首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Mississippi River Delta, the common wetland grass, Phragmites australis, displays high genetic diversity, as several genetically distinct populations are co-occurring. Differences in salinity tolerance may be an important factor determining these populations’ distribution in the delta. Our study investigated the salt tolerance of four genotypes exposed to 0, 10, 20, 30, and 40 ppt salinity. The growth rate, biomass, and the light-saturated photosynthetic rate were stimulated at 10 ppt salinity and inhibited at salinities higher than 20 ppt, compared to controls. Increased concentrations of Cl? and Na+ were found in the roots and older leaves of plants exposed to high salinities. Salt tolerance levels differed between genotypes. High salinity tolerance was mainly achieved by reduced water uptake and vacuole compartmentalization of toxic ions. The most tolerant genotype sustained biomass and photosynthesis even at 40 ppt, whereas the most sensitive genotype did not survive salinities higher than 20 ppt. Our findings show that the observed occurrence of different genotypes in the Mississippi River Delta is correlated to genetically determined differences in salinity tolerance. Further investigations are needed to better understand the role that salinity tolerance plays in the invasion of certain introduced P. australis genotypes.  相似文献   

2.
Microalgae are ideal candidates for bioremediation and biotechnological applications. However, salinity and nutrient resource availability vary seasonally and between cultivation sites, potentially impacting on biomass productivity. The aim of this study was to screen pollutant-tolerant freshwater microalgae (Desmodesmus armatus, Mesotaenium sp., Scenedesmus quadricauda and Tetraedron sp.), isolated from Tarong power station ash-dam water, for their tolerance to cultivation at a range of salinities. To determine if biochemical composition could be manipulated, the effects of 4-day nutrient limitation were also determined. Microalgae were cultured at 2, 8, 11 and 18 ppt salinity, and nutrient uptake was monitored daily. Growth, total lipid, fatty acid (FA), and amino acid contents were quantified in biomass harvested while nutrient-replete and, after 4 days, nutrient-deplete. D. armatus showed the highest salinity tolerance actively growing in up to 18 ppt while Mesotaenium sp. was the least halotolerant with decreasing growth rates from 11 ppt. However, Mesotaenium sp. at 2 and 8 ppt had the highest biomass productivity and nutrient requirements of the four species, making it ideal for nutrient remediation of eutrophic freshwater effluents. Salinity and nutrient status had minimal influence on total lipid and FA contents in D. armatus and Mesotaenium sp., while nutrient depletion induced an increase of total lipid and FAs in S. quadricauda and Tetraedron sp., which was further increased with increasing salinity. As none of the growth conditions affected amino acid profiles of the species, these findings provide a basis for species selection based on site-specific salinity conditions and nutrient resource availability.  相似文献   

3.
  • 1.1. A starvation test was conducted in small beakers with stage 1 (S1) and stage 2 (S2) Macrobrachium rosenbergii larvae to determine optimal salinities.
  • 2.2. Experiments were first performed with S2 larvae at 13 ppt to identify a suitable medium made with artificial sea salts.
  • 3.3. A broad-range (0–35 ppt) and a subsequent narrow-range (9–16 ppt) salinity experiment with S2 larvae were used to identify 13 ppt as the optimal salinity, with 12 ppt as the next best; this agrees well with most previous estimates of optimal salinities for rearing larvae.
  • 4.4. S1 larvae were also tested in a narrow-range salinity experiment but were not used further because, unlike starved S2 larvae, they molted during the experiment.
  • 5.5. Identification of the optimal salinity was not affected by 50% daily water exchange or by bright light.
  • 6.6. Exposure of larvae to three different salinities—7, 13 and 19 ppt—during S1 influenced the width of the optimal salinity range for S2 larvae.
  相似文献   

