首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
On Rosemary Island, a small continental island (11 km2) in the Dampier Archipelago, Western Australia, snails of the genus Rhagada have extremely diverse morphologies. Their shells vary remarkably in size and shape, with the latter ranging from globose to keeled‐flat, spanning the range of variation in the entire genus. Based primarily on variation in shell morphology, five distinct species are currently recognized. However, a study of 103 populations has revealed continuity of shell form within a very closely‐related group. A phylogenetic analysis of specimens from Rosemary Island, and other islands in the Dampier Archipelago, indicates that much of the morphological variation has evolved on the island, from within a monophyletic group. Within the island, snails with distinct shell morphologies could not be distinguished based on variation in mitochondrial DNA or their reproductive anatomy. The shell variation is geographically structured over a very fine scale, with clines linking the extreme forms over distances less than 200 m. Although there is no evidence that the different forms have evolved in isolation or as a consequence of drift, there is a strong association between keeled‐flat shells and rocky habitats, suggesting that shell shape may be of adaptive significance. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 756–769.  相似文献   

2.
Organisms featuring wide trait variability and occurring in a wide range of habitats, such as the ovoviviparous New Zealand freshwater snail Potamopyrgus antipodarum, are ideal models to study adaptation. Since the mid‐19th century, P. antipodarum, characterized by extremely variable shell morphology, has successfully invaded aquatic areas on four continents. Because these obligately and wholly asexual invasive populations harbor low genetic diversity compared to mixed sexual/asexual populations in the native range, we hypothesized that (1) this phenotypic variation in the invasive range might be adaptive with respect to colonization of novel habitats, and (2) that at least some of the variation might be caused by phenotypic plasticity. We surveyed 425 snails from 21 localities across northwest Europe to attempt to disentangle genetic and environmental effects on shell morphology. We analyzed brood size as proxy for fitness and shell geometric morphometrics, while controlling for genetic background. Our survey revealed 10 SNP genotypes nested into two mtDNA haplotypes and indicated that mainly lineage drove variation in shell shape but not size. Physicochemical parameters affected both shell shape and size and the interaction of these traits with brood size. In particular, stronger stream flow rates were associated with larger shells. Our measurements of brood size suggested that relatively larger slender snails with relatively large apertures were better adapted to strong flow than counterparts with broader shells and relatively small apertures. In conclusion, the apparent potential to modify shell morphology plays likely a key role in the invasive success of P. antipodarum; the two main components of shell morphology, namely shape and size, being differentially controlled, the former mainly genetically and the latter predominantly by phenotypic plasticity.  相似文献   

3.
Morphological variation is often attributed to differential adaptations to diverse habitats, but adaptations to a similar environment do not necessarily result in similar phenotypes. Adaptations for water and heat budget are crucial for organisms living in arid habitats, and in snails, variation in shell morphology has been frequently attributed to selection by stressful environmental factors. However, their phenotypic divergence often is not accompanied by a relevant niche differentiation and consistent relationships with environmental correlates are lacking. In the pulmonate genus Albinaria, there is great size and shape variation between and within species, and there are two major shell sculpture morphotypes, ribbed and smooth. We used 62 populations of 28 Albinaria species, taking into account their phylogeny, to examine the variation of shell traits (sculpture, size, shape), their effect on water and heat budget, and their association with geographical and climatic gradients. We found unambiguous size and shape discrimination between the two morphotypes. Ribbed shells are lighter, taller, and slimmer and have a smaller aperture than the smooth ones. Moreover, significant correlations between shell traits and heat/moisture budget and climate/geography were revealed. Ribbed and taller shells retain more water on their shell surface, and on the other hand, smooth shells exhibit lower water permeability. Therefore, two strategies are being used to prevent water loss, active retention or resistance to loss. Consequently, different alternative solutions evolved and were retained as responses to the same stressful factor by the two distinct shell morphotypes. Larger shells occur in southern latitudes, mostly on islands, and at sites where there is a shortage of rainfall. Therefore, the variation of the examined traits is nonrandom with respect to location and to climate and their evolution can be attributed to selection by environmental factors, with water availability being the key driving agent of body-size variation.  相似文献   

