首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Missense variants are alterations to protein coding sequences that result in amino acid substitutions. They can be deleterious if the amino acid is required for maintaining structure or/and function, but are likely to be tolerated at other sites. Consequently, missense variation within a healthy population can mirror the effects of negative selection on protein structure and function, such that functional sites on proteins are often depleted of missense variants. Advances in high-throughput sequencing have dramatically increased the sample size of available human variation data, allowing for population-wide analysis of selective pressures. In this study, we developed a convenient set of tools, called 1D-to-3D, for visualizing the positions of missense variants on protein sequences and structures. We used these tools to characterize human homologues of the ARID family of gene regulators. ARID family members are implicated in multiple cancer types, developmental disorders, and immunological diseases but current understanding of their mechanistic roles is incomplete. Combined with phylogenetic and structural analyses, our approach allowed us to characterise sites important for protein-protein interactions, histone modification recognition, and DNA binding by the ARID proteins. We find that comparing missense depletion patterns among paralogs can reveal sub-functionalization at the level of domains. We propose that visualizing missense variants and their depletion on structures can serve as a valuable tool for complementing evolutionary and experimental findings.  相似文献   

2.
High-affinity binders selected from designed ankyrin repeat protein libraries   总被引:12,自引:0,他引:12  
We report here the evolution of ankyrin repeat (AR) proteins in vitro for specific, high-affinity target binding. Using a consensus design strategy, we generated combinatorial libraries of AR proteins of varying repeat numbers with diversified binding surfaces. Libraries of two and three repeats, flanked by 'capping repeats,' were used in ribosome-display selections against maltose binding protein (MBP) and two eukaryotic kinases. We rapidly enriched target-specific binders with affinities in the low nanomolar range and determined the crystal structure of one of the selected AR proteins in complex with MBP at 2.3 A resolution. The interaction relies on the randomized positions of the designed AR protein and is comparable to natural, heterodimeric protein-protein interactions. Thus, our AR protein libraries are valuable sources for binding molecules and, because of the very favorable biophysical properties of the designed AR proteins, an attractive alternative to antibody libraries.  相似文献   

3.
The ankyrin repeat as molecular architecture for protein recognition   总被引:29,自引:0,他引:29  
The ankyrin repeat is one of the most frequently observed amino acid motifs in protein databases. This protein-protein interaction module is involved in a diverse set of cellular functions, and consequently, defects in ankyrin repeat proteins have been found in a number of human diseases. Recent biophysical, crystallographic, and NMR studies have been used to measure the stability and define the various topological features of this motif in an effort to understand the structural basis of ankyrin repeat-mediated protein-protein interactions. Characterization of the folding and assembly pathways suggests that ankyrin repeat domains generally undergo a two-state folding transition despite their modular structure. Also, the large number of available sequences has allowed the ankyrin repeat to be used as a template for consensus-based protein design. Such projects have been successful in revealing positions responsible for structure and function in the ankyrin repeat as well as creating a potential universal scaffold for molecular recognition.  相似文献   

4.
植物锚蛋白研究进展   总被引:3,自引:0,他引:3  
锚蛋白重复序列模体是生物体内最普遍的蛋白质序列模体之一,在多种细胞活动中主要介导蛋白质-蛋白质的相互作用。综述了近年来有关锚蛋白参与植物信号传导的研究进展。  相似文献   

5.
Li J  Mahajan A  Tsai MD 《Biochemistry》2006,45(51):15168-15178
Ankyrin repeat, one of the most widely existing protein motifs in nature, consists of 30-34 amino acid residues and exclusively functions to mediate protein-protein interactions, some of which are directly involved in the development of human cancer and other diseases. Each ankyrin repeat exhibits a helix-turn-helix conformation, and strings of such tandem repeats are packed in a nearly linear array to form helix-turn-helix bundles with relatively flexible loops. The global structure of an ankyrin repeat protein is mainly stabilized by intra- and inter-repeat hydrophobic and hydrogen bonding interactions. The repetitive and elongated nature of ankyrin repeat proteins provides the molecular bases of the unique characteristics of ankyrin repeat proteins in protein stability, folding and unfolding, and binding specificity. Recent studies have demonstrated that ankyrin repeat proteins do not recognize specific sequences, and interacting residues are discontinuously dispersed into the whole molecules of both the ankyrin repeat protein and its partner. In addition, the availability of thousands of ankyrin repeat sequences has made it feasible to use rational design to modify the specificity and stability of physiologically important ankyrin repeat proteins and even to generate ankyrin repeat proteins with novel functions through combinatorial chemistry approaches.  相似文献   

