首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was designed to evaluate the potential role of miR-93 in cerebral ischemic/reperfusion (I/R) injury in mice. The stroke model was produced in C57BL/6 J mice via middle cerebral artery occlusion (MCAO) for 1 h followed by reperfusion. And miR-93 antagomir was transfected to down-regulate the miR-93 level. Our results showed that miR-93 levels in the cerebral cortex of mice increased at 24 and 48 h after reperfusion. Importantly, in vivo study demonstrated that treatment with miR-93 antagomir reduced cerebral infarction volume, neural apoptosis and restored the neurological scores. In vitro study demonstrated that miR-93 antagomir attenuated hydrogen peroxide (H2O2)-induced injury. Moreover, miR-93 antagomir suppressed oxidative stress in I/R brain and H2O2 treated cortical neurons. Furthermore, we founded that down-regulation of miR-93 increased the expression of nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase-1 (HO-1) and the luciferase reporter assay confirmed that miR-93 directly binds to the predicted 3′-UTR target sites of the nrf2 gene. Finally, we found that knockdown of Nrf2 or HO-1 abolished miR-93 antagomir-induced neuroprotection against oxidative stress in H2O2 treated neuronal cultures. These results suggested that miR-93 antagomir alleviates ischemic injury through the Nrf2/HO-1 antioxidant pathway.  相似文献   

2.
3.
Recently, numerous microRNAs (miRNAs) have been considered as key players in the regulation of neuronal processes. The purpose of the present study is to explore the effect of miR-25 on hippocampal neuron injury in Alzheimer's disease (AD) induced by amyloid β (Aβ) peptide fragment 1 to 42 (Aβ1-42) via Kruppel-like factor 2 (KLF2) through the nuclear factor-E2-related factor 2 (Nrf2) signaling pathway. A mouse model of AD was established through Aβ1-42 induction. The underlying regulatory mechanisms of miR-25 were analyzed through treatment of miR-25 mimics, miR-25 inhibitors, or small interfering RNA (siRNA) against KLF2 in hippocampal tissues and cells isolated from AD mice. The targeting relationship between miR-25 and KLF2 was predicted using a target prediction program and verified by luciferase activity determination. MTT assay was used to evaluate the proliferative ability and flow cytometry to detect cell cycle distribution and apoptosis. KLF2 was confirmed as a target gene of miR-25. When the mice were induced by Aβ1-42, proliferation was suppressed while apoptosis was promoted in hippocampal neurons as evidenced by lower levels of KLF2, Nrf2, haem oxygenase, glutathione S transferase α1, glutathione, thioredoxin, and B-cell lymphoma-2 along with higher bax level. However, such alternations could be reversed by treatment of miR-25 inhibitors. These findings indicate that miR-25 may inhibit hippocampal neuron proliferation while promoting apoptosis, thereby aggravating hippocampal neuron injury through downregulation of KLF2 via the Nrf2 signaling pathway.  相似文献   

4.
Acute lung injury (ALI) is a life-threatening, diffuse heterogeneous lung injury characterized by acute onset, pulmonary edema, and respiratory failure. Lipopolysaccharide (LPS) is a leading cause for ALI and when administered to a mouse it induces a lung phenotype exhibiting some of the clinical characteristics of human ALI. This study focused on investigating whether microRNA-27b (miR-27b) affects ALI in a mouse model established by LPS-induction and to further explore the underlying mechanism. After model establishment, the mice were treated with miR-27b agomir, miR-27b antagomir, or D-ribofuranosylbenzimidazole (an inhibitor of nuclear factor-E2-related factor 2 [Nrf2]) to determine levels of miR-27b, Nrf2, nuclear factor kappa-light-chain-enhancer of activated B cells nuclear factor κB (NF-κB), p-NF-κB, and heme oxygenase-1 (HO-1). The levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) in bronchoalveolar lavage fluid (BALF) were determined. The results of luciferase activity suggested that Nrf2 was a target gene of miR-27b. It was indicated that the Nrf2 level decreased in lung tissues from ALI mice. The downregulation of miR-27b decreased the levels of IL-1β, IL-6, and TNF-α in BALF of ALI mice. Downregulated miR-27b increased Nrf2 level, thus enhancing HO-1 level along with reduction of NF-κB level as well as the extent of NF-κB phosphorylation in the lung tissues of the transfected mice. Pathological changes were ameliorated in LPS-reduced mice elicited by miR-27b inhibition. The results of this study demonstrate that downregulated miR-27b couldenhance Nrf2 and HO-1 expressions, inhibit NF-κB signaling pathway, which exerts a protective effect on LPS-induced ALI in mice.  相似文献   

