首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glyoxalase system in the cytoplasm of cells provides the primary defence against glycation by methylglyoxal catalysing its metabolism to D-lactate. Methylglyoxal is the precursor of the major quantitative advanced glycation endproducts in physiological systems - arginine-derived hydroimidazolones and deoxyguanosine-derived imidazopurinones. Glyoxalase 1 of the glyoxalase system was linked to anthropometric measurements of obesity in human subjects and to body weight in strains of mice. Recent conference reports described increased weight gain on high fat diet-fed mouse with lifelong deficiency of glyoxalase 1 deficiency, compared to wild-type controls, and decreased weight gain in glyoxalase 1-overexpressing transgenic mice, suggesting a functional role of glyoxalase 1 and dicarbonyl stress in obesity. Increased methylglyoxal, dicarbonyl stress, in white adipose tissue and liver may be a mediator of obesity and insulin resistance and thereby a risk factor for development of type 2 diabetes and non-alcoholic fatty liver disease. Increased methylglyoxal formation from glyceroneogenesis on adipose tissue and liver and decreased glyoxalase 1 activity in obesity likely drives dicarbonyl stress in white adipose tissue increasing the dicarbonyl proteome and related dysfunction. The clinical significance will likely emerge from on-going clinical evaluation of inducers of glyoxalase 1 expression in overweight and obese subjects. Increased transcapillary escape rate of albumin and increased total body interstitial fluid volume in obesity likely makes levels of glycation of plasma protein unreliable indicators of glycation status in obesity as there is a shift of albumin dwell time from plasma to interstitial fluid, which decreases overall glycation for a given glycemic exposure.  相似文献   

2.
Glyoxalase I is the first enzyme in a two-enzyme glyoxalase system that metabolizes physiological methylglyoxal (MGO). MGO reacts with proteins to form irreversible adducts that may lead to crosslinking and aggregation of lens proteins in diabetes. This study examined the effect of hyperglycemia on glyoxalase I activity and its mRNA content in mouse lens epithelial cells (mLE cells) and in diabetic mouse lenses and investigated the relationship between GSH and MGO in organ cultured lenses. mLE cells cultured with 25 mM D-glucose (high glucose) showed an upregulation of glyoxalase I activity and a higher content of glyoxalase I mRNA when compared with either cells cultured with 5 mM glucose (control) or with 20 mM L-glucose + 5 mM D-glucose. MGO concentration was significantly elevated in cells cultured with high D-glucose, but not in L-glucose. GSH levels were lower in cells incubated with high glucose compared to control cells. Glyoxalase I activity and mRNA levels were elevated in diabetic lenses compared to non-diabetic control mouse lenses. MGO levels in diabetic lenses were higher than in control lenses. Incubation of lenses with buthionine sulfoximine (BSO) resulted in a dramatic decline in GSH but the MGO levels were similar to lenses incubated without BSO. Our data suggest that in mouse lenses MGO accumulation may occur independent of GSH concentration and in diabetes there is an upregulation of glyoxalase I, but this upregulation is inadequate to normalize MGO levels, which could lead to MGO retention and chemical modification of proteins.  相似文献   

3.
Studies of mutations affecting lifespan in Caenorhabditis elegans show that mitochondrial generation of reactive oxygen species (ROS) plays a major causative role in organismal aging. Here, we describe a novel mechanism for regulating mitochondrial ROS production and lifespan in C .  elegans: progressive mitochondrial protein modification by the glycolysis-derived dicarbonyl metabolite methylglyoxal (MG). We demonstrate that the activity of glyoxalase-1, an enzyme detoxifying MG, is markedly reduced with age despite unchanged levels of glyoxalase-1 mRNA. The decrease in enzymatic activity promotes accumulation of MG-derived adducts and oxidative stress markers, which cause further inhibition of glyoxalase-1 expression. Over-expression of the C .  elegans glyoxalase-1 orthologue CeGly decreases MG modifications of mitochondrial proteins and mitochondrial ROS production, and prolongs C .  elegans lifespan. In contrast, knock-down of CeGly increases MG modifications of mitochondrial proteins and mitochondrial ROS production, and decreases C .  elegans lifespan.  相似文献   