6.
Recent data on characteristics of the structure, functions, and main properties of ankyrins (proteins that are linkers between the spectrin-based cytoskeleton and integral membrane proteins) are summarized. The interactions of ankyrins with band-3 protein, P-type ATPases, ion channels, receptors, and protein kinase C are considered. The structure of ankyrin repeats that are often contained in other proteins (which are not classified with the ankyrin family) and ensure protein-protein interactions as well as interactions between proteins and nucleic acids is described in details. The mechanisms of regulation of the ability of ankyrins to interact with other proteins (alternative splicing and post-translational modification, including phosphorylation) are also considered.  相似文献   

7.
Gankyrin is a 25-kDa hepatocellular carcinoma-associated protein that mediates protein-protein interactions in cell cycle control and protein degradation. It has been reported to form complexes with cyclin-dependent kinase 4, retinoblastoma protein, the S6b ATPase subunit of the 19 S regulator of the 26 S proteasome, and Mdm2, an E3 ubiquitin ligase involved in p53 degradation. It is the first protein described to bind both to the 26 S proteasome and to proteins in other complexes containing cyclin-dependent kinase(s) and p53 ubiquitylating activities, thus providing a mechanism for delivering cell cycle regulating machinery and ubiquitylated substrates to the proteasome for degradation. Gankyrin contains a 33-residue motif known as the ankyrin repeat that occurs five and a half to six times in the sequence. As a step toward understanding gankyrin interactions with its protein partners we have determined its three-dimensional crystal structure to 2.0-A resolution. It reveals that the entire 226-residue gankyrin polypeptide folds into seven ankyrin repeat elements. The ankyrin repeats, consisting of an antiparallel beta-hairpin followed by a perpendicularly oriented helix-loop-helix, pack side-by-side, creating an extended curved structure with a groove running across the long concave surface. Comparison with the structures of other ankyrin repeat proteins suggests that interactions with partner proteins are mediated by residues situated on this concave surface.  相似文献   

8.
9.
Ankryin repeat proteins comprise tandem arrays of a 33-residue, predominantly α-helical motif that stacks roughly linearly to produce elongated and superhelical structures. They function as scaffolds mediating a diverse range of protein-protein interactions, and some have been proposed to play a role in mechanical signal transduction processes in the cell. Here we use atomic force microscopy and molecular-dynamics simulations to investigate the natural 7-ankyrin repeat protein gankyrin. We find that gankyrin unfolds under force via multiple distinct pathways. The reactions do not proceed in a cooperative manner, nor do they always involve fully stepwise unfolding of one repeat at a time. The peeling away of half an ankyrin repeat, or one or more ankyrin repeats, occurs at low forces; however, intermediate species are formed that are resistant to high forces, and the simulations indicate that in some instances they are stabilized by nonnative interactions. The unfolding of individual ankyrin repeats generates a refolding force, a feature that may be more easily detected in these proteins than in globular proteins because the refolding of a repeat involves a short contraction distance and incurs a low entropic cost. We discuss the origins of the differences between the force- and chemical-induced unfolding pathways of ankyrin repeat proteins, as well as the differences between the mechanics of natural occurring ankyrin repeat proteins and those of designed consensus ankyin repeat and globular proteins.  相似文献   