5.
6.
7.
Expression of apoptotic protease activating factor-1 (Apaf-1) gradually decreases during brain development, and this decrease is likely responsible for the decreased sensitivity of brain tissue to apoptosis. However, the mechanism by which Apaf-1 expression is decreased remains elusive. In the present study, we found that four microRNAs (miR-23a/b and miR-27a/b) of miR-23a-27a-24 and miR-23b-27b-24 clusters play key roles in modulating the expression of Apaf-1. First, we found that miR-23a/b and miR-27a/b suppressed the expression of Apaf-1 in vitro. Interestingly, the expression of the miR-23-27-24 clusters in the mouse cortex gradually increased in a manner that was inversely correlated with the pattern of Apaf-1 expression. Second, hypoxic injuries during fetal distress caused reduced expression of the miR-23b and miR-27b that was inversely correlated with an elevation of Apaf-1 expression during neuronal apoptosis. Third, we made neuronal-specific transgenic mice and found that overexpressing the miR-23b and miR-27b in mouse neurons inhibited the neuronal apoptosis induced by intrauterine hypoxia. In conclusion, our results demonstrate, in central neural system, that miR-23a/b and miR-27a/b are endogenous inhibitory factors of Apaf-1 expression and regulate the sensitivity of neurons to apoptosis. Our findings may also have implications for the potential target role of microRNAs in the treatment of neuronal apoptosis-related diseases.  相似文献   

8.
COPD, or Chronic obstructive pulmonary disease, is an inflammation-related disease and lead to cachexia and muscle wasting. Altered nuclear factor erythroid 2-related factor 2 (Nrf2) expression is found in patients of COPD because it is involved in pulmonary protective effects. MiR-29b could be activated by Nrf2. We hypothesized that miR-29b might mediate the regulation of Nrf2 on Th1/Th2 differentiation and airway epithelial remodeling in COPD rats. SD rats were exposed to smoke for COPD induction. Expression of Nrf2 mRNA and miR-29b in lung tissues was quantified. Expression of Nrf2 and matrix metalloproteinase 2 (MMP2) were also detected by immunohistochemistry and western blot. Th1 markers and Th2 markers were measured by ELISA in peripheral blood. Flow cytometry was used to detect the Th1/Th2 ratio. miR-29b and Nrf2 was manipulated at mRNA level in A549 cells using transfection. Cellular growth and migration were measured in transfectants. In lung tissues of COPD rats, expression of Nrf2 and miR-29b decreased. MMP2, a target of miR-29b, had an opposite expression to miR-29b in peripheral blood. Levels of inflammatory factors and Th1/Th2 ratio increased. MiR-29b mediated the regulation of Nrf2 on remodeling of lung epithelial cells. Blocking Nrf2 expression in A549 cells led to the opposite expression of miR-29b and further decreased MMP2 production; meanwhile, cell growth and motility were improved. Different miR-29b levels affected MMP2 expression and cellular characteristics. The findings suggested that miR-29b was a regulator the pathological progress of COPD. It mediates the effect of Nrf2 on Th1/Th2 differentiation and on remodeling process of airway epithelial cells.  相似文献   

9.
目的研究microRNA-424(miR-424)对小鼠脑缺血后神经细胞凋亡及转录因子表达的影响。方法将制备的慢病毒Lenti-miR-424(10’U/mL,8斗L)通过脑室注射,7d后采用大脑中动脉线栓闭塞(MCAO)的方法建立小鼠脑缺血模型,动物分4组:假手术组,假手术+miR-424慢病毒,MCAO模型组,MCAO+miR-424慢病毒处理组(n=6)。缺血8h后取脑组织,石蜡切片进行TUNEL染色,观察神经细胞凋亡的情况;Westernblot检测缺血脑组织中转录因子Pu.1、低氧诱导因子-la(hypoxiainduciblefactor-1a,HIF-1a)、凋亡相关蛋白p53的表达。结果TUNEL免疫荧光观察结果显示,miR-424可以减轻小鼠脑缺血后8h的神经细胞凋亡;Westernblot结果显示,在缺血前和缺血8h后,miR-424对正常小鼠或MCAO模型脑组织中转录因子的调节趋势是相同的,均增加转录因子PU.1蛋白、HIF.1a蛋白、以及凋亡相关蛋白p53的表达。结论miR-424可能通过增加小鼠脑组织转录因子PU.1和HIF-la,以及凋亡相关蛋白p53的表达,从而减轻脑缺血后神经细胞的凋亡。  相似文献   