4.
Research during the last years has accumulated a large body of data that suggest that a permanent high flux through the glycolytic pathway may be a source of intracellular toxicity via continuous generation of endogenous reactive dicarbonyl compound methylglyoxal (MG). MG detoxification by the action of the glyoxalase system produces D-lactate. Thus, this article extends our previous work and presents new insights concerning D-lactate fate in aerobically grown yeast cells. Biochemical studies using intact functional mitochondrial preparations derived from Saccharomyces cerevisiae show that D-lactate produced in the extramitochondrial phase can be taken up by mitochondria, metabolised inside the organelles with efflux of newly synthesized malate. Experiments were carried out photometrically and the rate of malate efflux was measured by use of NADP(+) and malic enzyme and it depended on the rate of transport across the mitochondrial membrane. It showed saturation characteristics (K(m) = 20 μM; V(max) = 6 nmol min(-1) mg(-1) of mitochondrial protein) and was inhibited by α-cyanocinnamate, a non-penetrant compound. Our data reveal that reducing equivalents export from mitochondria is due to the occurrence of a putative D-lactate/malate antiporter which differs from both D-lactate/pyruvate antiporter and D-lactate/H(+) symporter as shown by the different V(max) values, pH profile and inhibitor sensitivity. Based on these results we propose that D-lactate translocators and D-lactate dehydrogenases work together for decreasing the production of MG from the cytosol, thus mitochondria could play a pro-survival role in the metabolic stress response as well as for D-lactate-dependent gluconeogenesis.  相似文献   

5.

Background

Beta-defensins (hBDs) provide antimicrobial and chemotactic defense against bacterial, viral and fungal infections. Human β-defensin-2 (hBD-2) acts against gram-negative bacteria and chemoattracts immature dendritic cells, thus regulating innate and adaptive immunity. Immunosuppression due to hyperglycemia underlies chronic infection in Type 2 diabetes. Hyperglycemia also elevates production of dicarbonyls methylgloxal (MGO) and glyoxal (GO).

Methods

The effect of dicarbonyl on defensin peptide structure was tested by exposing recombinant hBD-2 (rhBD-2) to MGO or GO with subsequent analysis by MALDI-TOF MS and LC/MS/MS. Antimicrobial function of untreated rhBD-2 vs. rhBD-2 exposed to dicarbonyl against strains of both gram-negative and gram-positive bacteria in culture was determined by radial diffusion assay. The effect of dicarbonyl on rhBD-2 chemotactic function was determined by chemotaxis assay in CEM-SS cells.

Results

MGO or GO in vitro irreversibly adducts to the rhBD-2 peptide, and significantly reduces antimicrobial and chemotactic functions. Adducts derive from two arginine residues, Arg22 and Arg23 near the C-terminus, and the N-terminal glycine (Gly1). We show by radial diffusion testing on gram-negative E. coli and P. aeruginosa, and gram-positive S. aureus, and a chemotaxis assay for CEM-SS cells, that antimicrobial activity and chemotactic function of rhBD-2 are significantly reduced by MGO.

Conclusions

Dicarbonyl modification of cationic antimicrobial peptides represents a potential link between hyperglycemia and the clinical manifestation of increased susceptibility to infection, protracted wound healing, and chronic inflammation in undiagnosed and uncontrolled Type 2 diabetes.  相似文献   

6.
Retinal capillary pericytes undergo premature death, possibly by apoptosis, during the early stages of diabetic retinopathy. The alpha-oxoaldehyde, methylglyoxal (MGO), has been implicated as a cause of cell damage in diabetes. We have investigated the role of MGO and its metabolizing enzyme, glyoxalase I, in high glucose-induced apoptosis (annexin V binding) of human retinal pericyte (HRP). HRP incubated with high glucose (30 mm d-glucose) for 7 days did not undergo apoptosis despite accumulation of MGO. However, treatment with a combination of high glucose and S-p-bromobenzylglutathione cyclopentyl diester, a competitive inhibitor of glyoxalase I, resulted in apoptosis along with a dramatic increase in MGO. Overexpression of glyoxalase I in HRP protected against S-p-bromobenzylglutathione cyclopentyl diester-induced apoptosis under high glucose conditions. Incubation of HRP with high concentrations of MGO resulted in an increase of apoptosis relative to untreated controls. We found an elevation of nitric oxide (NO.) in HRP that was incubated with high glucose when compared with those incubated with either the l-glucose or untreated controls. When HRP were incubated with an NO. donor, DETANONOATE ((Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate), we observed both decreased glyoxalase I expression and activity relative to untreated control cells. Further studies showed that HRP underwent apoptosis when incubated with DETANONOATE and that apoptosis increased further on co-incubation with high glucose. Our findings indicate that glyoxalase I is critical for pericyte survival under hyperglycemic conditions, and its inactivation and/or down-regulation by NO. may contribute to pericyte death by apoptosis during the early stages of diabetic retinopathy.  相似文献   