10.
TRPV channels are important polymodal integrators of noxious stimuli mediating thermosensation and nociception. An ankyrin repeat domain (ARD), which is a common protein-protein recognition domain, is conserved in the N-terminal intracellular domain of all TRPV channels and predicted to contain three to four ankyrin repeats. Here we report the first structure from the TRPV channel subfamily, a 1.7 A resolution crystal structure of the human TRPV2 ARD. Our crystal structure reveals a six ankyrin repeat stack with multiple insertions in each repeat generating several unique features compared with a canonical ARD. The surface typically used for ligand recognition, the ankyrin groove, contains extended loops with an exposed hydrophobic patch and a prominent kink resulting from a large rotational shift of the last two repeats. The TRPV2 ARD provides the first structural insight into a domain that coordinates nociceptive sensory transduction and is likely to be a prototype for other TRPV channel ARDs.  相似文献   

11.
Gammie AE  Erdeniz N  Beaver J  Devlin B  Nanji A  Rose MD 《Genetics》2007,177(2):707-721
Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with defects in DNA mismatch repair. Mutations in either hMSH2 or hMLH1 underlie the majority of HNPCC cases. Approximately 25% of annotated hMSH2 disease alleles are missense mutations, resulting in a single change out of 934 amino acids. We engineered 54 missense mutations in the cognate positions in yeast MSH2 and tested for function. Of the human alleles, 55% conferred strong defects, 8% displayed intermediate defects, and 38% showed no defects in mismatch repair assays. Fifty percent of the defective alleles resulted in decreased steady-state levels of the variant Msh2 protein, and 49% of the Msh2 variants lost crucial protein-protein interactions. Finally, nine positions are predicted to influence the mismatch recognition complex ATPase activity. In summary, the missense mutations leading to loss of mismatch repair defined important structure-function relationships and the molecular analysis revealed the nature of the deficiency for Msh2 variants expressed in the tumors. Of medical relevance are 15 human alleles annotated as pathogenic in public databases that conferred no obvious defects in mismatch repair assays. This analysis underscores the importance of functional characterization of missense alleles to ensure that they are the causative factor for disease.  相似文献   

12.
Ankyrin repeat polypeptides contain repeated structural elements that pack to produce modular architectures lacking in close contacts between distant segments of the polypeptide chain. Despite this lack of sequence-distant contacts, ankyrin repeat polypeptides have been shown to fold in a cooperative manner. To determine the distance over which cooperative interactions can be propagated in a repeat protein, and to investigate the tolerance to internal duplication and deletion of modules, we have constructed a series of ankyrin repeat variants of the Notch ankyrin domain in which repeat number is varied by duplication and deletion of internal repeats. A construct with two copies of the fifth ankyrin repeat shows a modest increase in stability compared to the parent construct and retains apparent two-state unfolding behavior. Although constructs containing three and four copies of the fifth repeat retain this increased resistance to urea, they exhibit broad, multi-state unfolding transitions compared to the parent construct. For the Notch ankyrin domain, these larger constructs may represent a limit beyond which full cooperativity cannot be maintained. Deletions of internal repeats from the Notch ankyrin domain significantly destabilize the domain. This severe destabilization, which is larger than that resulting from end-repeat deletion, may arise from unfavorable interactions within the new non-native interfaces produced by internal repeat deletion. These results demonstrate both an asymmetry between the duplication and deletion of internal repeats, and a difference between deletion of internal and end-repeats, suggesting preferred mechanisms for evolution of repeat proteins.  相似文献   

13.
The FIC motif and the eukaryotic‐like ankyrin repeats are found in many bacterial type IV effectors, yet little is known about how these domains enable bacteria to modulate host cell functions. Bacterial FIC domains typically bind ATP and transfer adenosine monophosphate moiety onto target proteins. The ankyrin repeat‐containing protein AnkX encoded by the intracellular pathogen Legionella pneumophila is unique in that its FIC domain binds to CDP‐choline and transfers a phosphocholine residue onto proteins in the Rab1 GTPase family. By determining the structures of unbound AnkX and AnkX with bound CDP‐choline, CMP/phosphocholine and CMP, we demonstrate that the orientation of substrate binding in relation to the catalytic FIC motif enables this protein to function as a phosphocholinating enzyme rather than a nucleotidyl transferase. Additionally, the structure reveals that the ankyrin repeats mediate scaffolding interactions that resemble those found in protein–protein interactions, but are unprecedented in intramolecular interactions. Together with phosphocholination experiments, our structures unify a general phosphoryl transferase mechanism common to all FIC enzymes that should be conserved from bacteria to human.  相似文献   

