首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tomasz Mieczan 《Biologia》2007,62(2):189-194
Body size, community structure, abundance and biomass of ciliates were compared in various stands of macrophytes in a macrophyte-abundant shallow lake in Eastern Poland. Samples were collected in belts of Phragmites, Typha, Ceratophyllum, Elodea, Stratiotes and Chara. Additionally, protozooplankton was collected from the open water zone surrounding the vegetation belts. Differences in numbers of ciliate taxa between micro-sites were statistically significant. The highest numbers were found in Chara and Ceratophyllum stands, lower numbers in Stratiotes and Elodea stands and the lowest in the open water, Phragmites and Typha areas. Ciliate biomass was, like density, significantly higher in submerged macrophytes than in emergent macrophytes and open water zones. Based on differences in macrophyte structure, two groups of habitats with similar patterns of size-related ciliate distribution were distinguished. The first group consisted of two vegetated zones of sparse stem structure (Phragmites and Typha) and the open water zone, the second group comprised submerged macrophyte species, which were more dense and complex. Generally, the abundance of ciliates correlated positively with total suspension solid (TSS) and total organic carbon (TOC) concentrations. In the Chara and Ceratophyllum stands, relations between ciliate numbers, TSS and TOC were stronger.  相似文献   

2.
Abstract The goal of this research is to evaluate how the assemblages of aquatic macrophytes in marginal floodplain habitats, with different degrees of connectivity to the main river, respond to water level fluctuations. Samples were carried out quarterly (May 2000 to March 2002) in seven lagoons of the Upper Paraná River floodplain (22°30′ and 22°45′‐S and 53°15′ and 53°30′‐W) with different degrees of connectivity (connected and disconnected to the main river). In each lagoon, a shore‐pelagic zone transect was marked and at every 2 m the depth and the cover of each aquatic macrophyte species were recorded (Domin‐Krajina scale) in a quadrat of 0.25 m2. A total of 29 aquatic macrophyte species and an unusual decrease in water level were recorded in August 2001. Drawdown had a negative impact on species richness, only in connected lagoons, which was shown by a positive relationship between depth and species number (r‐Spearman = 0.86; P < 0.01). Depth affected Beta diversity positively (r‐Spearman = 0.79; P < 0.05). Drawdown affected the connected and disconnected lagoons differently, which can be attributed to their different morphometry. In this period, ‘habitat contraction’ was higher on connected lagoons. Positive correlation between mean species number and depth, and between beta diversity and depth, are factors that support this affirmation. Indicator species analysis showed that for disconnected lagoons, Oxycaryum cubense (Cyperaceae), Polygonum meissnerianum (Polygonaceae) and P. ferrugineum, with indicator values (IndVal) of 53, 30 and 25%, respectively, were indicator species. Salvinia spp. (Salvinaceae) (62%), P. acuminatum (44%) and the Ricciaceae Ricciocarpus natans (0%) were the indicator species of the connected lagoons.  相似文献   

3.

The research on the spatial distribution of rotifers between the central and border part of the Myriophyllum bed (M. verticillatum) was carried out between 1998 and 1999 in the shallow part (approx. 1 m depth) of Budzyńskie Lake (Wielkopolski National Park, Poland). The comparison of both species composition and the numbers of individuals between both of the examined zones have not revealed statistically significant differences. However, a higher number of rotifer species and their higher densities, as well as increased participation of littoral species were observed in the middle of the vegetation bed. The structure of the dominating species also differed between both areas. Seven rotifer species were found to have significantly greater numbers in the central part of the Myriophyllum bed, while only one species was significantly correlated with the border part of the macrophyte stand. These differences in the behaviour of particular groups of rotifers may be dependent on the structure of their microhabitat and their position in relation to the open water zone. They may also be related to young fish predation in both habitats and better refuge conditions inside the thick macrophyte stand, as well as typical adaptation to littoral or limnetic life.

