共查询到20条相似文献,搜索用时 15 毫秒
1.
Haohao Zhang Yiming Hu Dandan Liu Zhi Liu Ningxia Xie Sanhong Liu Jie Zhang Yuhang Jiang Cuifeng Li Qi Wang Xi Chen Deji Ye Donglin Sun Yujia Zhai Xinhui Yan Yongzhong Liu Charlie Degui Chen Xingxu Huang Y. Eugene Chin Yufang Shi Baojin Wu Xiaoren Zhang 《Cell death and differentiation》2022,29(7):1349
Intestinal intraepithelial lymphocytes (IELs) are distributed along the length of the intestine and are considered the frontline of immune surveillance. The precise molecular mechanisms, especially epigenetic regulation, of their development and function are poorly understood. The trimethylation of histone 3 at lysine 27 (H3K27Me3) is a kind of histone modifications and associated with gene repression. Kdm6b is an epigenetic enzyme responsible for the demethylation of H3K27Me3 and thus promotes gene expression. Here we identified Kdm6b as an important intracellular regulator of small intestinal IELs. Mice genetically deficient for Kdm6b showed greatly reduced numbers of TCRαβ+CD8αα+ IELs. In the absence of Kdm6b, TCRαβ+CD8αα+ IELs exhibited increased apoptosis, disturbed maturation and a compromised capability to lyse target cells. Both IL-15 and Kdm6b-mediated demethylation of histone 3 at lysine 27 are responsible for the maturation of TCRαβ+CD8αα+ IELs through upregulating the expression of Gzmb and Fasl. In addition, Kdm6b also regulates the expression of the gut-homing molecule CCR9 by controlling H3K27Me3 level at its promoter. However, Kdm6b is dispensable for the reactivity of thymic precursors of TCRαβ+CD8αα+ IELs (IELPs) to IL-15 and TGF-β. In conclusion, we showed that Kdm6b plays critical roles in the maturation and cytotoxic function of small intestinal TCRαβ+CD8αα+ IELs.Subject terms: Epigenetics, Gene regulation, Immunological disorders, T cells 相似文献
2.
Manuela Bieri Rodinde Hendrickx Michael Bauer Bin Yu Tania Jetzer Birgit Dreier Peer R. E. Mittl Jens Sobek Andreas Plückthun Urs F. Greber Silvio Hemmi 《PLoS pathogens》2021,17(12)
Mammalian adenoviruses (AdVs) comprise more than ~350 types including over 100 human (HAdVs) and just three mouse AdVs (MAdVs). While most HAdVs initiate infection by high affinity/avidity binding of their fiber knob (FK) protein to either coxsackievirus AdV receptor (CAR), CD46 or desmoglein (DSG)-2, MAdV-1 (M1) infection requires arginine-glycine-aspartate (RGD) binding integrins. To identify the receptors mediating MAdV infection we generated five novel reporter viruses for MAdV-1/-2/-3 (M1, M2, M3) transducing permissive murine (m) CMT-93 cells, but not B16 mouse melanoma cells expressing mCAR, human (h) CD46 or hDSG-2. Recombinant M1 or M3 FKs cross-blocked M1 and M3 but not M2 infections. Profiling of murine and human cells expressing RGD-binding integrins suggested that αvβ6 and αvβ8 heterodimers are associated with M1 and M3 infections. Ectopic expression of mβ6 in B16 cells strongly enhanced M1 and M3 binding, infection, and progeny production comparable with mαvβ6-positive CMT-93 cells, whereas mβ8 expressing cells were more permissive to M1 than M3. Anti-integrin antibodies potently blocked M1 and M3 binding and infection of CMT-93 cells and hαvβ8-positive M000216 cells. Soluble integrin αvβ6, and synthetic peptides containing the RGDLXXL sequence derived from FK-M1, FK-M3 and foot and mouth disease virus coat protein strongly interfered with M1/M3 infections, in agreement with high affinity interactions of FK-M1/FK-M3 with αvβ6/αvβ8, determined by surface plasmon resonance measurements. Molecular docking simulations of ternary complexes revealed a bent conformation of RGDLXXL-containing FK-M3 peptides on the subunit interface of αvβ6/β8, where the distal leucine residue dips into a hydrophobic pocket of β6/8, the arginine residue ionically engages αv aspartate215, and the aspartate residue coordinates a divalent cation in αvβ6/β8. Together, the RGDLXXL-bearing FKs are part of an essential mechanism for M1/M3 infection engaging murine and human αvβ6/8 integrins. These integrins are highly conserved in other mammals, and may favour cross-species virus transmission. 相似文献
3.
Juan Pablo Robles Magdalena Zamora Elva Adan-Castro Lourdes Siqueiros-Marquez Gonzalo Martinez de la Escalera Carmen Clapp 《The Journal of biological chemistry》2022,298(3)
Vascular endothelial cells (ECs) form a critical interface between blood and tissues that maintains whole-body homeostasis. In COVID-19, disruption of the EC barrier results in edema, vascular inflammation, and coagulation, hallmarks of this severe disease. However, the mechanisms by which ECs are dysregulated in COVID-19 are unclear. Here, we show that the spike protein of SARS-CoV-2 alone activates the EC inflammatory phenotype in a manner dependent on integrin ⍺5β1 signaling. Incubation of human umbilical vein ECs with whole spike protein, its receptor-binding domain, or the integrin-binding tripeptide RGD induced the nuclear translocation of NF-κB and subsequent expression of leukocyte adhesion molecules (VCAM1 and ICAM1), coagulation factors (TF and FVIII), proinflammatory cytokines (TNFα, IL-1β, and IL-6), and ACE2, as well as the adhesion of peripheral blood leukocytes and hyperpermeability of the EC monolayer. In addition, inhibitors of integrin ⍺5β1 activation prevented these effects. Furthermore, these vascular effects occur in vivo, as revealed by the intravenous administration of spike, which increased expression of ICAM1, VCAM1, CD45, TNFα, IL-1β, and IL-6 in the lung, liver, kidney, and eye, and the intravitreal injection of spike, which disrupted the barrier function of retinal capillaries. We suggest that the spike protein, through its RGD motif in the receptor-binding domain, binds to integrin ⍺5β1 in ECs to activate the NF-κB target gene expression programs responsible for vascular leakage and leukocyte adhesion. These findings uncover a new direct action of SARS-CoV-2 on EC dysfunction and introduce integrin ⍺5β1 as a promising target for treating vascular inflammation in COVID-19. 相似文献
4.