7.
8.
Glyoxal and methylglyoxal are reactive dicarbonyl metabolites formed and metabolized in physiological systems. Increased exposure to these dicarbonyls is linked to mutagenesis and cytotoxicity and enhanced dicarbonyl metabolism by overexpression of glyoxalase 1 is linked to tumour multidrug resistance in cancer chemotherapy. We report herein that glycation of DNA by glyoxal and methylglyoxal produces a quantitatively important class of nucleotide adduct in physiological systems—imidazopurinones. The adduct derived from methylglyoxal-3-(2′-deoxyribosyl)-6,7-dihydro-6,7-dihydroxy-6/7-methylimidazo-[2,3-b]purine-9(8)one isomers—was the major quantitative adduct detected in mononuclear leukocytes in vivo and tumour cell lines in vitro. It was linked to frequency of DNA strand breaks and increased markedly during apoptosis induced by a cell permeable glyoxalase 1 inhibitor. Unexpectedly, the DNA content of methylglyoxal-derived imidazopurinone and oxidative marker 7,8-dihydro-8-oxo-2′-deoxyguanosine were increased moderately in glyoxalase 1-linked multidrug resistant tumour cell lines. Together these findings suggest that imidazopurinones are a major type of endogenous DNA damage and glyoxalase 1 overexpression in tumour cells strives to counter increased imidazopurinone formation in tumour cells likely linked to their high glycolytic activity.  相似文献   

9.
Methylglyoxal (MGO) is a major glycating agent that reacts with basic residues of proteins and promotes the formation of advanced glycation end products (AGEs) which are believed to play key roles in a number of pathologies, such as diabetes, Alzheimer's disease, and inflammation. Here, we examined the effects of MGO on immortalized mouse hippocampal HT22 nerve cells. The endpoints analyzed were MGO and thiol status, the glyoxalase system, comprising glyoxalase 1 and 2 (GLO1/2), and the cytosolic and mitochondrial Trx/TrxR systems, as well as nuclear Nrf2 and its target genes. We found that nuclear Nrf2 is induced by MGO treatment in HT22 cells, as corroborated by induction of the Nrf2-controlled target genes and proteins glutamate cysteine ligase and heme oxygenase 1. Nrf2 knockdown prevented MGO-dependent induction of glutamate cysteine ligase and heme oxygenase 1. The cystine/glutamate antiporter, system xc, which is also controlled by Nrf2, was also induced. The increased cystine import (system xc) activity and GCL expression promoted GSH synthesis, leading to increased levels of GSH. The data indicate that MGO can act as both a foe and a friend of the glyoxalase and the Trx/TrxR systems. At low concentrations of MGO (0.3 mM), GLO2 is strongly induced, but at high MGO (0.75 mM) concentrations, GLO1 is inhibited and GLO2 is downregulated. The cytosolic Trx/TrxR system is impaired by MGO, where Trx is downregulated yet TrxR is induced, but strong MGO-dependent glycation may explain the loss in TrxR activity. We propose that Nrf2 can be the unifying element to explain the observed upregulation of GSH, GCL, HO1, TrxR1, Trx2, TrxR2, and system xc system activity.  相似文献   

10.
11.
12.
The mitochondrial pool of GSH (glutathione) is considered the major redox system in maintaining matrix redox homeostasis, preserving sulfhydryl groups of mitochondrial proteins in appropriate redox state, in defending mitochondrial DNA integrity and protecting mitochondrial-derived ROS, and in defending mitochondrial membranes against oxidative damage. Despite its importance in maintaining mitochondrial functionality, GSH is synthesized exclusively in the cytoplasm and must be actively transported into mitochondria. In this work we found that SLG (S-D-lactoylglutathione), an intermediate of the glyoxalase system, can enter the mitochondria and there be hydrolyzed from mitochondrial glyoxalase II enzyme to D-lactate and GSH. To demonstrate SLG transport from cytosol to mitochondria we used radiolabeled compounds and the results showed two different kinetic curves for SLG or GSH substrates, indicating different kinetic transport. Also, the incubation of functionally and intact mitochondria with SLG showed increased GSH levels in normal mitochondria and in artificially uncoupled mitochondria, demonstrating transport not linked to ATP presence. As well mitochondrial-swelling assay confirmed SLG entrance into organelles. Moreover we observed oxygen uptake and generation of membrane potential probably linked to D-lactate oxidation which is a product of SLG hydrolysis. The latter data were confirmed by oxidation of D-lactate in mitochondria evaluated by measuring mitochondrial D-lactate dehydrogenize activity. In this work we also showed the presence of mitochondrial glyoxalase II in inter-membrane space and mitochondrial matrix and we investigated the role of SLG in whole cells. In conclusion, this work showed new alternative sources of GSH supply to the mitochondria by SLG, an intermediate of the glyoxalase system.  相似文献   