  相似文献   

4.
吴晓敏  郝瑞娟  王丽卿  潘宏博 《生态学报》2018,38(15):5541-5553
为了解载玻片法获取的周丛生纤毛虫群落可否用于监测景观水体,于2015年利用载玻片采样法对上海东南角的一处景观水体的周丛生纤毛虫的群落结构进行了周年调查,并对其与环境因子之间的相关性进行了研究。共检出12目51种周丛生纤毛虫。周丛生纤毛虫的年平均密度为127.29个/cm~2,2月密度最低,为24.27个/cm~2,5月密度最高,为248.57个/cm~2;其群落结构应对水体环境的变化呈现显著的季节性变动。多元统计分析表明,总磷浓度和水温(T)均是影响周丛生纤毛虫群落结构的主要环境因子。作为周丛生纤毛虫最主要的类群,缘毛目纤毛虫的密度与透明度(SD)和电导率(Spc)呈显著正相关,与T呈极显著正相关;丁丁目、毛口目和侧口目纤毛虫的密度与SD呈显著负相关,其中丁丁目纤毛虫的密度与T呈极显著负相关;此外,丁丁目纤毛虫的密度与总氮(TN)浓度呈极显著正相关。冗余分析显示,优势种钟形钟虫、钟虫sp.2、聚缩虫sp.1、亨氏累枝虫、沟钟虫和螅状独缩虫的密度与环境因子具有较好相关性。研究表明,载玻片法采集的周丛生纤毛虫能很好的反映水质变化,该方法可以作为景观水体水质监测方法的一个补充。  相似文献   

5.
Lake Budzyńskie is shallow, freshwater lake with a well-developed and differentiated macrophytic vegetation. Zooplankton samples were collected from five stations: two of them in submerged macrophytes (Chara and Myriophyllum), one in the zone of floating leaves (Potamogeton), a rush station (Typha) and one in the open water surrounding the vegetation beds. The mean Rotifera densities differed significantly between the lake parts. Furthermore, different habitats were characterised by differences in body size with the exception of the middle body size group (Keratella cochlearis, Polyarthra vulgaris and Trichocerca similis), which was dominated by limnetic representatives. However, in all the other size-dependent groups both stands of submerged macrophytes were characterised by much higher densities than other zones. Additionally, body size within the examined habitats significantly differed. Thus, the size structure of Rotifera communities was directly related to morphological and spatial structures of the substrata. Two groups of habitats were distinguished: the first one consisting of open water and two vegetated zones of less complicated structure (Potamogeton and Typha), and the second of more complex submerged macrophyte species (Chara and Myriophyllum). The differentiation of the architecture of macrophytes affected the nutritional conditions and refuge effectiveness of these habitats.  相似文献   

6.
Microbial eukaryotes have important roles in marine food webs, but their diversity and activities in hydrothermal vent ecosystems are poorly characterized. In this study, we analyzed microbial eukaryotic communities associated with bacterial (Beggiatoa) mats in the 2,000 m deep‐sea Guaymas Basin hydrothermal vent system using 18S rRNA gene high‐throughput sequencing of the V4 region. We detected 6,954 distinct Operational Taxonomic Units (OTUs) across various mat systems. Of the sequences that aligned with known protistan phylotypes, most were affiliated with alveolates (especially dinoflagellates and ciliates) and cercozoans. OTU richness and community structure differed among sediment habitats (e.g. different mat types and cold sediments away from mats). Additionally, full‐length 18S rRNA genes amplified and cloned from single cells revealed the identities of some of the most commonly encountered, active ciliates in this hydrothermal vent ecosystem. Observations and experiments were also conducted to demonstrate that ciliates were trophically active and ingesting fluorescent bacteria or Beggiatoa trichomes. Our work suggests that the active and diverse protistan community at the Guaymas Basin hydrothermal vent ecosystem likely consumes substantial amounts of bacterial biomass, and that the different habitats, often defined by distances of just a few 10s of cm, select for particular assemblages and levels of diversity.  相似文献   