10.
Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 (SHPS-1), also known as Signal-regulatory protein alpha (SIRPα) or SIRPA is a transmembrane protein that is predominantly expressed in neurons, dendritic cells, and macrophages. This study was conducted to investigate the role of SHPS-1 in the oxidative stress and brain damage induced by acute focal cerebral ischemia. Wild-type (WT) and SHPS-1 mutant (MT) mice were subjected to middle cerebral artery occlusion (60 min) followed by reperfusion. SHPS-1 MT mice had significantly reduced infarct volumes and improved neurological function after brain ischemia. In addition, neural injury and oxidative stress were inhibited in SHPS-1 MT mice. The mRNA and protein levels of the antioxidant genes nuclear factor-E2-related factor 2 (Nrf2) and heme oxygenase 1 were up-regulated in SHPS-1 MT mice. The SHPS-1 mutation suppressed the phosphorylation of SHP-1 and SHP-2 and increased the phosphorylation of Akt and GSK3β. These results provide the first demonstration that SHPS-1 plays an important role in the oxidative stress and brain injury induced by acute cerebral ischemia. The activation of Akt signaling and the up-regulation of Nrf2 and heme oxygenase 1 likely account for the protective effects that were observed in the SHPS-1 MT mice.  相似文献   

11.
12.
Daphnetin, a coumarin derivative extracted from Daphne odora var., was reported to possess a neuroprotective effect. Recently, it has been demonstrated that daphnetin attenuates ischemia/reperfusion (I/R) injury. However, the role of daphnetin in cerebral I/R injury and the potential mechanism have not been fully understood. The present study aimed to explore the regulatory roles of daphnetin on oxygen-glucose deprivation/reoxygenation (OGD/R)–induced cell injury in a model of hippocampal neurons. Our results demonstrated that daphnetin improved cell viability and reduced the lactate dehydrogenase leakage in OGD/R–stimulated hippocampal neurons. In addition, daphnetin inhibited oxidative stress and cell apoptosis in hippocampal neurons after OGD/R stimulation. Furthermore, daphnetin significantly enhanced the nuclear translocation of the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression in hippocampal neurons exposed to OGD/R. Knockdown of Nrf2 blocked the protective effect of daphnetin on OGD/R–induced hippocampal neurons. In conclusion, these findings demonstrated that daphnetin attenuated oxidative stress and neuronal apoptosis after OGD/R injury through the activation of the Nrf2/HO-1 signaling pathway in hippocampal neurons. Thus, daphnetin may be a novel therapeutic agent for cerebral I/R injury.  相似文献   

13.
Abnormal activation of GSK-3β is associated with psychiatric and neurodegenerative disorders. However, no study has examined the effect of GSK-3β on cerebral ischemia/reperfusion injury. We used oxygen-glucose deprivation/reoxygenation (OGD/R) and middle cerebral artery occlusion (MCAO) as models of ischemia/reperfusion in rats in vitro and in vivo. Our study showed that knockdown of GSK-3β with a GSK-3β siRNA virus improved injury and increased viability of neurons subjected to OGD/R. Levels of total Nrf2, nuclear Nrf2, and Nrf2 downstream proteins sulfiredoxin (Srx1) and thioredoxin (Trx1) increased after transfection with the GSK-3β siRNA virus. GSK-3β siRNA increased SOD activity and decreased MDA levels. Overexpression of GSK-3β with a pcDNA-GSK-3β virus showed opposite results. We also demonstrated that intracerebroventricular injection of GSK-3β siRNA in rats ameliorated neurological deficits, reduced brain infarct volume and water content, and reduced damage to cerebral cortical neurons after MCAO. Changes in total Nrf2, nuclear Nrf2, Srx1, Trx1, SOD, and MDA were similar to those observed in vitro. Our results show for the first time that GSK-3β can influence cerebral ischemia/reperfusion injury. The effects may be due to regulating the Nrf2/ARE pathway and decreasing oxidative stress. These results suggest a potential new drug target for clinical treatment of stroke.  相似文献   

