首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The development of natural product agents with targeted strategies holds promise for enhanced anticancer therapy with reduced drug-associated side effects. Resveratrol found in red wine, has anticancer activity in various tumor types. We reported earlier on a new molecular target of resveratrol, the metastasis-associated protein 1 (MTA1), which is a part of nucleosome remodeling and deacetylation (NuRD) co-repressor complex that mediates gene silencing. We identified resveratrol as a regulator of MTA1/NuRD complex and re-activator of p53 acetylation in prostate cancer (PCa). In the current study, we addressed whether resveratrol analogues also possess the ability to inhibit MTA1 and to reverse p53 deacetylation. We demonstrated that pterostilbene (PTER), found in blueberries, had greater increase in MTA1-mediated p53 acetylation, confirming superior potency over resveratrol as dietary epigenetic agent. In orthotopic PCa xenografts, resveratrol and PTER significantly inhibited tumor growth, progression, local invasion and spontaneous metastasis. Furthermore, MTA1-knockdown sensitized cells to these agents resulting in additional reduction of tumor progression and metastasis. The reduction was dependent on MTA1 signaling showing increased p53 acetylation, higher apoptotic index and less angiogenesis in vivo in all xenografts treated with the compounds, and particularly with PTER. Altogether, our results indicate MTA1 as a major contributor in prostate tumor malignant progression, and support the use of strategies targeting MTA1. Our strong pre-clinical data indicate PTER as a potent, selective and pharmacologically safe natural product that may be tested in advanced PCa.  相似文献   

6.
7.
8.
Epithelial–mesenchymal transition (EMT) is a crucial step in tumor progression and has an important role during cancer invasion and metastasis. Although fucosyltransferase IV (FUT4) has been implicated in the modulation of cell migration, invasion and cancer metastasis, its role during EMT is unclear. This study explores the molecular mechanisms of the involvement of FUT4 in EMT in breast cancer cells. Breast cancer cell lines display increased expression of FUT4, which is accompanied by enhanced appearance of the mesenchymal phenotype and which can be reversed by knockdown of endogenous FUT4. Moreover, FUT4 induced activation of phosphatidylinositol 3-kinase (PI3K)/Akt, and inactivation of GSK3β and nuclear translocation of NF-κB, resulting in increased Snail and MMP-9 expression and greater cell motility. Taken together, these findings indicate that FUT4 has a role in EMT through activation of the PI3K/Akt and NF-κB signaling systems, which induce the key mediators Snail and MMP-9 and facilitate the acquisition of a mesenchymal phenotype. Our findings support the possibility that FUT4 is a novel regulator of EMT in breast cancer cells and a promising target for cancer therapy.  相似文献   

9.
10.
Although DNA 5-hydroxymethylcytosine(5 hmC) is recognized as an important epigenetic mark in cancer, its precise role in lymph node metastasis remains elusive. In this study, we investigated how 5 hmC associates with lymph node metastasis in breast cancer. Accompanying with high expression of TET1 and TET2 proteins, large numbers of genes in the metastasis-positive primary tumors exhibit higher 5 hmC levels than those in the metastasis-negative primary tumors. In contrast, the TET protein expression and DNA 5 hmC decrease significantly within the metastatic lesions in the lymph nodes compared to those in their matched primary tumors. Through genomewide analysis of 8 sets of primary tumors, we identified 100 high-confidence metastasis-associated5 hmC signatures, and it is found that increased levels of DNA 5 hmC and gene expression of MAP7 D1 associate with high risk of lymph node metastasis. Furthermore, we demonstrate that MAP7 D1, regulated by TET1, promotes tumor growth and metastasis. In conclusion, the dynamic5 hmC profiles during lymph node metastasis suggest a link between DNA 5 hmC and lymph node metastasis. Meanwhile, the role of MAP7 D1 in breast cancer progression suggests that the metastasis-associated 5 hmC signatures are potential biomarkers to predict the risk for lymph node metastasis, which may serve as diagnostic and therapeutic targets for metastatic breast cancer.  相似文献   