7.
We investigated seasonal changes in the density of epiphytic cladocerans Alona spp. (Chydoridae, Anomopoda) in two habitats, emergent and submerged aquatic plants, in Lake Suwa, Japan, from April to August 1998 and from April to November 2000. Alona had a density peak in early June on reeds (emergent) and in late June on Potamogeton malaianus (submerged). In summer, Alona density remained low in both habitats. Although density was positively correlated with the abundance of epiphytic algae, the birth rate was constant and no correlation between algal abundance and clutch size was detected. In a field experiment using ropes as an artificial substrate covered with high and low densities of epiphytic algae as food, more Alona attached to the ropes with the high density of algae. These results suggest that Alona may select food-rich habitats and migrate seasonally, and that migration is an important factor in the population dynamics of epiphytic chydorid cladocerans such as Alona. In Lake Suwa, Alona may migrate from the reed zone to the submerged macrophyte zone in June.  相似文献   

8.
Research on the similarity of zooplankton in various stands of water vegetation, including rushes (Typha angustifolia), nymphaeids (Nymphaea alba) and submerged macrophytes (Charahispida, C. tomentosa, Myriophyllumverticillatum and Utricularia vulgaris) was carried out on the shallow Wielkowiejskie lake (Poland). The analysis of the similarity of the Rotifera community revealed the strongest relationship between the Myriophyllum and Chara tomentosa beds, with C. hispida attaching them. A second pair of habitats was represented by Typha and Nymphaea stands. Cladocerans revealed the greatest similarity between both zones of Chara. Additionally, two more pairs of habitats were distinguished – Typha and Nymphaea and also Utricularia and Myriophyllum. In most cases, the Shannon-Weaver values were high among macrophyte stations. Forward stepwise regression revealed that the length of Nymphaea stems was a single negative predictor determining the Cladocera densities. The water lily stand possessed the richest pelagic community of zooplankton and had the highest cladoceran diversity index. In accordance with CCA-ordination, out of the environmental variables, the macrophyte stem length and the concentration of Ptot were the strongest predictors in determining the distribution of particular species of the zooplankton community. Mainly pelagic species displayed preferences towards physical parameters of habitat, which is manifested in their greater affinity to a denser spatial structure of macrophyte substratum. The similarity of zooplankton communities in Wielkowiejskie lake was based on the characteristic architecture of particular macrophyte species, where the plant length was the strongest predictor. Moreover, the character of the zooplankton communities was also influenced by the concentrations of chlorophyll ‘a’ and the chemical variables, with the strongest impact of Ptot, of periphyton received from a particular macrophyte habitat and from water filling the spaces between plant stems.  相似文献   

9.
The differences among blennioid assemblages (families Blenniidae and Tripterygiidae) on different habitats were assessed at two localities of the Ligurian Sea, namely Arenzano and Riva Trigoso. The assemblage composition and species relative density were evaluated visually on four different habitats of diverse wave exposure and substratum orientation (macro‐habitat characteristics): two vertical intertidal and subtidal habitats (exposed and sheltered rockwalls) and two horizontal subtidal habitats (semi‐exposed flat rock and boulders and pebbles). Each habitat was also characterized in relation to micro‐habitat features, such as substratum complexity, heterogeneity and amount of algae cover. Patterns of differences among habitats in assemblage variables and fish density, and the influences of macro‐ and micro‐habitat features on these patterns were studied at small (within localities) and large (across localities) spatial scales. Higher values of species richness (S), diversity and evenness (J) were generally associated with vertical habitats, as a result of a positive correlation with substratum orientation. The presence of an intertidal zone in the rockwall habitats may partially explain the observed differences in assemblage variables between vertical and horizontal habitats. The strength of relationships between S, and J and the other investigated habitat variables (exposure, complexity, heterogeneity and algae cover) varied greatly depending on spatial scale. All these relationships were positive, except for complexity. Significant variation in the assemblage total density among habitats was recorded only at Arenzano, where a larger number of fishes were counted on rockwalls rather than on the horizontal habitats. The positive effect of orientation on fish total density was strictly dependent on spatial scale. Fish total density showed a negative correlation with complexity and a positive correlation with heterogeneity, both relationships being unaffected by spatial scale. The unexpected relationship with complexity was probably due to the fact that, in the most complex habitat (i.e. boulder and pebbles), the potential positive effect of high complexity on fish density might be overcome by the negative influence of other environmental features, such as horizontal orientation and low wave exposure. Complexity and heterogeneity thus seemed good predictors of fish total density, but their role needs to be carefully interpreted. The most marked differences in species composition and relative density were found between rockwalls and the other habitats, mostly due to an unbalanced distribution of some stenoecious species. Variations in species relative density were related to different combinations of both macro‐ and micro‐habitat features, and these relationships usually changed depending on spatial scale.  相似文献   

