首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is a growing evidence that chemokines and their receptors play a role in inducing and maintaining neuropathic pain. In the present study, unilateral chronic constriction injury (CCI) of rat sciatic nerve under aseptic conditions was used to investigate changes for stromal derived factor-1 (SDF1) and its CXCR4 receptor in lumbal (L4–L5) and cervical (C7–C8) dorsal root ganglia (DRG) from both sides of naïve, CCI-operated and sham-operated rats. All CCI-operated rats displayed mechanical allodynia and thermal hyperalgesia in hind paws ipsilateral to CCI, but forepaws exhibited only temporal changes of sensitivity not correlated with alterations in SDF1 and CXCR4 proteins. Naïve DRG displayed immunofluorescence for SDF1 (SDF1-IF) in the satellite glial cells (SGC) and CXCR4-IF in the neuronal bodies with highest intensity in small- and medium-sized neurons. Immunofluorescence staining and Western blot analysis confirmed that unilateral CCI induced bilateral alterations of SDF1 and CXCR4 proteins in both L4–L5 and C7–C8 DRG. Only lumbal DRG were invaded by ED-1+ macrophages exhibiting SDF1-IF while elevation of CXCR4-IF was found in DRG neurons and SGC but not in ED-1+ macrophages. No attenuation of mechanical allodynia, but reversed thermal hyperalgesia, in ipsi- and contralateral hind paws was found in CCI-operated rats after i.p. administration of CXCR4 antagonist (AMD3100). These results indicate that SDF1/CXCR4 changes are not limited to DRG associated with injured nerve but that they also spread to DRG non-associated with such nerve. Functional involvement of these alterations in DRG non-associated with injured nerve in neuropathic pain remains to be elucidated.  相似文献   

2.
Substance P (SP) levels in the spinal cords of very old rats are less than the levels in younger rats (Bergman et al., 1996). After injury to a peripheral nerve in young rats, immunoreactivity (ir) to the SP receptor, NK-1 (neurokinin-1), increases in the spinal cord ipsilateral to the injury and the increases are correlated with the development of thermal hyperalgesia (Goff et al., 1998). Thus we postulated that aged rats might display an increased sensitivity to thermal stimulation before peripheral nerve injury and that they might respond differently to injury than do younger rats. To test this hypothesis, we used the Bennett and Xie model (1988) of chronic constriction injury (CCI) to the sciatic nerve to induce a neuropathic pain condition. We investigated the effect of age on changes in NK-1 ir in superficial layers of the dorsal horn and on numbers of NK ir cells in deeper laminae at the L4-L5 levels of the spinal cord after CCI. NK-1 receptors were tagged immunohistochemically and their distribution quantified by use of computer-assisted image analysis. NK-1 ir changes were related to alterations in thermal and tactile sensitivity that developed after CCI in young, mature and aged (4-6, 14-16, and 24-26 months) Fischer F344 BNF1 hybrid rats. No differences in thermal or tactile sensitivity of young and aged rats were seen in the absence of nerve injury. After injury, aged rats developed thermal hyperalgesia and tactile allodynia more slowly than did the younger rats. NK-1 receptor ir and numbers of NK-1 ir cells in the dorsal horn increased with time post-injury in all three groups. NK-1 ir increases were correlated with the development of thermal hyperalgesia in those rats that displayed hyperalgesia. However, some rats developed an increased threshold to thermal stimuli (analgesia) and that also was correlated with increases in NK-1 ir. Thus NK-1 ir extent, while correlated with thermal sensitivity in the absence of injury, is not a specific marker for disturbances in one particular sensory modality; rather it increases with peripheral nerve injury per se.  相似文献   