4.
A glasshouse study investigated the effect of salinity on growth and competitive interactions between two closely related rush species, an Australian native (Juncus kraussii) and an exotic (J. acutus) species. Overall, both species exhibited decreases in height and total biomass with increasing salinity, although tolerance of J. acutus was marginally lower. We observed asymmetric responses at each salinity, due to the presence of the other species. In fresh-water, co-presence of J. kraussii facilitated the growth (increases in height and total biomass) of J. acutus. However, at 10 ppt salinity direct interspecific competition with J. kraussii adversely affected total biomass of J. acutus. When grown with J. acutus, at 5 ppt but not at 10 ppt, salinity reduced total biomass of J. kraussii. We suggest that interspecific interactions vary with salinity, dependant on relative salinity tolerance of each species. It would appear that in areas receiving regular fresh-water inputs, which reduce salinity stress, J. acutus has the potential to displace J. kraussii.  相似文献   

5.
Toxic Pseudo-nitzschia australis strains isolated from French coastal waters were studied to investigate their capacity to adapt to different salinities. Their acclimation to different salinity conditions (10, 20, 30, 35, and 40) was studied on growth, photosynthetic capacity, cell biovolume, and domoic acid (DA) content. The strains showed an ability to acclimate to a salinity range from 20 to 40, with optimal growth rates between salinities 30 and 40. The highest cell biovolume was observed at the lowest salinity 20 and was associated with the lowest growth rate. Salinity did not affect the photosynthetic activity; Fv/Fm values and the pigment contents remained high with no significant difference among salinities. An enhanced production of zeaxanthin was, however, observed in the late stationary and decline phases in all cultures except for those acclimated to salinity 20. In terms of cellular toxin content, DA concentrations were 2 to 3-fold higher at the lowest salinity (20) than at the other salinities and were combined with a low amount of dissolved DA. The fact that P. australis accumulate more DA per cell in less saline waters, illustrates that climate-related changes in salinity may affect Pseudo-nitzschia physiology through direct effects on growth, physiology, and toxin content.  相似文献   

6.
We quantified the independent impacts of flooding salinity, flooding depth, and flooding frequency on the native species, Phragmites australis and Scirpus mariqueter, and on the invasive species Spartina alterniflora in the Yangtze River Estuary, China. Total biomass of all three species decreased significantly with increasing salinity, but S. alterniflora was less severely affected than P. australis and S. mariqueter. Elevated flooding depth significantly decreased their live aboveground biomass of P. australis and S. mariqueter, while S. alterniflora still had high live aboveground biomass and total biomass even at the highest flooding depth. These findings indicated that S. alterniflora was more tolerant to experimental conditions than the two native species, and an unavoidable suggestion is the expansion of this non-native species in relation to the native counterparts in future scenarios of increased sea-level and saltwater intrusion. Even so, environmental stresses might lead to significant decreases in total biomass and live aboveground biomass of all three species, which would potentially weaken their ability to trap sediments and accumulate organic matter. However, the relatively high belowground-to-aboveground biomass ratio indicated phenotypic plasticity in response to stressful environmental conditions, which suggest that marsh species can adapt to sea-level rise and maintain marsh elevation.  相似文献   

7.
Synopsis Salinity tolerances and plasma osmotic regulatory capacity were determined in individuals of Adinia xenica following laboratory acclimations. Survival of individuals was better than 90% of those entered into the acclimation sequence from an initial acclimation salinity of 17.0 ppt down to fresh-water, and up to 95.0 ppt. Survival of individuals transferred from 95.0 to 105.0 ppt was low. Adinia showed most consistent plasma osmotic regulation in the range of ambient salinities from 17.0 to 60.0 ppt, but responded well over the ambient salinity range from 0.5 ppt to 85.0 ppt. Plasma osmotic concentrations were higher at common ambient salinities, but in a generally similar overall pattern of response, compared with such euryhaline cyprinodontids as Cyprinodon variegatus and Fundulus kansae.  相似文献   

