首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

SUMMARY

Treatment of tuberculosis (TB) remains challenging, with lengthy treatment durations and complex drug regimens that are toxic and difficult to administer. Similar to the vast majority of antibiotics, drugs for Mycobacterium tuberculosis are directed against microbial targets. Although more effective drugs that target the bacterium may lead to faster cure of patients, it is possible that a biological limit will be reached that can be overcome only by adopting a fundamentally new treatment approach. TB regimens might be improved by including agents that target host pathways. Recent work on host-pathogen interactions, host immunity, and host-directed interventions suggests that supplementing anti-TB therapy with host modulators may lead to shorter treatment times, a reduction in lung damage caused by the disease, and a lower risk of relapse or reinfection. We undertook this review to identify molecular pathways of the host that may be amenable to modulation by small molecules for the treatment of TB. Although several approaches to augmenting standard TB treatment have been proposed, only a few have been explored in detail or advanced to preclinical and clinical studies. Our review focuses on molecular targets and inhibitory small molecules that function within the macrophage or other myeloid cells, on host inflammatory pathways, or at the level of TB-induced lung pathology.  相似文献   

2.
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is one of the leading infectious disease causes of morbidity and mortality worldwide. Though current antibiotic regimens can cure the disease, treatment requires at least six months of drug therapy. One reason for the long duration of therapy is that the currently available TB drugs were selected for their ability to kill replicating organisms and are less effective against subpopulations of non-replicating persistent bacilli. Evidence from in vitro models of Mtb growth and mouse infection studies suggests that host immunity may provide some of the environmental cues that drive Mtb towards non-replicating persistence. We hypothesized that selective modulation of the host immune response to modify the environmental pressure on the bacilli may result in better bacterial clearance during TB treatment. For this proof of principal study, we compared bacillary clearance from the lungs of Mtb-infected mice treated with the anti-TB drug isoniazid (INH) in the presence and absence of an immunomodulatory phosphodiesterase 4 inhibitor (PDE4i), CC-3052. The effects of CC-3052 on host global gene expression, induction of cytokines, and T cell activation in the lungs of infected mice were evaluated. We show that CC-3052 modulates the innate immune response without causing generalized immune suppression. Immune modulation combined with INH treatment improved bacillary clearance and resulted in smaller granulomas and less lung pathology, compared to treatment with INH alone. This novel strategy of combining anti-TB drugs with an immune modulating molecule, if applied appropriately to patients, may shorten the duration of TB treatment and improve clinical outcome.  相似文献   

3.
Tuberculosis (TB) remains an infectious disease of global significance and a leading cause of death in low- and middle-income countries. Significant effort has been directed towards understanding Mycobacterium tuberculosis genomics, virulence, and pathophysiology within the framework of Koch postulates. More recently, the advent of “-omics” approaches has broadened our appreciation of how “commensal” microbes have coevolved with their host and have a central role in shaping health and susceptibility to disease. It is now clear that there is a diverse repertoire of interactions between the microbiota and host immune responses that can either sustain or disrupt homeostasis. In the context of the global efforts to combatting TB, such findings and knowledge have raised important questions: Does microbiome composition indicate or determine susceptibility or resistance to M. tuberculosis infection? Is the development of active disease or latent infection upon M. tuberculosis exposure influenced by the microbiome? Does microbiome composition influence TB therapy outcome and risk of reinfection with M. tuberculosis? Can the microbiome be actively managed to reduce risk of M. tuberculosis infection or recurrence of TB? Here, we explore these questions with a particular focus on microbiome-immune interactions that may affect TB susceptibility, manifestation and progression, the long-term implications of anti-TB therapy, as well as the potential of the host microbiome as target for clinical manipulation.  相似文献   

4.
Tuberculosis (TB) remains the second highest killer from a single infectious disease worldwide. Current therapy of TB is lengthy and consists of multiple expensive antibiotics, in a strategy referred to as Directly Observed Treatment, Short Course (DOTS). Although this therapy is effective, it has serious disadvantages. These therapeutic agents are toxic and are associated with the development of a variety of drug-resistant TB strains. Furthermore, patients treated with DOTS exhibit enhanced post-treatment susceptibility to TB reactivation and reinfection, suggesting therapy-related immune impairment. Here we show that Isoniazid (INH) treatment dramatically reduces Mycobacterium tuberculosis antigen-specific immune responses, induces apoptosis in activated CD4+ T cells, and renders treated animals vulnerable to TB reactivation and reinfection. Consequently, our findings suggest that TB treatment is associated with immune impairment.  相似文献   