4.
In muddy intertidal sediments, there are reported complex interactions between the biological, physical and chemical properties of the sediment and the benthos that live in and on it. These are expected to be reflected in strong relationships between benthic animals and particular properties of the sediment, although some research has shown these relationships to be relatively weak. This study investigates the relationships between benthic macrofauna and biogeochemical properties of sediments within and among different habitats in multiple mangrove forests in a temperate estuary, in order to address the generality of any such relationships. Matched samples of benthos and sediment were collected from three habitats, which differed with respect to shading, the amounts of algae and leaf litter and the presence of pneumatophores. The sediment was sampled for water content, grain size, organic matter, chlorophylls a and b and colloidal and total carbohydrate.Spatial variation in sediment and benthos were significantly correlated across habitats in two of the three bays, but the sediment properties that contributed to differences between habitats and those that best correlated with the benthos varied among bays. In all bays, the single taxon that best correlated with the sediment was spionid polychaetes, but correlations were generally weak. There was no generality in the patterns of variation among the benthos or sedimentary properties among habitats. The benthos differed significantly among bays in all habitats, with large variation within and among sites. The sediment varied significantly at small scales in all habitats, but significant differences among bays were only found in two habitats. All spatial scales contributed to the total amount of variability in the sediment and there was little predictability from the patterns shown in one habitat to those in other habitats, or from one component of sediment to other components. Such variability suggests that there may be structural redundancy in this fauna, with different components of the benthos contributing to similar functions in different places. Such variability must be considered in experiments designed to understand relationships between ecological structure and function in these complex habitats and in any sampling studies to identify environmental impacts in these habitats.  相似文献   

5.
The interior of 36 specimens of Pholadomya Sowerby (Bivalvia) from the Middle Jurassic of Poland reveals the presence of unusual septa that separate sediment‐filled chambers from the shell interior. The septa occupy one or several recurrent loci in shells of various individuals, that is within umbones, in pallial sinuses and along the shell margins. Based on the location and shape of the septa, eight forms grouped into types and varieties are identified. A possible cause for the formation of septa is sediment toxicity, but intrusion of sediment to the shell interior must have been linked to shell breakage or rupture of the free periostracum. One form of septa occurs in perforated umbones, common in Pholadomya; other forms occur in intact shells, which suggest damage to free periostracum. The most likely cause for the latter is the presence of parasites, especially digenean trematodes, for which clams were intermediate hosts. The morphological aberrations presented here were hitherto unknown in both fossil and extant bivalves. This study is also the first report of pathologies in Anomalodesmata.  相似文献   

6.
1. We asked whether unionid mussels influence the distribution and abundance of co‐occurring benthic algae and invertebrates. In a yearlong field enclosure experiment in a south‐central U.S. river, we examined the effects of living mussels versus sham mussels (shells filled with sand) on periphyton and invertebrates in both the surrounding sediment and on mussel shells. We also examined differences between two common unionid species, Actinonaias ligamentina (Lamarck 1819) and Amblema plicata (Say 1817). 2. Organic matter concentrations and invertebrate densities in the sediment surrounding mussels were significantly higher in treatments with live mussels than treatments with sham mussels or sediment alone. Organic matter was significantly higher in the sediment surrounding Actinonaias than that surrounding Amblema. Actinonaias was more active than Amblema and may have increased benthic organic matter through bioturbation. 3. Living mussels increased the abundance of periphyton on shells and the abundance and richness of invertebrates on shells, whereas effects of sham mussels were similar to sediment alone. Differences in the amount of periphyton growing on the shells of the two mussel species reflected differences in mussel activity and shell morphology. 4. Differences between living and sham mussel treatments indicate that biological activities of mussels provide ecosystem services to the benthic community beyond the physical habitat provided by shells alone. In treatments containing live mussels we found significant correlations between organic matter and chlorophyll a concentrations in the sediment, organic matter concentrations and invertebrate abundance in the sediment and the amount of chlorophyll a on the sediment and invertebrate abundance. There were no significant correlations among these response variables in control treatments. Thus, in addition to providing biogenic structure as habitat, mussels likely facilitate benthic invertebrates by altering the availability of resources (algae and organic matter) through nutrient excretion and biodeposition. 5. Effects of mussels on sediment and shell periphyton concentrations, organic matter concentrations and invertebrate abundance, varied seasonally, and were strongest in late summer during periods of low water volume, low flow, and high water temperature. 6. Our study demonstrates that freshwater mussels can strongly influence the co‐occurring benthic community, but that effects of mussels are context‐dependent and may vary among species.  相似文献   