8.
By increasing water use efficiency and carbon assimilation, increasing atmospheric CO2 concentrations could potentially improve plant productivity and growth at high salinities. To assess the effect of elevated CO2 on the salinity response of a woody halophyte, we grew seedlings of the mangrove Avicennia germinans under a combination of five salinity treatments [from 5 to 65 parts per thousand (ppt)] and three CO2 concentrations (280, 400 and 800 ppm). We measured survivorship, growth rate, photosynthetic gas exchange, root architecture and foliar nutrient and ion concentrations. The salinity optima for growth shifted higher with increasing concentrations of CO2, from 0 ppt at 280 ppm to 35 ppt at 800 ppm. At optimal salinity conditions, carbon assimilation rates were significantly higher under elevated CO2 concentrations. However, at salinities above the salinity optima, salinity had an expected negative effect on mangrove growth and carbon assimilation, which was not alleviated by elevated CO2, despite a significant improvement in photosynthetic water use efficiency. This is likely due to non‐stomatal limitations to growth at high salinities, as indicated by our measurements of foliar ion concentrations that show a displacement of K+ by Na+ at elevated salinities that is not affected by CO2. The observed shift in the optimal salinity for growth with increasing CO2 concentrations changes the fundamental niche of this species and could have significant effects on future mangrove distribution patterns and interspecific interactions.  相似文献   

9.
Salinity fluctuation is one of the main factors affecting the overall fitness of marine fish. In addition, water borne ammonia may occur simultaneously with salinity stress. Additionally, under such stressful circumstances, fish may encounter food deprivation. The physiological and ion-osmo regulatory adaptive capacities to cope with all these stressors alone or in combination are extensively addressed in fish. To date, studies revealing the modulation of antioxidant potential as compensatory response to multiple stressors are rather lacking. Therefore, the present work evaluated the individual and combined effects of salinity challenge, ammonia toxicity and nutritional status on oxidative stress and antioxidant status in a marine teleost, European sea bass (Dicentrarchus labrax). Fish were acclimated to normal seawater (32 ppt), to brackish water (20 ppt and 10 ppt) and to hypo-saline water (2.5 ppt). Following acclimation to different salinities for two weeks, fish were exposed to high environmental ammonia (HEA, 20 mg/L representing 50% of 96h LC50 value for ammonia) for 12 h, 48 h, 84 h and 180 h, and were either fed (2% body weight) or fasted (unfed for 7 days prior to HEA exposure). Results show that in response to decreasing salinities, oxidative stress indices such as xanthine oxidase activity, levels of hydrogen peroxide (H2O2) and lipid peroxidation (malondialdehyde, MDA) increased in the hepatic tissue of fasted fish but remained unaffected in fed fish. HEA exposure at normal salinity (32 ppt) and at reduced salinities (20 ppt and 10 ppt) increased ammonia accumulation significantly (84 h–180 h) in both feeding regimes which was associated with an increment of H2O2 and MDA contents. Unlike in fasted fish, H2O2 and MDA levels in fed fish were restored to control levels (84 h–180 h); with a concomitant increase in superoxide dismutase (SOD), catalase (CAT), components of the glutathione redox cycle (reduced glutathione, glutathione peroxidase and glutathione reductase), ascorbate peroxidase (APX) activity and reduced ascorbate (ASC) content. On the contrary, fasted fish could not activate many of these protective systems and rely mainly on CAT and ASC dependent pathways as antioxidative sentinels. The present findings exemplify that in fed fish single factors and a combination of HEA exposure and reduced seawater salinities (upto 10 ppt) were insufficient to cause oxidative damage due to the highly competent antioxidant system compared to fasted fish. However, the impact of HEA exposure at a hypo-saline environment (2.5 ppt) also defied antioxidant defence system in fed fish, suggesting this combined factor is beyond the tolerance range for both feeding groups. Overall, our results indicate that the oxidative stress mediated by the experimental conditions were exacerbated during starvation, and also suggest that feed deprivation particularly at reduced seawater salinities can instigate fish more susceptible to ammonia toxicity.  相似文献   