5.
Pulmonary tuberculosis (TB), caused by Mycobacterium tuberculosis, is the leading cause of death due to a bacterial pathogen. Emerging epidemiologic evidence suggests that the leading risk factor associated with TB mortality is cigarette smoke exposure. Despite this, it remains poorly understood what is the effect of cigarette smoke exposure on anti-TB immunity and whether its potential detrimental effect can be reversed by cigarette smoking cessation. In our current study, we have investigated the impact of both continuous and discontinuous cigarette smoke exposure on the development of anti-mycobacterial type 1 immunity in murine models. We find that while continuous cigarette smoke exposure severely impairs type 1 immunity in the lung, a short-term smoking cessation allows rapid restoration of anti-mycobacterial immunity. The ability of continuous cigarette smoke exposure to dampen type 1 protective immunity is attributed locally to its affects on innate immune cells in the lung. Continuous cigarette smoke exposure locally, by not systemically, impairs APC accumulation and their production of TNF, IL-12, and RANTES, blunts the recruitment of CD4+IFN-γ+ T cells to the lung, and weakens the formation of granuloma. On the other hand, smoking cessation was found to help restore type 1 immunity by rapidly improving the functionality of lung APCs, enhancing the recruitment of CD4+IFN-γ+ T cells to the lung, and promoting the formation of granuloma. Our study for the first time demonstrates that continuous, but not discontinuous, cigarette smoke exposure severely impedes the lung expression of anti-TB Th1 immunity via inhibiting innate immune activation and lung T cell recruitment. Our findings thus suggest cigarette smoking cessation to be beneficial to the control of pulmonary TB.  相似文献   

6.
7.
CD4+/CD8+ T cells play a major role in conferring immune protection against tuberculosis (TB), but it remains unknown how the immune responses of CD4+/CD8+ T cells exactly correlate with the clinical variables and disease statuses during anti-TB chemotherapy. To address this, several major immune parameters of CD4+/CD8+ T cells in peripheral blood derived from pulmonary TB patients and healthy volunteers were evaluated. We observed that active TB infection induced lower CD3+ T cell and CD4+ T cell levels but higher CD8+T cell levels, while anti-TB chemotherapy reversed these effects. Also, anti-TB treatment induced enhanced production of IL-2 and IFN-γ but reduced expression of IL-10 and IL-6. Moreover, the dynamic changes of CD3, CD4, and CD8 levels did not show a significant association with sputum smear positivity. However, the frequencies of IL-2+CD4+ or IL-10 + CD4+ T effector subpopulation or IL-1β production in peripheral blood showed significant difference between patients positive for sputum smear and patients negative for sputum smear after anti-TB treatment. These findings implicated that recovery of Th1/CD8+T cell effector levels might be critical immunological events in pulmonary TB patients after treatment and further suggested the importance of these immunological parameters as potential biomarkers for prediction of TB progress and prognosis.  相似文献   

8.

Background

Human immunodeficiency virus (HIV)-infected patients are at an increased risk of tuberculosis (TB) and its recurrence following completion of anti-TB treatment. We investigated whether extending anti-TB treatment to 9 months or longer reduces TB recurrence.

Methods

HIV-infected patients who were diagnosed with pulmonary TB between 1997 and 2009 and who received anti-TB treatment for a duration between 5.5 and 12.5 months were identified from the National Health Insurance Research Database in Taiwan. Those who received any non-fluoroquinolone second-line anti-TB drug for >28 days were excluded. Factors associated with TB recurrence within 2 years after completion of anti-TB treatment were explored using Cox regression analysis. Sensitivity analysis was performed for a subpopulation fulfilling strict diagnostic criteria for HIV infection.

Results

TB recurrence was observed in 18 (3.5%) of 508 HIV-infected patients. The recurrence rate declined from 5.4% to 1.0% after the implementation of directly observed therapy, short course (DOTS) in 2006 (p = 0.014). The recurrence rate was 5.9%, 5.2%, and 1.6% in patients who received anti-TB treatment for <195, 195–270, and >270 days, respectively (p = 0.066). Cox regression analysis revealed that TB diagnosed in the DOTS era (hazard ratio [HR]: 0.18 [0.04–0.77]) and anti-TB treatment for >270 days (HR: 0.24 [0.06–0.89]) were associated with a reduced risk of TB recurrence. Sensitivity analysis of 449 selected patients revealed that anti-TB treatment for >270 days was a significant factor.