7.
Invasive species often exhibit either evolved or plastic adaptations in response to spatially varying environmental conditions. We investigated whether evolved or plastic adaptation was driving variation in shell morphology among invasive populations of the New Zealand mud snail (Potamopyrgus antipodarum) in the western United States. We found that invasive populations exhibit considerable shell shape variation and inhabit a variety of flow velocity habitats. We investigated the importance of evolution and plasticity by examining variation in shell morphological traits 1) between the parental and F1 generations for each population and 2) among populations of the first lab generation (F1) in a common garden, full‐sib design using Canonical Variate Analyses (CVA). We compared the F1 generation to the parental lineages and found significant differences in overall shell shape indicating a plastic response. However, when examining differences among the F1 populations, we found that they maintained among‐population shell shape differences, indicating a genetic response. The F1 generation exhibited a smaller shell morph more suited to the low‐flow common garden environment within a single generation. Our results suggest that phenotypic plasticity in conjunction with evolution may be driving variation in shell morphology of this widespread invasive snail.  相似文献   

8.
The Belize atolls—Glovers Reef, Lighthouse Reef and Turneffe Islands—show differences in geomorphology, lagoonal depth, bottom sediment, growth of mangroves and sea-grass, exposure to waves and currents as well as in their sedimentation rates and their age. Bivalve shell assemblages in lagoonal areas reflect these geomorphological differences. On each atoll, 32 to 44 recent sediment samples were taken (total number of samples 111) and bivalve shells subsequently identified. The resulting database (32,122 bivalve shells in total) was analysed using Q-mode cluster analyses. Both the distribution of species characteristic of different lagoonal habitats and the distribution of bivalves with different life and feeding habits were investigated. Epifaunal suspension feeders were found particularly on hard-bottom along the reef-crests or clinging to mangrove roots. Infaunal suspension feeders show a more diverse distribution. Deeper lagoonal parts and areas with mangrove growth are often inhabited by chemosymbiont-carrying bivalves, indicating locations of reduced sediment. Deep burrowing detritus feeders are very abundant in shallow-water areas with moderate to high water agitation and were seldom found in Halimeda-rich sediments.  相似文献   

9.
Shells of probable former living communities ofDreissena polymorpha were found within sediments of the shallow polytrophic to hypertrophic hard water Lake Breitling (Havel-Lake system, Germany). Corresponding sediments have been deposited between approximately 1940 and 1970 and reflect increasing eutrophication and heavy metal pollution of the Lake during this period (Schettler, 1992). Single shells from various sediment depths were analysed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) along a line on the outer part of the shell. The response of these freshwater mussels to increasing heavy metal pollution is clearly reflected in the distribution of Pb, Cu, Cd and Zn within their valves. In general, Cd, Cu, Pb and Zn contents are lower, and the distribution more even, in the outer parts of the deepest (oldest) shells compared to shells from higher in the cored sediments. Notably higher contents of Cu, Pb and Zn were recorded from the central (umbonal) part of the more recent shells, but this behaviour is not recorded for Cd. Metabolic changes brought on by worsening environmental conditions are proposed to explain this phenomena. Acidity produced during anaerobic metabolism can be neutralised by dissolution of the carbonate part of the shell. Copper, Zn and Pb, which show an affinity for the organic component of the shell, may thus accumulate by repeated dissolution and reprecipitation of the shell during the lifetime of an individual organism. Cadmium, which is bound mainly in the aragonite of the shells, is released during the dissolution of carbonate and is not concentrated in the umbonal area of the shell.  相似文献   

10.

Shell repair frequencies in eleven species of Recent gastropods from the northern Gulf of California vary with habitat, shell morphology and intensity of durophagous predation. Squat shells with large apertures tend to have high repair frequencies (0.25–0.50). Shell thickness at the aperture and shell size are not correlated with frequency of repair. Significant intraspecific variation in repair frequency exists between habitats. Samples from rocky habitats have statistically higher repair frequencies than samples of the same species from sandy habitats. However, habitat‐related variation between species is not apparent.