10.
Abstract. This study examines the capacity of establishment of a rare aquatic macrophyte, Luronium natans, within plant communities and habitat types in which it does not occur spontaneously. The species, generally limited to disturbed or nutrient‐poor habitats, was transplanted into a series of sites situated along natural gradients of disturbance (flush‐floods and intermittent sediment exposure) and sediment nutrient‐richness. The transplanted colonies were given a competition‐free establishment period. Colony dynamics of Luronium as well as size structure of the recolonizing macrophyte communities were monitored over three growing seasons. At the end of this period, transplanted colonies still persisted in five out of 12 transplantation sites. Apparently successful integration into the community occurred at both ends of the nutrient gradient, in periodically disturbed habitats. At intermediate to high nutrient richness Luronium maintained one of the highest cover values within the recolonizing community. The study supports previous presumptions that long‐term persistence of Luronium depends on processes limiting community biomass through occurrence of disturbance. But it also reveals the existence of suitable, yet not occupied habitats in which the species can persist as successfully as species from the local species pool. This finding modulates the presumption that Luronium's rarity is mainly caused by a weak competitive ability in the established phase. It thus rises questions about the species’ performance at other stages of its life cycle and on its dispersability.  相似文献   

11.
鞭根作为竹子吸收养分和水分的主要器官,其形态结构性状与鞭根对养分斑块的敏感性及养分获取能力紧密相关。该研究选取相邻连续的苦竹(Pleioblastus amarus)纯林和苦竹-杉木(Cunninghamia lanceolata)混交林2种林分类型,将其分为苦竹林中心区、苦竹林界面区、混交林界面区和混交林中心区4种生境,测定4种林区生境的苦竹鞭根形态结构性状指标及生物量,比较其间的连续性变化规律,以明确竹子异质性环境下的生态适应策略。结果表明:(1)不同生境下,纯林界面区的苦竹拥有更高的鞭根节点数、根尖数以及更小的根直径;纯林界面区和混交林界面区的苦竹鞭根比根长、比根面积均显著高于纯林中心区,但两个界面区的苦竹鞭根根直径则表现相反。(2)从苦竹纯林中心区至混交林中心区方向,苦竹鞭根生物量呈逐渐降低的趋势,但苦竹林界面区和混交林界面区间差异不显著。(3)生境对苦竹主要鞭根形态结构性状异速增长速率无明显影响,但显著提高了苦竹林界面区鞭根主要形态结构性状的差异性位移量;不同生境下苦竹鞭根形态结构存在显著差异,苦竹纯林界面区的鞭根形态结构可塑性较强,拥有更高的鞭根活性以及更活跃的生理功能。研究发现,生境对苦竹主要鞭根形态结构性状有显著影响,但对其异速增长速率无明显影响;鞭根直径是苦竹获取资源的重要影响因子,异质生境下苦竹趋向于采取增加鞭根面积和降低鞭根直径的策略以最大化地获取资源。  相似文献   

12.
Littoral invertebrate communities (meio- and macrobenthos and zooplankton) were studied in seven types of macrophyte associations commonly encountered in Lake Ladoga: in reed (Phragmites) beds on sand, soft and hard bottoms, in associations with the prevalence of Potamogeton spp., Carex spp., and Equisetum fluviatile, and in diverse vegetation stands with e.g. Polygonum amphibium, Cicuta virosa, Typha latifolia and Eleocharis acicularis. Some of the studied habitats were affected by sewage pollution, others were in comparatively undisturbed areas. Statistically significant differences between invertebrate communities in the different macrophyte associations were found. In stepwise multiple linear regression analysis the following factors were identified as determinants of abundance of aquatic invertebrates in macrophyte associations: shoot density, plant dry weight biomass, periphyton biomass, periphyton chlorophyll a, periphyton primary production, and concentrations of Sr, Mg, Ca, P, Mn, Zn, Pb and Cu. Pollution was shown to have a minor effect on the composition of littoral invertebrate communities. It is not possible to determine one single principle factor responsible for the structure and density of invertebrates in macrophyte communities.  相似文献   