Conclusion

In Taiwan, the 2-year TB recurrence rate in HIV-infected patients declined after implementation of DOTS. The risk of TB recurrence in HIV-infected patients can be further reduced by extending anti-TB treatment to 9–12.5 months.  相似文献   

9.
随着对抗结核免疫机制的深入研究,新型结核疫苗的研发也更加理性和成熟。近期研究表明,CD4 T细胞多功能至关重要,人类CD8和γδT细胞也有抗结核免疫保护作用,是新型疫苗设计有潜力的T细胞靶点。系统的"组学"技术大规模筛选有可能发现更多强免疫原性的抗原。不同表达时期的多抗原组成的多价疫苗对不同感染时期的结核都有预防作用。针对潜伏感染或已经感染个体配合化学药物使用的新型治疗性疫苗,有望促进清除残留的结核分枝杆菌。  相似文献   

10.
结核病是由结核分枝杆菌引起的慢性感染性疾病,经过呼吸道感染后侵犯机体器官,严重威胁全球公共卫生。传统结核诊疗手段存在诊断效率低、易误诊漏诊、易产生耐药、治疗效果和患者依从性差等瓶颈问题,亟需开发快速、准确的结核即时诊断(POC)方法和安全、高效的结核治疗方案,切实解决结核防治难题。本文总结了纳米材料在结核病诊疗领域的研究进展及应用前景,旨在为开发新一代安全、快速、有效的结核病诊疗方法提供参考。  相似文献   

11.
Immunization with radiation-attenuated Plasmodium spp. sporozoites induces sterile protective immunity against parasite challenge. This immunity is targeted primarily against the intrahepatic parasite and appears to be sustained long term even in the absence of sporozoite exposure. It is mediated by multifactorial mechanisms, including T cells directed against parasite antigens expressed in the liver stage of the parasite life cycle and antibodies directed against sporozoite surface proteins. In rodent models, CD8+ T cells have been implicated as the principal effector cells, and IFN-gamma as a critical effector molecule. IL-4 secreting CD4+ T cells are required for induction of the CD8+ T cell responses, and Th1 CD4+ T cells provide help for optimal CD8+ T cell effector activity. Components of the innate immune system, including gamma-delta T cells, natural killer cells and natural killer T cells, also play a role. The precise nature of pre-erythrocytic stage immunity in humans, including the contribution of these immune responses to the age-dependent immunity naturally acquired by residents of malaria endemic areas, is still poorly defined. The importance of immune effector targets at the pre-erythrocytic stage of the parasite life cycle is highlighted by the fact that infection-blocking immunity in humans rarely, if ever, occurs under natural conditions. Herein, we review our current understanding of the molecular and cellular aspects of pre-erythrocytic stage immunity.  相似文献   

12.

Background

Schistosomiasis (bilharzia) is a chronic and potentially deadly parasitic disease that affects millions of people in (sub)tropical areas. An important partial immunity to Schistosoma infections does develop in disease endemic areas, but this takes many years of exposure and maturation of the immune system. Therefore, children are far more susceptible to re-infection after treatment than older children and adults. This age-dependent immunity or susceptibility to re-infection has been shown to be associated with specific antibody and T cell responses. Many antibodies generated during Schistosoma infection are directed against the numerous glycans expressed by Schistosoma. The nature of glycan epitopes recognized by antibodies in natural schistosomiasis infection serum is largely unknown.

Methodology/Principal Findings

The binding of serum antibodies to glycans can be analyzed efficiently and quantitatively using glycan microarray approaches. Very small amounts of a large number of glycans are presented on a solid surface allowing binding properties of various glycan binding proteins to be tested. We have generated a so-called shotgun glycan microarray containing natural N-glycan and lipid-glycan fractions derived from 4 different life stages of S. mansoni and applied this array to the analysis of IgG and IgM antibodies in sera from children and adults living in an endemic area. This resulted in the identification of differential glycan recognition profiles characteristic for the two different age groups, possibly reflecting differences in age or differences in length of exposure or infection.