11.
Multidrug resistance is the main obstacle to curing hepatocellular carcinoma (HCC). Acid‐sensing ion channel 1a (ASIC1a) has critical roles in all stages of cancer progression, especially invasion and metastasis, and in resistance to therapy. Epithelial to mesenchymal transition (EMT) transforms epithelial cells into mesenchymal cells after being stimulated by extracellular factors and is closely related to tumour infiltration and resistance. We used Western blotting, immunofluorescence, qRT‐PCR, immunohistochemical staining, MTT, colony formation and scratch healing assay to determine ASIC1a levels and its relationship to cell proliferation, migration and invasion. ASIC1a is overexpressed in HCC tissues, and the amount increased in resistant HCC cells. EMT occurred more frequently in drug‐resistant cells than in parental cells. Inactivation of ASIC1a inhibited cell migration and invasion and increased the chemosensitivity of cells through EMT. Overexpression of ASIC1a upregulated EMT and increased the cells’ proliferation, migration and invasion and induced drug resistance; knocking down ASIC1a with shRNA had the opposite effects. ASIC1a increased cell migration and invasion through EMT by regulating α and β‐catenin, vimentin and fibronectin expression via the AKT/GSK‐3β/Snail pathway driven by TGFβ/Smad signals. ASIC1a mediates drug resistance of HCC through EMT via the AKT/GSK‐3β/Snail pathway.  相似文献   

12.
13.
14.
The TET family of dioxygenases (TET1/2/3) can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) and has been shown to be involved in active and passive DNA demethylation. Here, we demonstrate that altering TET dioxygenase levels within physiological range can affect DNA methylation dynamics of HEK293 cells. Overexpression of TET1 increased global 5hmC levels and was accompanied by mild DNA demethylation of promoters, gene bodies and CpG islands. Conversely, the simultaneous knockdown of TET1, TET2, and TET3 led to decreased global 5hmC levels and mild DNA hypermethylation of above-mentioned regions. The methylation changes observed in the overexpression and knockdown studies were mostly non-reciprocal and occurred with different preference depending on endogenous methylation and gene expression levels. Single-nucleotide 5hmC profiling performed on a genome-wide scale revealed that TET1 overexpression induced 5mC oxidation without a distribution bias among genetic elements and structures. Detailed analysis showed that this oxidation was related to endogenous 5hmC levels. In addition, our results support the notion that the effects of TET1 overexpression on gene expression are generally unrelated to its catalytic activity.  相似文献   

15.
16.
17.
18.
上皮-间质转化(EMT)在肿瘤侵袭转移发展进程中起着重要的作用.转化生长因子-β(TGF-β)已被证实为肿瘤EMT的主要诱导剂.然而,其分子机制仍有待深入研究.该研究旨在探讨TGF-β1促进非小细胞肺癌(NSCLC)细胞系SPC-A1上皮-间质转化过程中的分子机制.细胞的形态学检查结果显示,TGF-β1刺激SPC-A1细胞后细胞形态变成梭形.Transwell侵袭实验揭示,TGF-β1刺激后细胞侵袭能力明显增强.Western印迹结果证明,与未经TGF-β1刺激的SPC-A1细胞比较,EMT上皮标志物上皮-钙粘蛋白(E-cadherin)表达明显下调,而间质标志物波形蛋白(vimentin)明显上调,p-AKT、p-ARK5的表达也明显增强.此外,转录因子Snail在细胞核内的表达水平明显增强.TGF-β1和PI3K抑制剂LY294002同时刺激SPC-A1细胞后,p-AKT、p-ARK5较只加TGF-β1时表达明显降低,Snail在核内的表达水平也明显降低.结果提示,TGF-β1通过激活AKT、ARK5磷酸化,促进转录因子Snail入核,进而导致SPC-A1细胞EMT.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号