Trends in co‐evolution of gastropods and their durophagous predators are based on the indirect evidence of shell repair frequencies through time. Variation in repair frequency due to environmental and morphological factors may obscure predator‐related temporal trends in repair frequency.  相似文献   

11.
Populations of species that inhabit a range of environments frequently display divergent morphologies that correlate with differences in ecological parameters. The velocity of water flow (i.e., flow velocity) is a critical feature of aquatic environments that has been shown to influence morphology in a broad range of taxa. The focus of this study was to evaluate the relationship between flow velocity and shell morphology for males and females of the semi-aquatic freshwater turtle Pseudemys concinna. For both sexes, the carapace and plastron show significant morphological differences between habitats characterized by slow-flowing (i.e., lentic) and fast-flowing (i.e., lotic) water. In general, the most prominent pattern for both sexes is that the shells of individuals from lotic habitats are more streamlined (small height-to-length ratio) than the shells of individuals from lentic habitats. Of the two shell components (carapace and plastron), the carapace shows greater divergence between habitats, particularly for males. These results are consistent with adaptations to flow velocity, and suggest that variation in shape may be more constrained in females. I also provide empirical evidence for an adaptive benefit of the observed shape change (i.e., drag reduction) and a brief comment on the relative roles of genetic divergence and phenotypic plasticity in generating shape differences observed in this species.  相似文献   

12.
The functional and structural attributes of algal assemblages were studied in 25 restored and 20 extant depressional wetlands in southern central Michigan. Environmental conditions and algal assemblages were compared between restored and extant wetlands and among habitats within wetlands. Restored marshes generally had lower shading by macrophytes, nutrient concentrations, and sediment organic matter. Relative biovolume of non-diatom algae was significantly different among plankton, macrophyte and sediment habitats in restored wetlands, but did not differ between macrophytes and sediments in extant wetlands. Species composition of diatom assemblages was not significantly different between plants and sediments in both restored and extant wetlands. The observed differences in non-diatom algae could not be attributed to any measured environmental variable; however, diatom assemblage differences between habitats increased with light irradiance. Differences in sediment diatom assemblages were observed between restored and extant wetlands and were related to differences in nutrients, pH, and canopy cover. Differences were also observed between epiphytic diatom assemblages in restored and extant wetlands and they were related to light and dissolved oxygen. In summary, differences in light and nutrient availability were the main environmental factors differentiating algal communities in wetlands.  相似文献   

13.
The morphological variation of the sulcal development and shell outline in large Permian neospiriferine brachiopods including Fasciculatia Waterhouse, 2004 is investigated using geometric morphometrics. The sulcal tongues of spiriferide brachiopods can be, in a qualitative sense, categorized into three types according to the degree of their development: short sulcal tongue, long sulcal tongue and geniculated sulcal tongue. All three types have been noted within Fasciculatia striatoparadoxa, regardless of the nature of the substrate which they originally inhabited. To quantify its morphological variation both in sulcal development and shell outline, 51 brachiopod shells were scanned with a three‐dimensional (3‐D) surface imaging device, and their 3‐D models were reconstructed. Using two landmarks and 58 semilandmarks designated on the surface of the reconstructed 3‐D models, a landmark‐based morphometric analysis was performed. Our result demonstrates a significant intraspecific variation of sulcal development in F. striatoparadoxa and its relatives. Local environmental factors, especially the intensity of ambient water flow, are invoked as the most likely cause for this intraspecific variation. Additionally, this study also shows that there are considerable interspecific distinctions in shell outline among Fasciculatia species, independent of the high variation in the sulcal development. The strong stability of overall shell outline at species level implies a decoupled morphological development between sulcal tongue and whole shell outline. The 3‐D morphometric approach applied here demonstrates its great utility as a tool for quantifying and analysing the morphological variation of highly convex brachiopod shells.  相似文献   

14.
Although geographical patterns of species' sensitivity to environmental changes are defined by interacting multiple stressors, little is known about compensatory processes shaping regional differences in organismal vulnerability. Here, we examine large‐scale spatial variations in biomineralization under heterogeneous environmental gradients of temperature, salinity and food availability across a 30° latitudinal range (3,334 km), to test whether plasticity in calcareous shell production and composition, from juveniles to large adults, mediates geographical patterns of resilience to climate change in critical foundation species, the mussels Mytilus edulis and M. trossulus. We find shell calcification decreased towards high latitude, with mussels producing thinner shells with a higher organic content in polar than temperate regions. Salinity was the best predictor of within‐region differences in mussel shell deposition, mineral and organic composition. In polar, subpolar, and Baltic low‐salinity environments, mussels produced thin shells with a thicker external organic layer (periostracum), and an increased proportion of calcite (prismatic layer, as opposed to aragonite) and organic matrix, providing potentially higher resistance against dissolution in more corrosive waters. Conversely, in temperate, higher salinity regimes, thicker, more calcified shells with a higher aragonite (nacreous layer) proportion were deposited, which suggests enhanced protection under increased predation pressure. Interacting effects of salinity and food availability on mussel shell composition predict the deposition of a thicker periostracum and organic‐enriched prismatic layer under forecasted future environmental conditions, suggesting a capacity for increased protection of high‐latitude populations from ocean acidification. These findings support biomineralization plasticity as a potentially advantageous compensatory mechanism conferring Mytilus species a protective capacity for quantitative and qualitative trade‐offs in shell deposition as a response to regional alterations of abiotic and biotic conditions in future environments. Our work illustrates that compensatory mechanisms, driving plastic responses to the spatial structure of multiple stressors, can define geographical patterns of unanticipated species resilience to global environmental change.  相似文献   