Conclusions/Significance

Using the shotgun glycan microarray approach to study antibody response profiles against schistosome-derived glycan elements, we have defined groups of infected individuals as well as glycan element clusters to which antibody responses are directed in S. mansoni infections. These findings are significant for further exploration of Schistosoma glycan antigens in relation to immunity.  相似文献   

13.
The immune system can recognize virtually any antigen, yet T cell responses against several pathogens, including Mycobacterium tuberculosis, are restricted to a limited number of immunodominant epitopes. The host factors that affect immunodominance are incompletely understood. Whether immunodominant epitopes elicit protective CD8+ T cell responses or instead act as decoys to subvert immunity and allow pathogens to establish chronic infection is unknown. Here we show that anatomically distinct human granulomas contain clonally expanded CD8+ T cells with overlapping T cell receptor (TCR) repertoires. Similarly, the murine CD8+ T cell response against M. tuberculosis is dominated by TB10.44-11-specific T cells with extreme TCRβ bias. Using a retrogenic model of TB10.44-11-specific CD8+ T cells, we show that TCR dominance can arise because of competition between clonotypes driven by differences in affinity. Finally, we demonstrate that TB10.4-specific CD8+ T cells mediate protection against tuberculosis, which requires interferon-γ production and TAP1-dependent antigen presentation in vivo. Our study of how immunodominance, biased TCR repertoires, and protection are inter-related, provides a new way to measure the quality of T cell immunity, which if applied to vaccine evaluation, could enhance our understanding of how to elicit protective T cell immunity.  相似文献   

14.
Tuberculosis (TB) treatment is hampered by the long duration of antibiotic therapy required to achieve cure. This indolent response has been partly attributed to the ability of subpopulations of less metabolically active Mycobacterium tuberculosis (Mtb) to withstand killing by current anti-TB drugs. We have used immune modulation with a phosphodiesterase-4 (PDE4) inhibitor, CC-3052, that reduces tumor necrosis factor alpha (TNF-α) production by increasing intracellular cAMP in macrophages, to examine the crosstalk between host and pathogen in rabbits with pulmonary TB during treatment with isoniazid (INH). Based on DNA microarray, changes in host gene expression during CC-3052 treatment of Mtb infected rabbits support a link between PDE4 inhibition and specific down-regulation of the innate immune response. The overall pattern of host gene expression in the lungs of infected rabbits treated with CC-3052, compared to untreated rabbits, was similar to that described in vitro in resting Mtb infected macrophages, suggesting suboptimal macrophage activation. These alterations in host immunity were associated with corresponding down-regulation of a number of Mtb genes that have been associated with a metabolic shift towards dormancy. Moreover, treatment with CC-3052 and INH resulted in reduced expression of those genes associated with the bacterial response to INH. Importantly, CC-3052 treatment of infected rabbits was associated with reduced ability of Mtb to withstand INH killing, shown by improved bacillary clearance, from the lungs of co-treated animals compared to rabbits treated with INH alone. The results of our study suggest that changes in Mtb gene expression, in response to changes in the host immune response, can alter the responsiveness of the bacteria to antimicrobial agents. These findings provide a basis for exploring the potential use of adjunctive immune modulation with PDE4 inhibitors to enhance the efficacy of existing anti-TB treatment.  相似文献   

15.
Mycobacterium tuberculosis (Mtb), the pathogen of tuberculosis (TB), is one of the most infectious bacteria in the world. The traditional strategy to combat TB involves targeting the pathogen directly; however, the rapid evolution of drug resistance lessens the efficiency of this anti-TB method. Therefore, in recent years, some researchers have turned to an alternative anti-TB strategy, which hinders Mtb infection through targeting host genes. In this work, using a theoretical genetic analysis, we identified 170 Mtb infection-associated genes from human genetic variations related to Mtb infection. Then, the agents targeting these genes were identified to have high potential as anti-TB drugs. In particular, the agents that can target multiple Mtb infection-associated genes are more druggable than the single-target counterparts. These potential anti-TB agents were further screened by gene expression data derived from connectivity map. As a result, some agents were revealed to have high interest for experimental evaluation. This study not only has important implications for anti-TB drug discovery, but also provides inspirations for streamlining the pipeline of modern drug discovery.  相似文献   

16.
17.