13.
14.
1. Emergence traps were set overnight on the sediment surface to sample the littoral microcrustaceans of 22 Canadian Shield lakes that ranged in pH from 4.56 to 6.92. Traps were randomly allocated in quintuplicate in both wave‐washed sandy habitats where pipewort (Eriocaulon septangulare) was the dominant macrophyte (termed pipewort habitats), and more protected habitats dominated by floating‐leaved macrophytes (termed floating‐leaved habitats). 2. In total, 50 cladoceran and 22 copepod species were found, with 16–45 species in each lake. Lakes that had never acidified exhibited a more diverse fauna than lakes that had acidified. 3. There were only minor differences between the numbers of species found in floating‐leaved versus pipewort habitats except for one lake. Non‐chydorid cladoceran, chydorids and copepods constituted 45%, 26% and 29% of the total number of individuals, respectively. 4. Based on presence/absence, dominance scores and frequency of occurrences of species, the microcrustacean faunal composition was similar in the two habitats. A detrended correspondence analysis confirmed that there was no separation between the two main types of habitat, and that pH was the parameter most strongly correlated with the dominant microcrustacean compositional gradient among lakes.  相似文献   

15.
为明确异质生境条件下芦苇种群根茎芽年龄结构及输出规律,揭示芦苇种群的营养繁殖特性,采用单位土体挖掘取样,分别计数各龄级根茎芽的调查与统计方法,对东北草甸草原草甸土和盐碱土两个生境单优群落芦苇种群根茎芽动态进行比较分析。结果表明,两个生境芦苇种群根茎芽库主要均由6个龄级组成;草甸土生境在6—10月均为增长型年龄结构;盐碱土生境6—7月份为衰退型年龄结构,8月份为稳定型年龄结构,9—10月份为增长型年龄结构。根茎芽数量1—4a普遍以草甸土生境高于盐碱土生境,5—6a普遍以盐碱土生境高于草甸土生境,各龄级根茎芽数量与月份之间均符合y=a+bx直线关系(P0.05)。随着龄级的增加,休眠芽比率呈逐渐下降趋势,而萌发芽比率则呈逐渐上升趋势,5个生育期的休眠芽比率和萌发芽比率与龄级之间均符合y=a+bx直线关系(P0.01)。各龄级根茎的休眠芽具有一个相对稳定的萌发输出过程,草甸土生境根茎休眠芽按每年11%的比率萌发输出,而盐碱土生境根茎休眠芽按每年7%的比率萌发输出。虽然芦苇种群根茎芽年龄结构及年龄谱在异质生境中存在显著差异,但却有着相同的季节变化规律,均以不断形成新根茎的芽来维持着种群的营养繁殖更新。  相似文献   

16.
Submerged macrophytes are a central component of lake ecosystems; however, little is known regarding their long‐term response to environmental change. We have examined the potential of diatoms as indicators of past macrophyte biomass. We first sampled periphyton to determine whether habitat was a predictor of diatom assemblage. We then sampled 41 lakes in Quebec, Canada, to evaluate whether whole‐lake submerged macrophyte biomass (BiomEpiV) influenced surface sediment diatom assemblages. A multivariate regression tree (MRT) was used to construct a semiquantitative model to reconstruct past macrophyte biomass. We determined that periphytic diatom assemblages on macrophytes were significantly different from those on wood and rocks (ANOSIM R = 0.63, P < 0.01). A redundancy analysis (RDA) of the 41‐lake data set identified BiomEpiV as a significant (P < 0.05) variable in structuring sedimentary diatom assemblages. The MRT analysis classified the lakes into three groups. These groups were (A) high‐macrophyte, nutrient‐limited lakes (BiomEpiV ≥525 μg · L?1; total phosphorus [TP] <35 μg · L?1; 23 lakes); (B) low‐macrophyte, nutrient‐limited lakes (BiomEpiV <525 μg · L?1; TP <35 μg · L?1; 12 lakes); and (C) eutrophic lakes (TP ≥35 μg · L?1; six lakes). A semiquantitative model correctly predicted the MRT group of the lake 71% of the time (P < 0.001). These results suggest that submerged macrophytes have a significant influence on diatom community structure and that sedimentary diatom assemblages can be used to infer past macrophyte abundance.  相似文献   