3.
Substance P (SP) levels in the spinal cords of very old rats are less than the levels in younger rats (Bergman et al., 1996). After injury to a peripheral nerve in young rats, immunoreactivity (ir) to the SP receptor, NK–1 (neurokinin-1), increases in the spinal cord ipsilateral to the injury and the increases are correlated with the development of thermal hyperalgesia (Goff et al., 1998). Thus we postulated that aged rats might display an increased sensitivity to thermal stimulation before peripheral nerve injury and that they might respond differently to injury than do younger rats. To test this hypothesis, we used the Bennett and Xie model (1988) of chronic constriction injury (CCI) to the sciatic nerve to induce a neuropathic pain condition. We investigated the effect of age on changes in NK-1 ir in superficial layers of the dorsal horn and on numbers of NK ir cells in deeper laminae at the L4-L5 levels of the spinal cord after CCI. NK-1 receptors were tagged immunohistochemically and their distribution quantified by use of computer-assisted image analysis. NK-1 ir changes were related to alterations in thermal and tactile sensitivity that developed after CCI in young, mature and aged (4-6, 14-16, and 24-26 months) Fischer F344 BNF1 hybrid rats. No differences in thermal or tactile sensitivity of young and aged rats were seen in the absence of nerve injury. After injury, aged rats developed thermal hyperalgesia and tactile allodynia more slowly than did the younger rats. NK-1 receptor ir and numbers of NK-1 ir cells in the dorsal horn increased with time post-injury in all three groups. NK-1 ir increases were correlated with the development of thermal hyperalgesia in those rats that displayed hyperalgesia. However, some rats developed an increased threshold to thermal stimuli (analgesia) and that also was correlated with increases in NK-1 ir. Thus NK-1 ir extent, while correlated with thermal sensitivity in the absence of injury, is not a specific marker for disturbances in one particular sensory modality; rather it increases with peripheral nerve injury per se.  相似文献   

4.
Thermal hyperalgesia and tactile allodynia induced by sciatic nerve ligation were completely suppressed by repeated intrathecal (i.t.) injection of a TrkB/Fc chimera protein, which sequesters endogenous brain-derived neurotrophic factor (BDNF). In addition, BDNF heterozygous (+/-) knockout mice exhibited a significant suppression of nerve ligation-induced thermal hyperalgesia and tactile allodynia compared with wild-type mice. After nerve ligation, BDNF-like immunoreactivity on the superficial laminae of the ipsilateral side of the spinal dorsal horn was clearly increased compared with that of the contralateral side. It should be noted that a single i.t. injection of BDNF produced a long-lasting thermal hyperalgesia and tactile allodynia in normal mice, and these responses were abolished by i.t. pre-treatment with either a Trk-dependent tyrosine kinase inhibitor K-252a or a selective protein kinase C (PKC) inhibitor Ro-32-0432. Supporting these findings, we demonstrated here for the first time that the increase in intracellular Ca2+ concentration by application of BDNF in cultured mouse spinal neurons was abolished by pre-treatment with either K-252a or Ro-32-0432. Taken together, these findings suggest that the binding of spinally released BDNF to TrkB by nerve ligation may activate PKC within the spinal cord, resulting in the development of a neuropathic pain-like state in mice.  相似文献   

5.
A fluorescence-immunohistochemical investigation was performed in lumbar dorsal root ganglia (DRGs) neurons of the rat with regard to ERK1/2-, p38- and STAT3-phosphorylation in response to nociceptor activation in the rat. The stimuli applied were perineural capsaicin treatment of the sciatic nerve, mustard oil application to the hind paw and heat or cold stimulation of the hind paw. The time points of investigations were 15 min/30 min after perineural capsaicin, 30 min/2 h/4 h for mustard oil, 10 min/4 h for cold and 30 min/2 h/8 h for the heat stimulus. All four stimuli lead to a time-dependent, significant 2-3 fold increase in the number of small and medium size DRG cells displaying cytoplasmic staining for p-ERK1/2, but to no activation of satellite cells. Phosphorylated p38 immunoreactivity was increased in the cytoplasma of DRG cells at 2 h after the mustard oil treatment of the hind paw and 30 min after the perineural capsaicin application to the sciatic nerve axons, but not following heat or cold stimuli to the hind paws. Phospho-STAT3 staining was characteristically observed as nuclear and cytoplasmic staining. It was found increased after the perineural capsaicin application to the sciatic nerve axons, however, no marked increase was found with the other 3 noxious stimuli. The present results show that sensory neurons respond with a selective long-lasting increase in p-ERK1/2 in small and medium-size DRG cells, when their axons or axon terminals are stimulated by capsaicin, mustard oil, noxious heat or noxious cold.  相似文献   