Background

The QuantiFERON-TB Gold In-Tube (QFT-GIT) is a newly developed but widely used interferon-γ release assay for diagnosing tuberculosis (TB). However, research has not determined whether age or the use of an immune suppressive or anti-TB treatment influences this assay’s ability to detect TB. We assessed the QFT-GIT diagnostic performance for active tuberculosis (ATB) in children and adults in an endemic country and explored the effects of glucocorticoids and anti-TB therapy on the diagnostic value of the QFT-GIT.

Methods

A total of 60 children and 212 adults with suspected ATB were evaluated with the QFT-GIT. The association between the QFT-GIT diagnostic value and pretreatment factors was qualitatively and quantitatively assessed.

Results

The sensitivity of the QFT-GIT was 83.9% (95% CI 66.3%-94.6%) in children, and 73.7% (95% CI 57.8%-85.2%) in adults. Glucocorticoids affected the mitogen-stimulated response in both children and adults. In subjects undergoing glucocorticoid pretreatment, 25.0% of the children presented with false-negative QFT-GIT results, 28.6% of adults presented with indeterminate results. For subjects pre-treated with anti-TB drugs, 44.4% presented with false-negative QFT-GIT results.

Conclusions

The QFT-GIT has higher sensitivity and specificity in children than adults. Glucocorticoid treatment negatively impacts the diagnostic value of the QFT-GIT in all age groups. Anti-TB treatment decreases the sensitivity of the QFT-GIT. Therefore, we recommend that the QFT-GIT assay be performed before TB-specific treatment is initiated and the test should not be used on people undergoing immunosuppression treatment, regardless of their age. A quantitative analysis of the QFT-GIT could be useful for assessing and monitoring TB-specific and non-specific immunity during conversion of the disease.  相似文献   

18.
To investigate if bacterial persistence during TB drug treatment could be overcome by modulation of host immunity, we adapted a clinically-relevant model developed for the evaluation of new drugs and examined if immunotherapy with two adenoviral vaccines, Ad35-TBS (AERAS-402) and Ad26-TBS, could shorten therapy in mice. Even though immunotherapy resulted in strong splenic IFN-γ responses, no effect on bacterial replication in the lungs was seen. Multiplex assay analysis of lung samples revealed the absence of cytokine augmentation such as IFN-γ, TNF-α and IL-2, suggesting that immunization failed to induce immunity in the lungs. In this model, we show that IFN-γ levels were not associated with protection against disease relapse. The results obtained from our study raise questions regarding the traits of protective TB immunity that are relevant for the development of future immunotherapeutic and post-exposure vaccination strategies.  相似文献   

19.
Tuberculosis (TB) is a serious and potentially fatal disease caused by Mycobacterium tuberculosis (M. tb). The occurrence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) M. tb is a significant public health concern because most of the anti-TB drugs that have been in use for over 40 years are no longer effective for the treatment of these infections. Recently, new anti-TB lead compounds such as cyclomarin A, lassomycin, and ecumicin, which are cyclic peptides from actinomycetes, have shown potent anti-TB activity against MDR and XDR M. tb as well as drug-susceptible M. tb in vitro. The target molecule of these antibiotics is ClpC1, a protein that is essential for the growth of M. tb. In this review, we introduce the three anti-TB lead compounds as potential anti-TB therapeutic agents targeting ClpC1 and compare them with the existing anti-TB drugs approved by the US Food and Drug Administration.  相似文献   

20.
Type 1 diabetes is an autoimmune disease caused by the immune‐mediated destruction of insulin‐producing pancreatic β cells. In recent years, the incidence of type 1 diabetes continues to increase. It is supposed that genetic, environmental and immune factors participate in the damage of pancreatic β cells. Both the immune regulation and the immune response are involved in the pathogenesis of type 1 diabetes, in which cellular immunity plays a significant role. For the infiltration of CD4+ and CD8+ T lymphocyte, B lymphocytes, natural killer cells, dendritic cells and other immune cells take part in the damage of pancreatic β cells, which ultimately lead to type 1 diabetes. This review outlines the cellular immunological mechanism of type 1 diabetes, with a particular emphasis to T lymphocyte and natural killer cells, and provides the effective immune therapy in T1D, which is approached at three stages. However, future studies will be directed at searching for an effective, safe and long‐lasting strategy to enhance the regulation of a diabetogenic immune system with limited toxicity and without global immunosuppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号