13.
14.
目的:探讨在低氧联合脂多糖(LPS)作用下,星形胶质细胞中B淋巴细胞瘤-2/腺病毒E1B 19-kD相互作用蛋白3(BNIP3)的表达和炎症反应变化。方法:将体外培养的原代星形胶质细胞和神经元进行下列分组:常氧组、LPS组、低氧组和LPS+低氧组(每组设置3个复孔)。LPS处理后,低氧组和LPS+低氧组放入低氧细胞孵箱,LPS组和常氧组放入正常的细胞孵箱。LPS浓度:100 ng/ml,氧气浓度为0.3%。处理时间为24 h。原代的星形胶质细胞进行上述的分组,时间点设为6 h、12 h和24 h。Western blot检测BNIP3的表达变化,RT-PCR和ELISA分别检测星形胶质细胞的肿瘤坏死因子-ɑ(TNF-ɑ)、白细胞介素-1β(IL-1β)和白细胞介素6(IL-6)mRNA水平变化和分泌情况。结果:与常氧组比较,低氧组炎症因子的表达没有变化,LPS组和LPS+低氧组的炎症因子TNF-ɑ、IL-1β和IL-6 mRNA水平升高(P<0.01);与LPS组比较,LPS+低氧组炎症因子IL-1β和IL-6 mRNA水平进一步升高(P<0.05,P<0.01)。与常氧组比较,低氧组炎症因子的分泌水平没有变化,LPS组和LPS+低氧组的炎症因子TNF-ɑ和IL-6 分泌水平升高(P<0.01),IL-1β的水平没有变化;与LPS组比较,LPS+低氧组炎症因子TNF-ɑ和IL-6分泌水平没有进一步升高。BNIP3在体外培养的神经元和星型胶质细胞中都有表达;在星形胶质细胞中,与常氧组比较,LPS组BNIP3的表达没有变化,低氧组和LPS+低氧组BNIP3的表达明显增加(P<0.01);在神经元中,与常氧组比较,LPS组BNIP3的表达没有变化,低氧组和LPS+低氧组BNIP3的表达增加(P<0.05,P<0.01);与神经元的低氧组比较,星形胶质细胞的低氧组BNIP3的表达增加更明显(P<0.01)。在星形胶质细胞中LPS联合低氧刺激6、12、24 h后BNIP3蛋白的表达,与常氧组相同时间点比较,LPS组BNIP3的表达没有变化,低氧组和LPS+低氧组BNIP3的表达增加(P<0.05,P<0.01);与低氧组相同时间点比较,6 h和12 h的LPS+低氧组BNIP3的表达增加的更高(P<0.01)。结论:低氧联合LPS刺激可以增强星形胶质细胞的炎症反应,LPS能增加低氧下星形胶质细胞中BNIP3的表达,提示BNIP3在星形胶质细胞的炎性反应中可能具有一定的调节作用。  相似文献   

15.
Glyoxalase 1 is an enzyme, shown to protect against dicarbonyl glycation and the formation of advanced glycation end products. Recent findings suggest glyoxalase 1 as a molecular marker of psychiatric disorders. In clinical studies aberrant expression of glyoxalase 1 was shown to be involved in major depression, panic disorders and schizophrenia. In mouse models glyoxalase 1 was identified as a molecular marker of trait anxiety. However, anxiety-related behaviour in mice was inconsistently reported to correlate with elevated or reduced expression of glyoxalase 1. As yet, those findings were considered contradicting and the contribution of glyoxalase 1 to the aetiology of psychiatric disorders remained elusive. This review summarizes recent clinical and animal studies. In order to unravel the role of glyoxalase 1 in mental disease, findings are discussed with a particular focus on dicarbonyl substrate concentration. Prevailing the impact of dicarbonyl substrates on anxiety-related behaviour over the influence of glyoxalase 1 expression may consolidate findings that have been considered inconsistent. Taken together, this report suggests that physiological concentration of dicarbonyl compounds may differentiate a remedy from a poison.  相似文献   