6.
Neuropathic pain is a debilitating chronic disease often resulting from damage to peripheral nerves. Activation of opioid receptors on peripheral sensory neurons can attenuate pain without central nervous system side effects. Here we aimed to analyze the distribution of neuronal μ-opioid receptors, the most relevant opioid receptors in the control of clinical pain, along the peripheral neuronal pathways in neuropathy. Hence, following a chronic constriction injury of the sciatic nerve in mice, we used immunohistochemistry to quantify the μ-receptor protein expression in the dorsal root ganglia (DRG), directly at the injured nerve trunk, and at its peripheral endings in the hind paw skin. We also thoroughly examined the μ-receptor antibody staining specificity. We found that the antibody specifically labeled μ-receptors in human embryonic kidney 293 cells as well as in neuronal processes of the sciatic nerve and hind paw skin dermis, but surprisingly not in the DRG, as judged by the use of μ/δ/κ-opioid receptor knockout mice. Therefore, a reliable quantitative analysis of μ-receptor expression in the DRG was not possible. However, we demonstrate that the μ-receptor immunoreactivity was strongly enhanced proximally to the injury at the nerve trunk, but was unaltered in paws, on days 2 and 14 following injury. Thus, μ-opioid receptors at the site of axonal damage might be a promising target for the control of painful neuropathies. Furthermore, our findings suggest a rigorous tissue-dependent characterization of antibodies'' specificity, preferably using knockout animals.  相似文献   

7.
A series of tetrahydropyridopyrimidine derivatives were synthesized and evaluated for neurotoxicity and peripheral analgesic activity followed by assessment of antiallodynic and antihyperalgesic potential in two peripheral neuropathic pain models, the chronic constriction injury (CCI) and partial sciatic nerve ligation (PSNL). Compounds (4b and 4d) exhibiting promising efficacies in four behavioral assays of allodynia and hyperalgesia (spontaneous pain, tactile allodynia, cold allodynia and mechanical hyperalgesia) were quantified for their ED50 values (15.12–65.10 mg/kg). Studies carried out to assess the underlying mechanism revealed that the compounds suppressed the inflammatory component of the neuropathic pain and prevented oxidative and nitrosative stress.  相似文献   

8.
Upregulation of P2X3 receptor (P2X3R) has been strongly implicated in nociceptive signaling including bone cancer pain (BCP). The present study, using rat bone cancer model, aimed to explore the role of P2X3R in regulating rat pain behavior under the intervention of electroacupuncture (EA). The BCP model was successfully established by injection with MRMT-1 breast cancer cell into the medullary cavity of left tibia for 3 × 104 cells/3 μL PBS in rats as revealed by obvious bone destruction, decreased paw withdrawal thresholds (PWTs), and reduced paw withdrawal latencies (PWLs). Western blot analyses showed that P2X3R expression was significantly upregulated in ipsilateral lumbar 4–6 (L4-6) dorsal root ganglia (DRG), but the difference not seen in spinal cord dorsal horn (SCDH). With the in-depth study of P2X3R activation, we observed that intrathecal injection of P2X3R agonist α,β-meATP aggravated MRMT-1 induced BCP, while injection of P2X3R inhibitor A-317491 alleviated pain. Subsequently, we demonstrated that BCP induced mechanical allodynia and thermal hyperalgesia were attenuated after EA treatment. Under EA treatment, total P2X3R protein expression in ipsilateral DRGs was decreased, and it is worth mentioning that decreased expression of P2X3R membrane protein, which indicated that both the expression and membrane trafficking of P2X3R were inhibited by EA. The immunofluorescence assay showed that EA stimulation exerted functions by reducing the expression of P2X3R-positive cells in ipsilateral DRGs of BCP rats. Ca2+ imaging analysis revealed that the EA stimulation decreased the percentage of α,β-meATP responsive neurons in DRGs and inhibited calcium influx. Notably, the inhibitory effect of EA on mechanical allodynia and nociceptive flinches was abolished by intrathecal injection of α,β-meATP. These findings demonstrated EA stimulation ameliorated mechanical allodynia and thermal hyperalgesia in rat model of MRMT-1-induced BCP. EA exerts analgesic effect on BCP by reducing the overexpression and functional activity of P2X3R in ipsilateral DRGs of BCP rats. Our work first demonstrates the critical and overall role of P2X3R in EA’s analgesia against peripheral sensitization of MRMT-1-induced BCP and further supports EA as a potential therapeutic option for cancer pain in clinic.  相似文献   