14.
The glp-1 gene encodes a membrane protein required for inductive cell interactions during development of the nematode Caenorhabditis elegans. Here we report the molecular characterization of 15 loss-of-function (lf) mutations of glp-1. Two nonsense mutations appear to eliminate glp-1 activity; both truncate the glp-1 protein in its extracellular domain and have a strong loss-of-function phenotype. Twelve missense mutations and one in-frame deletion map to sites within the repeated motifs of the glp-1 protein (10 epidermal growth factor [EGF]-like and 3 LNG repeats extracellularly and 6 cdc10/SWI6, or ankyrin, repeats intracellularly). We find that all three types of repeated motifs are critical to glp-1 function, and two individual EGF-like repeats may have distinct functions. Intriguingly, all four missense mutations in one phenotypic class map to the N-terminal EGF-like repeats and all six missense mutations in a second phenotypic class reside in the intracellular cdc10/SWI6 repeats. These two clusters of mutations may identify functional domains within the glp-1 protein.  相似文献   

15.
锚蛋白重复序列模体是生物体内最普遍的蛋白质序列模体之一,在多种细胞活动中主要介导蛋白质与蛋白质的相互作用。采用生物信息学的方法,在基因组水平上搜索和鉴定了水稻锚定重复序列蛋白,通过分析蛋白质二级结构,进行水稻锚蛋白基因家族的聚类分析,并在此基础上,用RT-PCR的方法分析水稻锚定膜蛋白的表达模式,为水稻锚蛋白基因的研究提供了理论依据。  相似文献   

16.
The Notch receptor contains a conserved ankyrin repeat domain that is required for Notch-mediated signal transduction. The ankyrin domain of Drosophila Notch contains six ankyrin sequence repeats previously identified as closely matching the ankyrin repeat consensus sequence, and a putative seventh C-terminal sequence repeat that exhibits lower similarity to the consensus sequence. To better understand the role of the Notch ankyrin domain in Notch-mediated signaling and to examine how structure is distributed among the seven ankyrin sequence repeats, we have determined the crystal structure of this domain to 2.0 angstroms resolution. The seventh, C-terminal, ankyrin sequence repeat adopts a regular ankyrin fold, but the first, N-terminal ankyrin repeat, which contains a 15-residue insertion, appears to be largely disordered. The structure reveals a substantial interface between ankyrin polypeptides, showing a high degree of shape and charge complementarity, which may be related to homotypic interactions suggested from indirect studies. However, the Notch ankyrin domain remains largely monomeric in solution, demonstrating that this interface alone is not sufficient to promote tight association. Using the structure, we have classified reported mutations within the Notch ankyrin domain that are known to disrupt signaling into those that affect buried residues and those restricted to surface residues. We show that the buried substitutions greatly decrease protein stability, whereas the surface substitutions have only a marginal affect on stability. The surface substitutions are thus likely to interfere with Notch signaling by disrupting specific Notch-effector interactions and map the sites of these interactions.  相似文献   