10.
《Aquatic Botany》2005,81(3):199-211
In Ireland, Schoenoplectus triqueter is confined to areas in the upper part of the Shannon estuary where average summer soil pore water salinity levels do not exceed 7.0 ppt. Soil-based and nutrient solution-based experiments showed that growth and reproduction of S. triqueter was significantly reduced at salinity of 10 ppt and significantly enhanced at 2.0 ppt compared to a freshwater control. Young plants were less tolerant of salinity than older plants. A transplantation trial showed that S. triqueter could grow at higher salinities in the field but that growth and reproduction were significantly inhibited at higher field salinities. The effect of simulated diurnal tidal inundation on the growth and reproduction of S. triqueter was examined by growing plants in a tank with fluctuating water levels. S. triqueter was able to grow and produce seed when inundated for up to 12 h per 24-h period, indicating a considerable capacity to withstand periodic inundation. Growth responses to simulated tidal inundation were also examined in Bolboschoenus maritimus. Long periods of daily inundation reduced growth of B. maritimus proportionately more than that of S. triqueter. It is concluded that S. triqueter occupies a narrow ecological niche in the Shannon Estuary that is circumscribed by competition from more robust emergent species but is facilitated by the ability of S. triqueter to tolerate lengthy periods of inundation by the tides.  相似文献   

11.
Juncus kraussii Hochst., an important saltmarsh macrophyte, is intensively harvested for many commercially orientated products and current populations are under threat of overexploitation. In saline, intertidal mud banks, this species occurs on higher ground, suggesting that it is adapted to lower salinities and less frequent inundation. The objectives of this study were to determine biomass accumulation, as well as morphological and physiological adaptations of J. kraussii to salinity and waterlogging stresses. Plants collected from the field were subjected to 0.2, 10, 30, 50 and 70% seawater under drained or flooded conditions for three months. Measurements were made of biomass accumulation, CO2 exchange, chlorophyll fluorescence, ion and water relations. Furthermore, seed germination responses to a range of salinities were investigated. Total dry biomass accumulation, as well as the number and height of culms, decreased with increase in salinity under both flooded and drained conditions. Generally, CO2 exchange, stomatal conductance, Photosystem II (PSII) quantum yield and electron transport rate (ETR) through PSII declined with increase in salinity in both the flooded and drained treatments. Predawn and midday ψ in culms decreased with increase in salinity, being lower under drained than flooded conditions. Inorganic solute concentrations in culms increased with increase in salinity, with Na+ and Cl being the predominant ions. Na+/K+ ratios in culms increased significantly with increase in salinity. Proline concentrations in roots and culms, which increased with salinity, were considerably higher under drained than flooded conditions. Germination was best at salinities less than 20% seawater and decreased significantly with further increase in salinity to 110% seawater. Transfer of ungerminated salt-treated seeds to distilled water stimulated germination. This study has demonstrated that J. kraussii is a highly salt and flood tolerant species, being able to grow and survive in salinities up to 70% seawater, under both drained and flooded conditions. Maximal growth occurred at low salinities (<10% seawater) under flooded condition.  相似文献   

12.
We exposed snails of an invasive species of golden apple snail (Pomacea canaliculata) to five artificial sea water treatments at salinity levels of 0, 5, 10, 15 or 20 parts per thousand (ppt) to assess their salinity tolerance. We observed the behaviour, heart rate, total haemocyte counts, haemolymph ionic concentration and Na+/K+-ATPase activity in the mantle at 0, 12, 24, 48, 72 and 96 h post salinity exposures. The heart rate declined with increasing salinity, while Na+/K+-ATPase activity in the mantle presented a reverse trend, possibly to maintain normal osmolality. A trend of rising total haemocyte count was observed from 0 ppt and 5 ppt to 10 ppt salinities, while a sudden increase in the count was observed at 15 ppt and 20 ppt salinity groups. Furthermore, haemolymph Cl?, Na+ and K+ concentrations increased directly with elevated salinity. An additional trial was performed to assess the growth performance of the snails under exposure to low salinities. During a 1 month trial, snails grew better at 5 ppt salinity treatment. Taken together, our results demonstrate that P. canaliculata can tolerate salt stress to some extent. The finding also obviously implies a possible invasive risk to estuaries.  相似文献   