9.
Sprouty (Spry) proteins are negative feedback inhibitors of receptor tyrosine kinase signaling. Downregulation of Spry2 has been demonstrated to promote elongative axon growth of cultured peripheral and central neurons. Here, we analyzed Spry2 global knockout mice with respect to axon outgrowth in vitro and peripheral axon regeneration in vivo. Neurons dissociated from adult Spry2 deficient sensory ganglia revealed stronger extracellular signal‐regulated kinase activation and enhanced axon outgrowth. Prominent axon elongation was observed in heterozygous Spry2+/? neuron cultures, whereas homozygous Spry2?/? neurons predominantly exhibited a branching phenotype. Following sciatic nerve crush, Spry2+/? mice recovered faster in motor but not sensory testing paradigms (Spry2?/? mice did not tolerate anesthesia required for nerve surgery). We attribute the improvement in the rotarod test to higher numbers of myelinated fibers in the regenerating sciatic nerve, higher densities of motor endplates in hind limb muscles and increased levels of GAP‐43 mRNA, a downstream target of extracellular regulated kinase signaling. Conversely, homozygous Spry2?/? mice revealed enhanced mechanosensory function (von Frey's test) that was accompanied by an increased innervation of the epidermis, elevated numbers of nonmyelinated axons and more IB4‐positive neurons in dorsal root ganglia. The present results corroborate the functional significance of receptor tyrosine kinase signaling inhibitors for axon outgrowth during development and nerve regeneration and propose Spry2 as a novel potential target for pharmacological inhibition to accelerate long‐distance axon regeneration in injured peripheral nerves. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 217–231, 2015  相似文献   

10.
Relief from painful diabetic neuropathy is an important clinical issue. We have previously shown that the transplantation of cultured endothelial progenitor cells or mesenchymal stem cells ameliorated diabetic neuropathy in rats. In this study, we investigated whether transplantation of freshly isolated bone marrow-derived mononuclear cells (BM-MNCs) alleviates neuropathic pain in the early stage of streptozotocin-induced diabetic rats. Two weeks after STZ injection, BM-MNCs or vehicle saline were injected into the unilateral hind limb muscles. Mechanical hyperalgesia and cold allodynia in SD rats were measured as the number of foot withdrawals to von Frey hair stimulation and acetone application, respectively. Two weeks after the BM-MNC transplantation, sciatic motor nerve conduction velocity (MNCV), sensory nerve conduction velocity (SNCV), sciatic nerve blood flow (SNBF), mRNA expressions and histology were assessed. The BM-MNC transplantation significantly ameliorated mechanical hyperalgesia and cold allodynia in the BM-MNC-injected side. Furthermore, the slowed MNCV/SNCV and decreased SNBF in diabetic rats were improved in the BM-MNC-injected side. BM-MNC transplantation improved the decreased mRNA expression of NT-3 and number of microvessels in the hind limb muscles. There was no distinct effect of BM-MNC transplantation on the intraepidermal nerve fiber density. These results suggest that autologous transplantation of BM-MNCs could be a novel strategy for the treatment of painful diabetic neuropathy.  相似文献   