17.
《Biophysical journal》2023,122(2):322-332
Protein structures and mutagenesis studies have been instrumental in elucidating molecular mechanisms of ion channel function, but making informed choices about which residues to target for mutagenesis can be challenging. Therefore, we investigated the potential for using human population genomic data to further refine our selection of mutagenesis sites in TRPV1. Single nucleotide polymorphism data of TRPV1 from gnomAD 2.1.1 revealed a lower number of missense variants within buried residues of the ankyrin repeat domain and an increased number of variants between secondary structure elements of the transmembrane segments. We hypothesized that residues critical to interactions at interfaces between subunits or domains in the channel would exhibit a similar reduction in variants. We identified in the structure of ground squirrel TRPV1 (PDB: 7LQY) a possible electrostatic network between K155 and K160 in the N-terminal ankyrin repeat domain and E761 and D762 in the C-terminus (K-KED). Consistent with our hypothesis for residues at key interface sites, none of the four residues have any variants reported in gnomAD 2.1.1. Ca2+ imaging of TRPV1 K-KED mutants confirmed significant roles for these residues, but we found that the electrostatic interaction is not essential since channel function is still observed in total charge reversals on the C-terminal side of the interface (E761K/D762K). Interestingly, Ca2+ imaging responses for a charge swap experiment with K155D/D762K showed partially restored wild-type responses. Using electrophysiology, we found that charge reversals on either K155 or D762 increased the baseline currents of TRPV1, and the charge swapped double mutant, K155D/D762K, partially restored baseline currents to wild-type levels. We interpret these results to mean that contacts across residues in the K-KED interface shift the equilibria of conformations to closed pore states. Our study demonstrates the utility and applicability of a combined missense variant and structure targeted investigation of residues at TRPV1 subunit interfaces.  相似文献   

18.
Cytosolic acyl-CoA-binding proteins (ACBP) bind long-chain acyl-CoAs and act as intracellular acyl-CoA transporters and maintain acyl-CoA pools. Arabidopsis thaliana ACBP2 shows conservation at the acyl-CoA-binding domain to cytosolic ACBPs but is distinct by the presence of an N-terminal transmembrane domain and C-terminal ankyrin repeats. The function of the acyl-CoA-binding domain in ACBP2 has been confirmed by site-directed mutagenesis and four conserved residues crucial for palmitoyl-CoA binding have been identified. Results from ACBP2:GFP fusions transiently expressed in onion epidermal cells have demonstrated that the transmembrane domain functions in plasma membrane targeting, suggesting that ACBP2 transfers acyl-CoA esters to this membrane. In this study, we investigated the significance of its ankyrin repeats in mediating protein-protein interactions by yeast two-hybrid analysis and in vitro protein-binding assays; we showed that ACBP2 interacts with the A. thaliana ethylene-responsive element-binding protein AtEBP via its ankyrin repeats. This interaction was lacking in yeast two-hybrid analysis upon removal of the ankyrin repeats. When the subcellular localizations of ACBP2 and AtEBP were further investigated using autofluorescent protein fusions in transient expression by agroinfiltration of tobacco leaves, the DsRed:ACBP2 fusion protein was localized to the plasma membrane while the GFP:AtEBP fusion protein was targeted to the nucleus and plasma membrane. Co-expression of DsRed:ACBP2 and GFP:AtEBP showed a common localization of both proteins at the plasma membrane, suggesting that ACBP2 likely interacts with AtEBP at the plasma membrane.  相似文献   

19.
Many studies have shown that missense mutations might play an important role in carcinogenesis. However, the extent to which cancer mutations might affect biomolecular interactions remains unclear. Here, we map glioblastoma missense mutations on the human protein interactome, model the structures of affected protein complexes and decipher the effect of mutations on protein-protein, protein-nucleic acid and protein-ion binding interfaces. Although some missense mutations over-stabilize protein complexes, we found that the overall effect of mutations is destabilizing, mostly affecting the electrostatic component of binding energy. We also showed that mutations on interfaces resulted in more drastic changes of amino acid physico-chemical properties than mutations occurring outside the interfaces. Analysis of glioblastoma mutations on interfaces allowed us to stratify cancer-related interactions, identify potential driver genes, and propose two dozen additional cancer biomarkers, including those specific to functions of the nervous system. Such an analysis also offered insight into the molecular mechanism of the phenotypic outcomes of mutations, including effects on complex stability, activity, binding and turnover rate. As a result of mutated protein and gene network analysis, we observed that interactions of proteins with mutations mapped on interfaces had higher bottleneck properties compared to interactions with mutations elsewhere on the protein or unaffected interactions. Such observations suggest that genes with mutations directly affecting protein binding properties are preferably located in central network positions and may influence critical nodes and edges in signal transduction networks.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号