13.
Spotted seatrout are capable of spawning in a wide range of salinities. Along the Texas Gulf Coast, bay salinities increase from an average of 14 ppt in Galveston Bay to an average of 40 ppt in Lower Laguna Madre due to the negative gradient of freshwater inflow from north to south. Tagging studies have shown that the majority of spotted seatrout do not migrate between adjacent bay systems. Spawning salinity has been shown to affect many properties of eggs including the diameter and salinity of neutral buoyancy. Spotted seatrout from two historically different salinity regimes (Matagorda Bay (MB) and Upper Laguna Madre (ULM)) were kept in the laboratory and induced to spawn in three salinities: 20, 30, and 40 ppt. The purpose of this study was to evaluate eggs at each of the three salinities and between the two bay systems. Two-way ANOVA showed a significant effect on the egg diameter of bay and spawning salinity, and a significant interaction between bays and spawning salinity. No significant difference in size at hatch was found between spawning salinities or between bays. Hatch rates in spawning salinity were >90% in all cases. Regression of wet weight on spawning salinity was highly significant for both bays. Eggs spawned in 20 ppt have the largest wet weight and eggs spawned in 40 ppt have the smallest wet weight, irrespective of parental bay origin. Percentage of water varied between 92% for 20 ppt spawned eggs and 86% in 40 ppt spawned eggs. Neutral Buoyancy Salinity (NBS) of eggs increased with increasing spawning salinity. Eggs spawned by the Upper Laguna Madre fish held at 20 ppt were not positively buoyant at 20 ppt. The results of this study suggest that spotted seatrout are locally adapted to the prevailing salinity regime within an estuary.  相似文献   

14.
The effects of salinity (10, 17 and 35 ppt) on O2 consumption, CO2 release and NH3 excretion by crabs and oxidative stress parameters and antioxidant defenses of its tissues were reported. An increase in salinity caused a decrease in O2 consumption and CO2 release and an increase in ammonia excretion by crabs. Lipid peroxidation, protein carbonyl, H2O2 levels and total antioxidant capacity of the tissues elevated significantly at 35 ppt salinity except in abdominal muscle where H2O2 content was low. Ascorbic acid content of tissues was higher at 17 ppt salinity than at 10 and 35 ppt salinities. With increasing salinity, a gradual decrease in SOD, an increase in catalase, no change in GPx and a decrease followed by an increase in GR activities were recorded for abdominal muscle. While for hepatopancreas, an increase followed by a decrease in SOD and catalase, decrease in GPx and GR activities were noticed with increasing salinity. In the case of gills, a decrease followed by an increase in SOD, a decrease in catalase and GPx and an increase in GR activities were noted when the salinity increased from 10 ppt to 35 ppt. These results suggest that salinity modulation of oxidative stress and antioxidant defenses in Scylla serrata is tissue specific.  相似文献   

15.
1. The 96-hr lc50 values for juvenile hard clams, Meretrix lusoria, were 328, 392 and 194 μg/l Hg in 10, 20 and 30 ppt salinities at 25 ± 1°C, respectively; for adult hard clams 341 and 140 μg/l Hg in 20 and 30 ppt salinities, respectively.2. Acclimatizing the adult clams to low salinity of 10 ppt lessened the toxicity of mercury. However, juvenile animals appeared to be more sensitive to mercury poisoning after 96 hr exposure in 10 ppt salinity.3. All embryos exposed to 40 μg/l Hg and above died within 30 hr. In the control, 44% of hatched embryos had developed into D-stage larvae, while those exposed to 20 μg/l Hg were still in the trochophore stage. Most of the retarded larvae developed into abnormal forms within 30 hr at 28°C in 15 ppt salinity.4. In order to maintain water quality and protect natural resources, the recommended safe level of mercury is 0.046 (0.039–0.053) μg/l Hg, based on the estimated 30-hr EC50 for the clam embryos, with an application factor of 0.01.  相似文献   