16.
Optimization of efficiency in the glyoxalase pathway   总被引:2,自引:0,他引:2  
A quantitative kinetic model for the glutathione-dependent conversion of methylglyoxal to D-lactate in mammalian erythrocytes has been formulated, on the basis of the measured or calculated rate and equilibrium constants associated with (a) the hydration of methylglyoxal, (b) the specific base catalyzed formation of glutathione-(R,S)-methylglyoxal thiohemiacetals, (c) the glyoxalase I catalyzed conversion of the diastereotopic thiohemiacetals to (S)-D-lactoylglutathione, and (d) the glyoxalase II catalyzed hydrolysis of (S)-D-lactoylglutathione to form D-lactate and glutathione. The model exhibits the following properties under conditions where substrate concentrations are small in comparison to the Km values for the glyoxalase enzymes: The overall rate of conversion of methylglyoxal to D-lactate is primarily limited by the rate of formation of the diastereotopic thiohemiacetals. The hydration of methylglyoxal is kinetically unimportant, since the apparent rate constant for hydration is (approximately 500-10(3))-fold smaller than that for formation of the thiohemiacetals. The rate of conversion of methylglyoxal to (S)-D-lactoylglutathione is near optimal, on the basis that the apparent rate constant for the glyoxalase I reaction (kcatEt/Km congruent to 4-20 s-1 for pig, rat, and human erythrocytes) is roughly equal to the apparent rate constant for decomposition of the thiohemiacetals to form glutathione and methylglyoxal [k(obsd) = 11 s-1, pH 7]. The capacity of glyoxalase I to use both diastereotopic thiohemiacetals, versus only one of the diastereomers, as substrates represents a 3- to 6-fold advantage in the steady-state rate of conversion of the diastereomers to (S)-D-lactoylglutathione.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The glyoxalase system has been studied since 1913. The biochemical function of this enzymatic system is the metabolism of reactive dicarbonyl metabolites, glyoxal and methylglyoxal, to less reactive products. In the last decade research has shown that methylglyoxal is the precursor of quantitatively important damage to the proteome and genome, forming mainly hydroimidazolone and imidazopurinone adducts in protein and DNA respectively. The aim of this article is to review the evidence of the involvement of the glyoxalase system in ageing and role of glyoxalase in future research into healthy ageing-mainly in mammalian systems for insights into consequences and interventions in human health. Protein and DNA damage by glyoxalase system substrates is linked to dysfunction of proteins susceptible to dicarbonyl modification-the dicarbonyl proteome, and DNA instability and mutation. A component of the glyoxalase system, glyoxalase 1, is a gene with expression influential on lifespan-increasing longevity being associated with increased expression of glyoxalase 1. The glyoxalase 1 gene is also a site of copy number variation in both transcribed and non-transcribed regions giving rise to population variation of expression. The glyoxalase system and Glo1 expression particularly is therefore likely linked to healthy ageing.  相似文献   

18.
19.
BackgroundAcquired tamoxifen resistance is a significant problem in estrogen receptor positive breast cancer. In a cellular model, tamoxifen resistance was associated with increased sensitivity towards toxic dicarbonyls and reduced free sulfhydryl group content. We here analyzed the role of oxidative stress and glyoxalase I activity on dicarbonyl resistance and the significance of glyoxalase I expression for survival.MethodsReactive oxygen species were determined by 2,7-dihydrochlorofluorescein diacetate. Inhibitors for NADPH-oxidase (diphenyleneiodonium), p38 MAPK (SB203580) and ERK1/2 (UO126) were applied to investigate interactions of these signaling molecules. N-acetyl cysteine was used to evaluate the effect of oxidative stress on cell viability, which was assessed by the resazurin assay. Gene expression was analyzed by real time qRT-PCR. Glyoxalase activity was inhibited by the specific inhibitor CS-0683 and siRNA. The relevance of glyoxalase 1 mRNA abundance on survival of breast cancer patients was evaluated by the KM-plotter web interface.Resultsα-Oxo-aldehydes caused an immediate increase in reactive oxygen species where the tamoxifen resistant cell line (TamR) responded at lower concentrations than the MCF-7 parental cell line. Inhibitor studies placed ROS production by NADPH-oxidase downstream of p38 MAPK. The antioxidant N-acetyl cysteine (NAC) increased survival, whereas glyoxalase (GLO1) inhibition increased dicarbonyl toxicity. GLO1 mRNA abundance was correlated with unfavorable prognosis of breast cancer patients.ConclusionsDicarbonyl toxicity was mediated by oxidative stress and GLO1 activity determines aldehyde toxicity in tamoxifen resistant cells.General SignificanceGlyoxalases might be predictive biomarkers for tamoxifen resistance and a putative target for the treatment of tamoxifen resistant breast cancer patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号