exclusion chromatography, circular dichroism spectroscopy, and electron microscopy, which together showed that the periplasmic domain of the TolC protein family can fold correctly on its own. We further demonstrated that the periplasmic domain of TdeA interacts with peptidoglycans of the bacterial cell wall, which supports the idea that completely folded TolC family proteins traverse the peptidoglycan layer to interact with inner membrane transporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号