16.
A microcosm experiment was conducted to assess the effects of salinity on coastal lagoon plankton assemblages. Five salinity levels were replicated four-fold in 3801 fiberglass tanks. Salinity levels used were 0, 8.5, 17, 34 and 51 ppt, or 0, 25, 50, 100 and 150 percent seawater. These were achieved by mixing concentrated lagoon water and tapwater in different proportions. Tanks were inoculated with plankton collected from San Dieguito Lagoon (Del Mar, San Diego County, California) and other fresh and saline waterbodies in the area. Selected physical-chemical variables, phytoplankton, zooplankton, and other invertebrate populations were monitored on five sampling dates over a 114 day period (13 August–5 December 1986).Total phytoplankton abundance increased with salinity, for salinities >17 ppt. Most taxa showed marked effects of salinity, though the pattern of the effects often varied greatly from date to date. Chlorophytes tended to be most abundant at 51 ppt. Pyrrhophytes were most abundant at 0 or 51 ppt, and least abundant at 8.5 or 17 ppt. Cryptophytes increased with increasing salinity. Euglenophytes exhibited no salinity effect on any date. Bacillariophytes were most abundant at 8.5–34 ppt and least abundant at 51 ppt, with individual taxa showing maxima at 0–17 ppt (Navicula, Synedra), 8.5–34 ppt (Surirella, Amphora), and 34 ppt (Cylindrotheca).Total zooplankton abundance decreased with salinity, for salinities > 17 ppt. The dominant taxa were protozoans, rotifers, cladocerans, and copepods, and all but the first group showed strong salinity effects. Protozoan abundance was unaffected by salinity. Rotifers were most abundant at 0 ppt (Keratella, Filinia) or 8.5 ppt (Brachionus). With few exceptions, cladocerans (Alona, Ceriodaphnia, Scapholeberis) were found only at 0 ppt. Abundance of calanoid copepods decreased with increasing salinity, with individual taxa showing maxima at 0 ppt (Diaptomus), 8.5–17 ppt (Pseudodiaptomus, Eurytemora), and 34 ppt (Acartia). Cyclopoid copepods were most abundant at 17 ppt, with individual taxa showing maxima at 0 ppt (Eucyclops), 8.5 ppt (Halicyclops), and 17 ppt (Oithona). Harpacticoid copepods (Cletocamptus, Tachidius) were most abundant at 17–34 ppt. Ostracods and mosquito (Culex) larvae were most abundant at 8.5 ppt and absent at 34 and 51 ppt. Polychaetes generally were most abundant at 17–34 ppt, and water boatmen (Trichocorixa) at 8.5–34 ppt. Various physical and chemical variables also showed significant variations with salinity. Tending to increase with salinity were temperature, ammonia and orthophosphate concentrations. Decreasing with salinity were pH, dissolved oxygen and silica concentrations. The causes and interrelationships of these salinity effects are discussed.  相似文献   

17.
The movement of bonnetheads, Sphyrna tiburo, within an estuarine system on the Gulf of Mexico coast of Florida was examined to define response to salinity change. Shark presence and movements were evaluated by acoustic monitoring and gillnet sampling. Acoustic monitoring data were used to investigate active selection of different zones within the estuary based on differences in salinity among zones. Sharks were monitored for 187 days in 2003 and 217 days in 2004 in salinities ranging from 11.0 to 31.0 ppt in 2003 and 15.8 to 34.6 ppt in 2004. Monitoring data supported the hypothesis that salinity played a role in the distribution and movement of S. tiburo. Catch per unit effort (CPUE) data obtained from gillnet sampling from 1995 to 2004 were examined to determine affinity or avoidance of specific salinities within the study site as calculated using an electivity index. Electivity analysis showed almost no affinity or avoidance for specific salinity values. The difference in results between the CPUE and acoustic monitoring in relation to the potential effects of salinity likely relate to the nature of the data, with acoustic monitoring providing continuous data and CPUE providing snapshot location data. The results of this study suggest that although S. tiburo are collected within a wide range of salinity levels, salinity may affect movement and distribution. Salinity effects may be more pronounced during periods of prolonged and/or large changes in salinity as detected by long-term monitoring.  相似文献   

