首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Secondary xylem is composed of daughter cells produced by the vascular cambium in the stem. Cell proliferation of the secondary xylem is the result of long-range cell division in the vascular cambium. Most xylem cells have a thickened secondary cell wall, representing a large amount of biomass storage. Therefore, regulation of cell division in the vascular cambium and differentiation into secondary xylem is important for biomass production. Cell division is regulated by cell cycle regulators. In this study, we confirm that cell cycle regulators influence cell division in the vascular cambium in tobacco. We produced transgenic tobacco that expresses Arabidopsis thaliana cyclin D2;1 (AtcycD2;1) and AtE2Fa-DPa under the control of the CaMV35S promoter. Each gene is a positive regulator of the cell cycle, and is known to influence the transition from G1 phase to S phase. AtcycD2;1-overexpressing tobacco had more secondary xylem cells when compared with control plants. In order to evaluate cell division activity in the vascular cambium, we prepared a Populus trichocarpa cycB1;1 (PtcycB1;1) promoter containing a destruction box motif for ubiquitination and a β-glucuronidase-encoding gene (PtcycB1;1pro:GUS). In transgenic tobacco containing PtcycB1;1pro:GUS, GUS staining was specifically observed in meristem tissues, such as the root apical meristem and vascular cambium. In addition, mitosis-monitoring plants containing AtcycD2;1 had stronger GUS staining in the cambium when compared with control plants. Our results indicated that overexpression of AtcycD enhances cell division in the vascular cambium and increases secondary xylem differentiation in tobacco. Key message We succeeded in inducing cell proliferation of cambium and enlargement of secondary xylem region by AtcycD overexpression. We also evaluated mitotic activity in cambium using cyclin-GUS fusion protein from poplar.  相似文献   

5.
6.
7.
8.
9.
10.
11.
The indeterminate nature of plant growth and development depends on the stem cell system found in meristems. The Arabidopsis thaliana vascular meristem includes procambium and cambium. In these tissues, cell–cell signaling, mediated by a ligand-receptor pair made of the TDIF (for tracheary element differentiation inhibitory factor) peptide and the TDR/PXY (for TDIF RECEPTOR/ PHLOEM INTERCALATED WITH XYLEM) membrane protein kinase, promotes proliferation of procambial cells and suppresses their xylem differentiation. Here, we report that a WUSCHEL-related HOMEOBOX gene, WOX4, is a key target of the TDIF signaling pathway. WOX4 is expressed preferentially in the procambium and cambium, and its expression level was upregulated upon application of TDIF in a TDR-dependent manner. Genetic analyses showed that WOX4 is required for promoting the proliferation of procambial/cambial stem cells but not for repressing their commitment to xylem differentiation in response to the TDIF signal. Thus, at least two intracellular signaling pathways that diverge after TDIF recognition by TDR might regulate independently the behavior of vascular stem cells. Detailed observations in loss-of-function mutants revealed that TDIF-TDR-WOX4 signaling plays a crucial role in the maintenance of the vascular meristem organization during secondary growth.  相似文献   

12.
13.
Plants maintain pools of pluripotent stem cells which allow them to constantly produce new tissues and organs. Stem cell homeostasis in shoot and root tips depends on negative regulation by ligand–receptor pairs of the CLE peptide and leucine‐rich repeat receptor‐like kinase (LRR‐RLK) families. However, regulation of the cambium, the stem cell niche required for lateral growth of shoots and roots, is poorly characterized. Here we show that the LRR‐RLK MOL1 is necessary for cambium homeostasis in Arabidopsis thaliana. By employing promoter reporter lines, we reveal that MOL1 is active in a domain that is distinct from the domain of the positively acting CLE41/PXY signaling module. In particular, we show that MOL1 acts in an opposing manner to the CLE41/PXY module and that changing the domain or level of MOL1 expression both result in disturbed cambium organization. Underlining discrete roles of MOL1 and PXY, both LRR‐RLKs are not able to replace each other when their expression domains are interchanged. Furthermore, MOL1 but not PXY is able to rescue CLV1 deficiency in the shoot apical meristem. By identifying genes mis‐expressed in mol1 mutants, we demonstrate that MOL1 represses genes associated with stress‐related ethylene and jasmonic acid hormone signaling pathways which have known roles in coordinating lateral growth of the Arabidopsis stem. Our findings provide evidence that common regulatory mechanisms in different plant stem cell niches are adapted to specific niche anatomies and emphasize the importance of a complex spatial organization of intercellular signaling cascades for a strictly bidirectional tissue production.  相似文献   

14.
15.
16.
17.
18.
19.
Zhao J  Peng P  Schmitz RJ  Decker AD  Tax FE  Li J 《Plant physiology》2002,130(3):1221-1229
GSK3 is a highly conserved kinase that negatively regulates many cellular processes by phosphorylating a variety of protein substrates. BIN2 is a GSK3-like kinase in Arabidopsis that functions as a negative regulator of brassinosteroid (BR) signaling. It was proposed that BR signals, perceived by a membrane BR receptor complex that contains the leucine (Leu)-rich repeat receptor-like kinase BRI1, inactivate BIN2 to relieve its inhibitory effect on unknown downstream BR-signaling components. Using a yeast (Saccharomyces cerevisiae) two-hybrid approach, we discovered a potential BIN2 substrate that is identical to a recently identified BR-signaling protein, BES1. BES1 and its closest homolog, BZR1, which was also uncovered as a potential BR-signaling protein, display specific interactions with BIN2 in yeast. Both BES1 and BZR1 contain many copies of a conserved GSK3 phosphorylation site and can be phosphorylated by BIN2 in vitro via a novel GSK3 phosphorylation mechanism that is independent of a priming phosphorylation or a scaffold protein. Five independent bes1 alleles containing the same proline-233-Leu mutation were identified as semidominant suppressors of two different bri1 mutations. Over-expression of the wild-type BZR1 gene partially complemented bin2/+ mutants and resulted in a BRI1 overexpression phenotype in a BIN2(+) background, whereas overexpression of a mutated BZR1 gene containing the corresponding proline-234-Leu mutation rescued a weak bri1 mutation and led to a bes1-like phenotype. Confocal microscopic analysis indicated that both BES1 and BZR1 proteins were mainly localized in the nucleus. We propose that BES1/BZR1 are two nuclear components of BR signaling that are negatively regulated by BIN2 through a phosphorylation-initiated process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号