15.
Intraspecific trends in freshwater mussel (unionoid) shells that are consistently associated with differences in the mussels' sex and/or parasitic infestation can potentially be used to reconstruct sex ratios or parasitic levels of modern and ancient unionoid populations. In contrast to morphological patterns within mammal species, such dimorphic trends within unionoid species are, however, poorly understood. This study investigates, for the first time, to what extent sex, trematode infection and indirect habitat effects determine shell morphology in the freshwater mussel Anodonta anatina. Three of the five study populations displayed significant sexual shell width dimorphism. Here, shells of females were significantly wider than males, probably as a result of altered shell growth to accommodate marsupial gills. In two of these populations, female shells were additionally significantly thinner than those of males, which could be a result of resource depletion by offspring production. Two other A. anatina populations showed no significant dimorphic patterns, and our results indicate that this interpopulational difference in the degree of sexual dimorphism may reflect the overarching effect of habitat on morphology. Thus, populations in the most favourable habitats exhibit faster growth rates, attain larger maximum sizes and produce more offspring, which results in more swollen gills and consequently more inflated shells of gravid females compared to less fecund populations. None of the populations showed any evidence for sexual dimorphism in overall size, growth rate, sagittal shape and density of shells. In addition to sexual dimorphisms, infestation by bucephalid trematode parasites (Rhipidocotyle sp.) significantly altered sagittal and lateral shell shape of A. anatina in one of the populations, with infected specimens growing wider and more elongated. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

16.
Geographical patterns in morphology can be the result of divergence among populations due to neutral or selective changes and/or phenotypic plasticity in response to different environments. Marine gastropods are ideal subjects on which to explore these patterns, by virtue of the remarkable intraspecific variation in life‐history traits and morphology often observed across relatively small spatial scales. The ubiquitous N‐Atlantic common whelk (Buccinum undatum) is well known for spatial variation in life‐history traits and morphology. Previous studies on genetic population structure have revealed that it exhibits significant differentiation across geographic distances. Within Breiðafjörður Bay, a large and shallow bay in W‐Iceland, genetic differentiation was demonstrated between whelks from sites separated by just 20 km. Here, we extended our previous studies on the common whelk in Breiðafjörður Bay by quantifying phenotypic variation in shell morphology and color throughout the Bay. We sought to test whether trait differentiation is dependent on geographic distance and/or environmental variability. Whelk in Breiðafjörður Bay displayed fine‐scale patterns of spatial variation in shape, thickness, and color diversity. Differentiation increased with increasing distance between populations, indicating that population connectivity is limited. Both shape and color varied along a gradient from the inner part of the bay in the east to the outer part in the west. Whelk shells in the innermost part of Breiðafjörður Bay were thick with an elongate shell, round aperture, and low color diversity, whereas in the outer part of the bay the shells were thinner, rounder, with a more elongate aperture and richer color diversity. Significant site‐specific difference in shell traits of the common whelk in correlation with environmental variables indicates the presence of local ecotypes and limited demographic connectivity.  相似文献   

17.
Minnows of the genus Phoxinus are promising candidates to investigate adaptive divergence, as they inhabit both still and running waters of a variety of altitudes and climatic zones in Europe. We used landmark‐based geometric morphometric methods to quantify the level of morphological variability in Phoxinus populations from streams and lakes of Northern Italy and the Danube basin. We analyzed body shape differences of populations in the dorsal, lateral, and ventral planes, using a large array of landmarks and semilandmarks. As the species identification of Phoxinus on morphological characters is ambiguous, we used two mitochondrial genes to determine the genetic background of the samples and to ensure we are comparing homogenous groups. We have found significant body shape differences between habitats: Minnow populations inhabiting streams had a deeper body and caudal peduncle and more laterally inserted pectoral fins than minnows inhabiting lakes. We have also found significant body shape differences between genetic groups: Italian minnows had deeper bodies, deeper and shorter caudal peduncles, and a shorter and wider gape than both groups from the Danube. Our results show that the morphology of Phoxinus is highly influenced by habitat and that body shape variation between habitats was within the same range as between genetic groups. These morphological differences are possibly linked to different modes of swimming and foraging in the respective habitats and are likely results of phenotypic plasticity. However, differences in shape and interlandmark distances between the groups suggest that some (though few) morphometric characters might be useful for separating Phoxinus species.  相似文献   