18.
Open ponds are the preferred cultivation system for large-scale microalgal biomass production. To be more sustainable, commercial scale biomass production should rely on seawater, as freshwater is a limiting resource, especially in places with high irradiance. If seawater is used for both pond fill and evaporative volume makeup, salinity of the growth media will rise over time. It is not possible for any species to achieve optimum growth over the whole saline spectrum (from seawater salinity level up to salt saturation state). In this study, we investigated the effects of gradual salinity increase (between 35 and 233 ppt) on biomass productivity and biochemical composition (lipid and carbohydrate) of six marine, two halotolerant, and a halophilic microalgae. A gradual and slow stepped salinity increase was found to expand the salinity tolerance range of tested species. A gradual reduction in biomass productivity and maximum photochemical efficiency was observed as a consequence of increased salinity in all tested species. Among the marine microalgae, Tetraselmis showed highest biomass productivity (32 mg L?1 day?1) with widest salinity tolerance range (35 to 109 ppt). Halotolerant Amphora and Navicula were able to grow from 35 ppt to 129 ppt salinity. Halophilic Dunaliella was the only species capable of growing between 35 and 233 ppt and showed highest lipid content (56.2%) among all tested species. This study showed that it should be possible to maintain high biomass in open outdoor cultivation utilizing seawater by growing Tetraselmis, Amphora, and Dunaliella one after another as salinity increases in the cultivation system.  相似文献   

19.
Abstract Mass mortalities of fauna are known to occur in estuarine environments during flood events. Specific factors associated with these mortalities have rarely been examined. Therefore, the effect of exposing, to lowered salinities, an infaunal bivalve that is susceptible to mass mortalities during winter flooding in a southern Australian estuary was tested in the present study. In a laboratory experiment, low salinities (≤6 parts per thousand [ppt]), which mimicked those expected during flood events in the Hopkins River estuary, were shown to affect Soletellina alba, both lethally and sublethally. All bivalves died at 1 ppt, while those at 6 ppt took longer to burrow and exhibited a poorer condition than those at 14 and 27 ppt. The limited salinity tolerance of S. alba suggests that lowered salinities are a likely cause of mass mortality for this species during winter flooding.  相似文献   

20.
Salinity is one of the main factors that explain the distribution of species in the Baltic Sea. Increased precipitation and consequent increase in freshwater inflow is predicted to decrease salinity in some areas of the Baltic Sea. Clearly such changes may have profound effects on the organisms living there. Here we investigate the response of the commonly occurring cyanobacterium Dolichospermum spp. to three salinities, 0, 3 and 6. For the three strains tested we recorded growth, intracellular toxicity (microcystin) and allelopathic properties. We show that Dolichospermum can grow in all the three salinities tested with highest growth rates in the lowest salinity. All strains showed allelopathic potential and it differed significantly between strains and salinities, but was highest in the intermediate salinity and lowest in freshwater. Intracellular toxin concentration was highest in salinity 6. In addition, based on monitoring data from the northern Baltic Proper and the Gulf of Finland, we show that salinity has decreased, while Dolichospermum spp. biomass has increased between 1979 and 2013. Thus, based on our experimental findings it is evident that salinity plays a large role in Dolichospermum growth, allelopathic properties and toxicity. In combination with our long-term data analyses, we conclude that decreasing salinity is likely to result in a more favourable environment for Dolichospermum spp. in some areas of the Baltic Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号