14.
The cell cycle of neurons remains suppressed to maintain the state of differentiation and aberrant cell cycle reentry results in loss of neurons, which is a feature in neurodegenerative disorders like Alzheimer''s disease (AD). Present studies revealed that the expression of microRNA 34a (miR-34a) needs to be optimal in neurons, as an aberrant increase or decrease in its expression causes apoptosis. miR-34a keeps the neuronal cell cycle under check by preventing the expression of cyclin D1 and promotes cell cycle arrest. Neurotoxic amyloid β1–42 peptide (Aβ42) treatment of cortical neurons suppressed miR-34a, resulting in unscheduled cell cycle reentry, which resulted in apoptosis. The repression of miR-34a was a result of degradation of TAp73, which was mediated by aberrant activation of the MEK extracellular signal-regulated kinase (ERK) pathway by Aβ42. A significant decrease in miR-34a and TAp73 was observed in the cortex of a transgenic (Tg) mouse model of AD, which correlated well with cell cycle reentry observed in the neurons of these animals. Importantly, the overexpression of TAp73α and miR-34a reversed cell cycle-related neuronal apoptosis (CRNA). These studies provide novel insights into how modulation of neuronal cell cycle machinery may lead to neurodegeneration and may contribute to the understanding of disorders like AD.  相似文献   

15.
To date, studies have demonstrated the potential functions of microRNAs in cerebral ischemia reperfusion (IR) injury. Herein, we established a middle cerebral artery occlusion (MCAO) model in rats and then subjected them to reperfusion to explore the role of microRNA-374 (miR-374) in cerebral IR injury. After reperfusion, the endogenous miR-374 level decreased, and the expression of its target gene, Wnt5a, increased in brain tissues. Intracerebral pretreatment of miR-374 agomir attenuated cerebral damage induced by IR, including neurobehavioral deficits, infarction, cerebral edema and blood-brain barrier disruption. Moreover, rats pretreated with miR-374 agomir showed a remarkable decrease in apoptotic neurons, which was further confirmed by reduced BAX expression as well as increased BCL-2 and BCL-XL expression. A dual-luciferase reporter assay substantiated that Wnt5a was the target gene of miR-374. miR-374 might protect against brain injury by downregulating Wnt5a in rats after IR. Thus, our study provided a novel mechanism of cerebral IR injury from the perspective of miRNA regulation.  相似文献   

16.
Glycogen synthase kinase-3 (GSK-3) signaling has been shown to play a role in the regulation of nuclear factor erythroid-2-related factor 2 (Nrf2), a master regulator of antioxidant genes, including heme oxygenase-1 (HO-1). We assessed whether lithium, a GSK-3 inhibitor, attenuates cardiac sympathetic reinnervation after myocardial infarction, a status of high reactive oxygen species (ROS), by attenuating nerve growth factor (NGF) expression and whether Nrf2/HO-1 signaling is involved in the protection. Twenty-four hours after ligation of the left anterior descending artery, male Wistar rats were treated for 4 weeks. The postinfarction period was associated with increased oxidative–nitrosative stress, as measured by myocardial superoxide, nitrotyrosine, and dihydroethidium fluorescent staining. In concert, myocardial norepinephrine levels and immunohistochemical analysis of sympathetic nerve revealed a significant increase in innervation in vehicle-treated rats compared with sham-operated rats. Arrhythmic scores during programmed stimulation in the vehicle-treated rats were significantly higher than those in sham. This was paralleled by a significant upregulation of NGF protein and mRNA in the vehicle-treated rats, which was reduced after administration of LiCl. LiCl stimulated the nuclear translocation of Nrf2 and the transactivation of the Nrf2 target gene HO-1. Inhibition of phosphoinositide 3-kinase by wortmannin reduced the increase in Nrf2 nucleus translocation and HO-1 expression compared with lithium alone. In addition, the lithium-attenuated NGF levels were reversed in the presence of the Nrf2 inhibitor trigonelline, HO-1 inhibitor SnPP, and peroxynitrite generator SIN-1, indicating the role of Nrf2/HO-1/ROS. In conclusion, lithium protects against ventricular arrhythmias by attenuating NGF-induced sympathetic innervation via antioxidant activation of the Nrf2/HO-1 axis.  相似文献   

17.
Stroke is a devastating clinical condition for which an effective neuroprotective treatment is currently unavailable. S‐allyl cysteine (SAC), the most abundant organosulfur compound in aged garlic extract, has been reported to possess neuroprotective effects against stroke. However, the mechanisms underlying its beneficial effects remain poorly defined. The present study tests the hypothesis that SAC attenuates ischemic neuronal injury by activating the nuclear factor erythroid‐2‐related factor 2 (Nrf2)‐dependent antioxidant response in both in vitro and in vivo models. Our findings demonstrate that SAC treatment resulted in an increase in Nrf2 protein levels and subsequent activation of antioxidant response element pathway genes in primary cultured neurons and mice. Exposure of primary neurons to SAC provided protection against oxygen and glucose deprivation‐induced oxidative insults. In wild‐type (Nrf2+/+) mice, systemic administration of SAC attenuated middle cerebral artery occlusion‐induced ischemic damage, a protective effect not observed in Nrf2 knockout (Nrf2?/?) mice. Taken together, these findings provide the first evidence that activation of the Nrf2 antioxidant response by SAC is strongly associated with its neuroprotective effects against experimental stroke and suggest that targeting the Nrf2 pathway may provide therapeutic benefit for the treatment of stroke.