11.
12.
To clarify the role of angiotensin II (Ang II) in the regulation of sensory signaling, we studied the effect of subpressor dose (150 ng/kg/min) of Ang II on pain-related behavior in relation with neuronal injury and activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRGs) after chronic constriction injury (CCI). Systemic continuous delivery of Ang II induced the tactile, heat and cold hyperlagesia, when measured at 7 days ofpost-injury. Blockade of the AT1 receptor with losartan (2.5 mg/kg/day) prevented tactile hyperalgesia and attenuated cold hyperalgesia, but did not affect the response to noxious heat stimulus. A marked increase of large-sized injured primary afferent neurons, detected by ATF3 immunolabeling, was seen in lower lumbar DRGs on ipsilateral side after Ang II treatment. Subpressor dose of Ang II induced an increase of activated SGCs (detected by GFAP immunolabeling) enveloping large-diameter neurons. Our results suggested that Ang II through the AT1 receptor activation is an important regulatory factor in neuropathic pain perception and plays an important role in the injury of large-sized primary afferent neurons and activation of SGCs elicited by the CCI.  相似文献   

13.
Evidence for important roles of the highly reactive oxidant peroxynitrite in diabetic complications is emerging. We evaluated the role of peroxynitrite in early peripheral neuropathy and vascular dysfunction in STZ-diabetic rats. In the first dose-finding study, control and STZ-diabetic rats were maintained with or without the potent peroxynitrite decomposition catalyst Fe(III)tetrakis-2-(N-triethylene glycol monomethyl ether) pyridyl porphyrin (FP15) at 3, 5, or 10 mg.kg(-1).day(-1) in the drinking water for 4 wk after an initial 2 wk without treatment for assessment of early neuropathy. In the second study with similar experimental design, control and STZ-diabetic rats were maintained with or without FP15, 5 mg.kg(-1).day(-1), for vascular studies. Rats with 6-wk duration of diabetes developed motor and sensory nerve conduction velocity deficits, mechanical hyperalgesia, and tactile allodynia in the absence of small sensory nerve fiber degeneration. They also had increased nitrotyrosine and poly(ADP-ribose) immunofluorescence in the sciatic nerve and dorsal root ganglia. All these variables were dose-dependently corrected by FP15, with minimal differences between the 5 and 10 mg.kg(-1).day(-1) doses. FP15, 5 mg.kg(-1).day(-1), also corrected endoneurial nutritive blood flow and nitrotyrosine, but not superoxide, fluorescence in aorta and epineurial arterioles. Diabetes-induced decreases in acetylcholine-mediated relaxation by epineurial arterioles and coronary and mesenteric arteries, as well as bradykinin-induced relaxation by coronary and mesenteric arteries, were alleviated by FP15 treatment. The findings reveal the important role of nitrosative stress in early neuropathy and vasculopathy and provide the rationale for further studies of peroxynitrite decomposition catalysts in long-term diabetic models.  相似文献   

14.
Abstract: Retrograde axonal transport of phosphatidylcholine in the sciatic nerve has been demonstrated only after injection of lipid precursors into the cell body region. We now report, however, that after microinjection (1 μl) of [methyl-3H]choline chloride into the rat sciatic nerve (35-40 mm distal to the L4 and L5 dorsal root ganglia), time-dependent accumulation of 3H-labeled material occurred in dorsal root ganglia ipsilateral, but not contralateral, to the injection site. The level of radioactivity in the ipsilateral dorsal root ganglia was minimal at 2 h after isotope injection but was significantly increased at 7, 24, 48, and 72 h after intraneural isotope injection (n = 3–8 per time point); at these time points, all of the radiolabel in the chloroform/methanol extract of the ipsilateral dorsal root ganglia was present in phosphatidylcholine. The radioactivity in the water-soluble fraction did not show a time-dependent accumulation in the ipsilateral dorsal root ganglia as compared with the contralateral DRGs, ruling out transport or diffusion of precursor molecules. In addition, colchicine injection into the sciatic nerve proximal to the isotope injection site prevented the accumulation of radiolabel in the ipsilateral dorsal root ganglia. Therefore, this time-dependent accumulation of radiolabeled phosphatidylcholine in the ipsilateral dorsal root ganglia is most likely due to retrograde axonal transport of locally synthesized phospholipid material. Moreover, 24 h after injection of both [3H]choline and [35S]-methionine into the sciatic nerve, the ipsilateral/contralateral ratio of radiolabel was 11.7 for 3H but only 1.1 for 35S. indicating that only locally synthesized choline phospholipids, but not protein, were retrogradely transported.  相似文献   