17.
1. A tracer release study was conducted in a macrophyte‐rich stream, the River Lilleaa in Denmark. The objectives of the study were to compare uptake rates per unit area of by primary producers and consumers in macrophyte and non‐macrophyte habitats, estimate whole‐stream uptake rates of and compare this to other stream types, and identify the pathways and estimate the rate at which enters the food web in macrophyte and non‐macrophyte habitats. 2. Macrophyte habitats had four times higher primary uptake rates and an equal uptake rate by primary consumers per unit habitat area as compared to non‐macrophyte habitats. These rates represent the lower limit of potential macrophyte effects because the rates will be highly dependent on macrophyte bed height and mean bed height in the River Lilleaa was low compared to typical bed heights in many lowland streams. Epiphytes accounted for 30% of primary uptake in macrophyte habitats, illustrating a strong indirect effect of macrophytes as habitat for epiphytes. N flux per unit habitat area from primary uptake compartments to primary consumers was four times lower in macrophyte habitats compared to non‐macrophyte habitats, reflecting much greater biomass accrual in macrophyte habitats. Thus, we did not find higher N flux from macrophyte habitats to primary consumers compared to non‐macrophyte habitats. 3. Whole‐stream uptake rate was 447 mgN m?2 day?1. On a habitat‐weighted basis, fine benthic organic matter (FBOM) accounted for 72% of the whole‐stream uptake rate, and macrophytes and epiphytes accounted for 19 and 8%, respectively. 4. We had expected a priori relatively high whole‐stream N uptake in our study stream compared to other stream types mainly due to generally high biomass and the macrophyte’s role as habitat for autotrophic and heterotrophic organisms, but our results did not confirm this. In comparison with other release study streams, we conclude that nutrient concentration is the overall controlling factor for N uptake rates across streams, mostly as a result of high biomass of primary uptake compartments in streams with high nutrient concentrations in general and not in macrophyte streams in particular. 5. Our results indicate that macrophytes play an important role in the longer‐term retention of N and thus a decrease in net downstream transport during the growing season compared to streams without macrophytes, through direct and indirect effects on the stream reach. Direct effects are high uptake efficiency, low turnover rate (partly due to no direct feeding on macrophytes) and high longevity. An indirect effect is increased sedimentation of FBOM in macrophytes compared to non‐macrophyte habitats and streams which possibly also increase denitrification. Increased retention with macrophyte presence would decrease downstream transport during the growing season and thus the N loading on downstream ecosystems.  相似文献   

18.
Many studies have examined the effects of spatial heterogeneity in light supply on clonal plants in terrestrial environments, but few have examined those in aquatic conditions. In a greenhouse experiment, we grew the rhizomatous submerged macrophyte Vallisneria spiralis L. in containers in three homogeneous light treatments (100%, 65%, and 30% of ambient light coded as high, medium, and low light, respectively) and two heterogeneous ones differing in patch scale (small and large patch). The growth of V. spiralis decreased significantly with decreasing light availability. In the low light conditions, V. spiralis allocated greater biomass to shoots and developed elongated leaves. In the patchy treatments, ramets distributed in the light‐rich patches had significant costs in the large patch treatment, but not in the small patch treatment, while both small and large patch treatments had no significant benefits in the light‐poor patches. We conclude that V. spiralis could escape from adverse habitats and occupy the favorable habitats. Providing the same amount of light, responses of V. spiralis to different patch scales were different at the patch level, but not at the whole clone level. Together, growth of V. spiralis could not benefit from different patch scales in heterogeneous environments at the patch as well as the whole clone level.  相似文献   