  相似文献   


18.
Breviscapine (BVP) has been widely used in the treatment of several systemic diseases, including those of the cardiovascular and cerebrovascular systems. But, few studies have looked at the neuroprotective effects of BVP and its potential effect in treating traumatic brain injury (TBI). The present study investigated the neuroprotective effect of BVP following TBI and illuminated the underlying mechanism. The weight drop-induced closed diffuse traumatic brain injury method was used to induce TBI in rats. BVP was injected intraperitoneally 30 minutes after TBI. Neurologic scores were performed to measure behavioral outcomes. Nissl staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assays were performed on histopathologic tissue sections to evaluate neuronal apoptosis. The nuclear factor erythroid 2-related factor 2 (Nrf2) and its related downstream proteins, including heme oxygenase-1 (HO-1) and quinine oxidoreductase-1 (NQO1) were detected with Western blots. BVP treatment alleviated or attenuated TBI-induced neuron cell apoptosis and improved neurobehavioral functions through the upregulated expression of Nrf2 and its related downstream proteins. This study, using the drug, BVP, we present new mechanisms responsible for neuronal apoptosis in TBI with possible involvement of the Nrf2 pathway.  相似文献   

19.
1‐O‐Hexyl‐2,3,5‐trimethylhydroquinone (HTHQ), a lipophilic phenolic agent, has an antioxidant activity and reactive oxygen species (ROS) scavenging property. However, the role of HTHQ on cerebral ischaemic/reperfusion (I/R) injury and the underlying mechanisms remain poorly understood. In the present study, we demonstrated that HTHQ treatment ameliorated cerebral I/R injury in vivo, as demonstrated by the decreased infarct volume ration, neurological deficits, oxidative stress and neuronal apoptosis. HTHQ treatment increased the levels of nuclear factor erythroid 2–related factor 2 (Nrf2) and its downstream antioxidant protein, haeme oxygenase‐1 (HO‐1). In addition, HTHQ treatment decreases oxidative stress and neuronal apoptosis of PC12 cells following hypoxia and reperfusion (H/R) in vitro. Moreover, we provided evidence that PC12 cells were more vulnerable to H/R‐induced oxidative stress after si‐Nrf2 transfection, and the HTHQ‐mediated protection was lost in PC12 cells transfected with siNrf2. In conclusion, these results suggested that HTHQ possesses neuroprotective effects against oxidative stress and apoptosis after cerebral I/R injury via activation of the Nrf2/HO‐1 pathway.  相似文献   

20.
Abnormal proliferation, apoptosis repression and differentiation blockage of hematopoietic stem/progenitor cells have been characterized to be the main reasons leading to acute myeloid leukemia (AML). Previous studies showed that miR-29a and miR-29b could function as tumor suppressors in leukemogenesis. However, a comprehensive investigation of the function and mechanism of miR-29 family in AML development and their potentiality in AML therapy still need to be elucidated. Herein, we reported that the family members, miR-29a, -29b and -29c, were commonly downregulated in peripheral blood mononuclear cells and bone marrow (BM) CD34+ cells derived from AML patients as compared with the healthy donors. Overexpression of each miR-29 member in THP1 and NB4 cells markedly inhibited cell proliferation and promoted cell apoptosis. AKT2 and CCND2 mRNAs were demonstrated to be targets of the miR-29 members, and the role of miR-29 family was attributed to the decrease of Akt2 and CCND2, two key signaling molecules. Significantly increased Akt2, CCND2 and c-Myc levels in the AML cases were detected, which were correlated with the decreased miR-29 expression in AML blasts. Furthermore, a feed-back loop comprising of c-Myc, miR-29 family and Akt2 were found in myeloid leukemogenesis. Reintroduction of each miR-29 member partially corrected abnormal cell proliferation and apoptosis repression and myeloid differentiation arrest in AML BM blasts. An intravenous injection of miR-29a, -29b and -29c in the AML model mice relieved leukemic symptoms significantly. Taken together, our finding revealed a pivotal role of miR-29 family in AML development and rescue of miR-29 family expression in AML patients could provide a new therapeutic strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号