15.
Tyrosine hydroxylase immunocytochemistry was used to reveal the sympathetic postganglionic axons that sprout to form basket-like skeins around the somata of some primary sensory neurons in dorsal root ganglia (DRGs) following sciatic nerve injury. Ultrastructural observations in rats revealed that these sprouts grow on the surface of glial lamellae that form on the neurons. Sciatic nerve injury triggers glial cell proliferation in the DRG, and the formation of multilamellar pericellular onion bulb sheaths, primarily around large diameter DRG neurons. We infer that these glia participate in the sprouting process by releasing neurotrophins and expressing growth supportive cell surface molecules. Many DRG cell somata, and their axons in intact nerves and nerve end neuromas, express α2A adrenoreceptors intracytoplasmically and on their membrane surface. However, sympathetic axons never make direct contacts with the soma membrane. The functional coupling known to occur between sympathetic efferents and DRG neurons must therefore be mediated by the diffusion of neurotransmitter molecules in the extracellular space. Sympathetic basket-skeins were observed in DRGs removed from human neuropathic pain patients, but the possibility of a functional relation between these structures and sensory symptoms remains speculative.  相似文献   

16.
Hepatocyte growth factor (HGF) is a neurotrophic factor and its role in peripheral nerves has been relatively unknown. In this study, biological functions of HGF and its receptor c-met have been investigated in the context of regeneration of damaged peripheral nerves. Axotomy of the peripheral branch of sensory neurons from embryonic dorsal root ganglia (DRG) resulted in the increased protein levels of HGF and phosphorylated c-met. When the neuronal cultures were treated with a pharmacological inhibitor of c-met, PHA665752, the length of axotomy-induced outgrowth of neurite was significantly reduced. On the other hand, the addition of recombinant HGF proteins to the neuronal culture facilitated axon outgrowth. In the nerve crush mouse model, the protein level of HGF was increased around the injury site by almost 5.5-fold at 24 h post injury compared to control mice and was maintained at elevated levels for another 6 days. The amount of phosphorylated c-met receptor in sciatic nerve was also observed to be higher than control mice. When PHA665752 was locally applied to the injury site of sciatic nerve, axon outgrowth and injury mediated induction of cJun protein were effectively inhibited, indicating the functional involvement of HGF/c-met pathway in the nerve regeneration process. When extra HGF was exogenously provided by intramuscular injection of plasmid DNA expressing HGF, axon outgrowth from damaged sciatic nerve and cJun expression level were enhanced. Taken together, these results suggested that HGF/c-met pathway plays important roles in axon outgrowth by directly interacting with sensory neurons and thus HGF might be a useful tool for developing therapeutics for peripheral neuropathy.  相似文献   

17.
Peripheral neuropathic pain is a severe chronic pain condition which may result from trauma to sensory nerves in the peripheral nervous system. The spared nerve injury (SNI) model induces symptoms of neuropathic pain such as mechanical allodynia i.e. pain due to tactile stimuli that do not normally provoke a painful response [1]. The SNI mouse model involves ligation of two of the three branches of the sciatic nerve (the tibial nerve and the common peroneal nerve), while the sural nerve is left intact [2]. The lesion results in marked hypersensitivity in the lateral area of the paw, which is innervated by the spared sural nerve. The non-operated side of the mouse can be used as a control. The advantages of the SNI model are the robustness of the response and that it doesn’t require expert microsurgical skills.The threshold for mechanical pain response is determined by testing with von Frey filaments of increasing bending force, which are repetitively pressed against the lateral area of the paw [3], [4]. A positive pain reaction is defined as sudden paw withdrawal, flinching and/or paw licking induced by the filament. A positive response in three out of five repetitive stimuli is defined as the pain threshold. As demonstrated in the video protocol, C57BL/6 mice experience profound allodynia as early as the day following surgery and maintain this for several weeks.  相似文献   