19.
The influence of different macrophyte taxa or growth forms on biological and environmental variables is often analysed in one-lake studies. However, the unique combination of non-vegetational characteristics of a waterbody, i.e. its site identity, can be an influential factor in itself, shaping the measured parameters irrespective of the presence or absence of certain macrophyte species. In this situation, the relative strengths of all factors can be determined best in a study that explicitly accounts for differences in the identity of the waterbodies. Several functional macrophyte groups are known to provide a potent microinvertebrate refuge or permanent habitat. The objective of this study was to detect patterns in the zooplankton assemblages associated with different extensive habitats of macrophyte species and to relate these patterns to three major factors: the microhabitat, the pond identity and the seasonality in the warmer months of the year. Five ponds located in the Woluwe catchment of the Brussels-Capital Region (Belgium) were studied monthly for macrophyte and zooplankton characteristics from July until October 2005. The vegetation in the clear ponds was characterized by extensive monospecific stands (Ceratophyllum, Chara, Nitella, Potamogeton, Nuphar and filamentous algae). Zooplankton could be analysed in seven different vegetation types and in the open water zones and contained a total of 17 cladoceran and 27 rotifer genera. Principal components analysis (PCA) ordination of zooplankton communities showed a seasonal gradient and a tendency to group within-pond habitats, although they differed in macrophyte species and habitat structure. Despite the absence of clustering of similar microhabitats across ponds, percent volume infested (PVI), vegetation biomass density and Daphnia length (used as a proxy for fish predation pressure) contributed significantly positive to the Shannon zooplankton biodiversity indices. Moreover, densities of most zooplankton subgroups and of total zooplankton were significantly and positively related to PVI. It is assumed that in eutrophic ponds, extensive, often monospecific macrophyte vegetations provide an ecological environment suitable for both macrophyte-associated species and migrating pelagic zooplankton, thereby maintaining a high microinvertebrate biodiversity.  相似文献   

20.
漩门湾不同类型湿地大型底栖动物群落特征比较研究   总被引:1,自引:0,他引:1  
任鹏  方平福  鲍毅新  李海宏  王华  龚堃 《生态学报》2016,36(18):5632-5645
为研究漩门湾围垦后自然滩涂湿地和不同利用方式人工湿地7种生境的大型底栖动物群落结构现状和受扰动情况,2010年10月至2012年7月在两个区域中进行了为期两周年8个季度的大型底栖动物调查,结果表明:两周年共获得大型底栖动物5门8纲41科63种;第一周年为47种,其中自然滩涂湿地41种,人工湿地14种;第二周年为58种,其中自然滩涂湿地50种,人工湿地10种,人工湿地的物种数明显少于自然滩涂湿地。采集到的物种以软体动物和节肢动物为主,分别为32种和23种,各占总物种数的50.00%和37.10%。两周年的年均栖息密度和年均生物量在生境间从高到低依次为,年均栖息密度第一周年HSGTHHRLSCNYSK,第二周年GTHSHHSCNYRLSK;年均生物量第一周为HSRLHHGTNYSKSC,第二周年是HSHHRLGTNYSCSK。3种大型底栖动物的生物多样性指数(Margalef丰富度指数(S)、Shannon-Wiener多样性指数(H')、Pielou均匀度指数(J))分析表明,两周年7种生境3种多样性指数均处在不断的变化之中,人工湿地的Margalef丰富度指数(S)和Shannon-Wiener多样性指数(H')相对于自然滩涂湿地偏低,而Pielou均匀度指数(J)人工湿地大于自然滩涂湿地。聚类和排序的结果表明,围垦使大型底栖动物的群落结构发生明显的变化。ABC曲线分析结果表明,自然滩涂湿地受到的干扰程度较轻,而人工湿地受到的干扰程度较大。围垦改变了潮滩高程、水动力、盐度、沉积物特性,再加上人类活动的影响,这些因素是造成底栖动物群落结构及生物多样性变化的主要原因,围垦结束后的生态修复十分必要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号