18.
Body shape is predicted to differ among species for functional reasons and in relation to environmental niche and phylogenetic history. We quantified morphological differences in shape and size among 98.5% of the 129 species and all 21 genera of the Australo‐Papuan endemic myobatrachid frogs to test the hypothesis that habitat type predicts body shape in this radiation. We tested this hypothesis in a phylogenetic context at two taxonomic levels: across the entire radiation and within the four largest genera. Thirty‐four external measurements were taken on 623 museum specimens representing 127 species. Data for seven key environmental variables relevant to anurans were assembled for all Australian‐distributed species based on species' distributions and 131,306 locality records. The Australo‐Papuan myobatrachid radiation showed high diversity in adult body size, ranging from minute (15 mm snout–vent length) to very large species (92 mm), and shape, particularly sin relative limb length. Five main morphological and environmental summary variables displayed strong phylogenetic signal. There was no clear relationship between body size and environmental niche, and this result persisted following phylogenetic correction. For most species, there was a better match between environment/habitat and body shape, but this relationship did not persist following phylogenetic correction. At a broad level, species fell into three broad groups based on environmental niche and body shape: 1) species in wet habitats with relatively long limbs, 2) species in arid environments with relatively short limbs (many of which are forward or backward burrowers) and 3) habitat generalist species with a conservative body shape. However, these patterns were not repeated within the four largest genera ? Crinia, Limnodynastes, Pseudophryne and Uperoleia. Each of these genera displayed a highly conservative anuran body shape, yet individual species were distributed across the full spectrum of Australian environments. Our results suggest that phylogenetic legacy is important in the evolution of body size and shape in Australian anurans, but also that the conservative body plan of many frogs works well in a wide variety of habitats.  相似文献   

19.
Abstract Determining interactions between biological and physical structure of intertidal sediments and their relationships to ecological functioning is vital for improving our understanding of these complex habitats. If spatial and/or temporal variations in the benthos are related to properties of the sediment, one can infer that sediments should vary and change at similar scales to the benthos. The mangrove forests of Sydney Harbour, Australia consist of distinct subhabitats (termed MH1‐3, representing a change from open mudflat to canopied mangrove forest), which might affect benthos and, independently, properties of the sediment. This study tests the model that the benthos and sediment would respond to environmental differences between MH1–3 similarly in different locations and thus show consistent patterns of difference among habitats. Although general patterns of sediment properties and benthos were relatively similar, detailed patterns varied among locations. The relative importance of the different sedimentary properties varied in unpredictable ways among habitats in the different locations. Out of all the variables, only total carbohydrate was consistently important in driving differences among habitats in all three locations, but only between MH1 and MH2. That there were no other strong consistent differences between the different microhabitats in terms of the measured properties of the sediments indicates that there is more driving these patterns than a simple relationship to different habitat formed by mangrove forests and/or feedbacks between sediment properties and benthos. With respect to the benthic assemblage, in all bays MH1 and MH3 were the most different. The benthos showed stronger patterns relating to the different subhabitats than did the sediment, suggesting that there are important differences affecting these habitats that were not revealed by our suite of biogeochemical measurements of the sediment.  相似文献   

20.
The shells of Lymnaea stagnalis show great morphological variability. This phenomenon has been described as the result of an environmental influence. The main object of the present study was to compare some biometric data from shells of naturally infected and uninfected snails from 25 different lakes in the central part of Poland. The height of the shell, the height of the spiral, and the width of the shell were measured. Some inter- and intrapopulation differences among individuals were found. Greater variability of shell shape was observed among snails parasitized with digenean larvae than in nonparasitized ones. Snails infected with Echinoparyphium aconiatum, Echinostoma revolutum, Diplostomum pseudospathaceum, and Opisthioglyphe ranae differed in shell shape compared with uninfected individuals. Snails infected with Plagiorchis elegans did not differ from uninfected individuals. The same was true of snails in which the commensal oligochaete, Chaetogaster limnei, was found. The results of the present study support the assumption that the deformation of shells of the snails under study was in some way influenced by the presence of certain species of digenetic trematodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号