18.
Electrophysiological studies allow a rational classification of various neuromuscular diseases and are of help, together with neuropathological techniques, in the understanding of the underlying pathophysiology1. Here we describe a method to perform electrophysiological studies on mouse sciatic nerves in vivo.The animals are anesthetized with isoflurane in order to ensure analgesia for the tested mice and undisturbed working environment during the measurements that take about 30 min/animal. A constant body temperature of 37 °C is maintained by a heating plate and continuously measured by a rectal thermo probe2. Additionally, an electrocardiogram (ECG) is routinely recorded during the measurements in order to continuously monitor the physiological state of the investigated animals.Electrophysiological recordings are performed on the sciatic nerve, the largest nerve of the peripheral nervous system (PNS), supplying the mouse hind limb with both motoric and sensory fiber tracts. In our protocol, sciatic nerves remain in situ and therefore do not have to be extracted or exposed, allowing measurements without any adverse nerve irritations along with actual recordings. Using appropriate needle electrodes3 we perform both proximal and distal nerve stimulations, registering the transmitted potentials with sensing electrodes at gastrocnemius muscles. After data processing, reliable and highly consistent values for the nerve conduction velocity (NCV) and the compound motor action potential (CMAP), the key parameters for quantification of gross peripheral nerve functioning, can be achieved.  相似文献   

19.
The escape system of the American cockroach is both fast and directional. In response to wind stimulation both of these characteristics are largely due to the properties of the ventral giant interneurons (vGIs), which conduct sensory information from the cerci on the rear of the animal to type A thoracic interneurons (TIAs) in the thoracic ganglia. The cockroach also escapes from tactile stimuli, and although vGIs are not involved in tactile-mediated escapes, the same thoracic interneurons process tactile sensory information. The response of TIAs to tactile information is typically biphasic. A rapid initial depolarization is followed by a longer latency depolarization that encodes most if not all of the directional information in the tactile stimulus. We report here that the biphasic response of TIAs to tactile stimulation is caused by two separate conducting pathways from the point of stimulation to the thoracic ganglia. Phase 1 is generated by mechanical conduction along the animal's body cuticle or other physical structures. It cannot be eliminated by complete lesion of the nerve cord, and it is not evoked in response to electrical stimulation of abdominal nerves that contain the axons of sensory receptors in abdominal segments. However, it can be eliminated by lesioning the abdominal nerve cord and nerve 7 of the metathoracic ganglion together, suggesting that the relevant sensory structures send axons in nerve 7 and abdominal nerves of anterior abdominal ganglia. Phase 2 of the TIAs tactile response is generated by a typical neural pathway that includes mechanoreceptors in each abdominal segment, which project to interneurons with axons in either abdominal connective. Those interneurons with inputs from receptors that are ipsilateral to their axon have a greater influence on TIAs than those that receive inputs from the contralateral side. The phase 1 response has an important role in reducing initiation time for the escape response. Animals in which the phase 2 pathway has been eliminated by lesion of the abdominal nerve cord are still capable of generating a partial startle response with a typically short latency even when stimulated posterior to the lesion. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
AimsAfter peripheral nerve injury, p75NTR was upregulated in Schwann cells of the Wallerian degenerative nerves and in motor neurons but down-regulated in the injured sensory neurons. As p75NTR in neurons mediates signals of both neurotrophins and inhibitory factors, it is regarded as a therapeutic target for the treatment of neurodegeneration. However, its physiological function in the nerve regeneration is not fully understood. In the present study, we aimed to examine the role of p75NTR in the regeneration of peripheral nerves.Main methodsIn p75NTR knockout mice (exon III deletion), the sciatic nerves and facial nerves on one side were crushed and regenerating neurons in the facial nuclei and in the dorsal root ganglia were labelled by Fast Blue. The regenerating fibres in the sciatic nerve were also labelled by an anterograde tracer and by immunohistochemistry.Key findingsThe results showed that the axonal growth of injured axons in the sciatic nerve of p75NTR mutant mice was significantly retarded. The number of regenerated neurons in the dorsal root ganglia and in the facial nuclei in p75NTR mutant mice was significantly reduced. Immunohistochemical staining of regenerating axons also showed the reduction in nerve regeneration in p75NTR mutant mice.SignificanceOur data suggest that p75NTR plays an important role in the regeneration of injured peripheral nerves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号