Matteo Monieri Paolo Rainone Angelina Sacchi Alessandro Gori Anna Maria Gasparri Angela Coliva Antonio Citro Benedetta Ferrara Martina Policardi Silvia Valtorta Arianna Pocaterra Massimo Alfano Dean Sheppard Lorenzo Piemonti Rosa Maria Moresco Angelo Corti Flavio Curnis 《International journal of biological sciences》2023,19(1):156
Rationale: The αvβ6- and αvβ8-integrins, two cell-adhesion receptors upregulated in many tumors and involved in the activation of the latency associated peptide (LAP)/TGFβ complex, represent potential targets for tumor imaging and therapy. We investigated the tumor-homing properties of a chromogranin A-derived peptide containing an RGDL motif followed by a chemically stapled alpha-helix (called “5a”), which selectively recognizes the LAP/TGFβ complex-binding site of αvβ6 and αvβ8.Methods: Peptide 5a was labeled with IRDye 800CW (a near-infrared fluorescent dye) or with 18F-NOTA (a label for positron emission tomography (PET)); the integrin-binding properties of free peptide and conjugates were then investigated using purified αvβ6/αvβ8 integrins and various αvβ6/αvβ8 single - or double-positive cancer cells; tumor-homing, biodistribution and imaging properties of the conjugates were investigated in subcutaneous and orthotopic αvβ6-positive carcinomas of the pancreas, and in mice bearing subcutaneous αvβ8-positive prostate tumors.Results: In vitro studies showed that 5a can bind both integrins with high affinity and inhibits cell-mediated TGFβ activation. The 5a-IRDye and 5a-NOTA conjugates could bind purified αvβ6/αvβ8 integrins with no loss of affinity compared to free peptide, and selectively recognized various αvβ6/αvβ8 single- or double-positive cancer cells, including cells from pancreatic carcinoma, melanoma, oral mucosa, bladder and prostate cancer. In vivo static and dynamic optical near-infrared and PET/CT imaging and biodistribution studies, performed in mice with subcutaneous and orthotopic αvβ6-positive carcinomas of the pancreas, showed high target-specific uptake of fluorescence- and radio-labeled peptide by tumors and low non-specific uptake in other organs and tissues, except for excretory organs. Significant target-specific uptake of fluorescence-labeled peptide was also observed in mice bearing αvβ8-positive prostate tumors.Conclusions: The results indicate that 5a can home to αvβ6- and/or αvβ8-positive tumors, suggesting that this peptide can be exploited as a ligand for delivering imaging or anticancer agents to αvβ6/αvβ8 single- or double-positive tumors, or as a tumor-homing inhibitor of these TGFβ activators. 相似文献
5.
Jerzy A. Woznicki Nisha Saini Peter Flood Subhasree Rajaram Ciaran M. Lee Panagiota Stamou Agnieszka Skowyra Milan Bustamante-Garrido Karine Regazzoni Nyree Crawford Simon S. McDade Daniel B. Longley Pedro Aza-Blanc Fergus Shanahan Syed A. Zulquernain Jane McCarthy Silvia Melgar Bradford L. McRae Ken Nally 《Cell death & disease》2021,12(10)
Rewiring of host cytokine networks is a key feature of inflammatory bowel diseases (IBD) such as Crohn’s disease (CD). Th1-type cytokines—IFN-γ and TNF-α—occupy critical nodes within these networks and both are associated with disruption of gut epithelial barrier function. This may be due to their ability to synergistically trigger the death of intestinal epithelial cells (IECs) via largely unknown mechanisms. In this study, through unbiased kinome RNAi and drug repurposing screens we identified JAK1/2 kinases as the principal and nonredundant drivers of the synergistic killing of human IECs by IFN-γ/TNF-α. Sensitivity to IFN-γ/TNF-α-mediated synergistic IEC death was retained in primary patient-derived intestinal organoids. Dependence on JAK1/2 was confirmed using genetic loss-of-function studies and JAK inhibitors (JAKinibs). Despite the presence of biochemical features consistent with canonical TNFR1-mediated apoptosis and necroptosis, IFN-γ/TNF-α-induced IEC death was independent of RIPK1/3, ZBP1, MLKL or caspase activity. Instead, it involved sustained activation of JAK1/2-STAT1 signalling, which required a nonenzymatic scaffold function of caspase-8 (CASP8). Further modelling in gut mucosal biopsies revealed an intercorrelated induction of the lethal CASP8-JAK1/2-STAT1 module during ex vivo stimulation of T cells. Functional studies in CD-derived organoids using inhibitors of apoptosis, necroptosis and JAKinibs confirmed the causative role of JAK1/2-STAT1 in cytokine-induced death of primary IECs. Collectively, we demonstrate that TNF-α synergises with IFN-γ to kill IECs via the CASP8-JAK1/2-STAT1 module independently of canonical TNFR1 and cell death signalling. This non-canonical cell death pathway may underpin immunopathology driven by IFN-γ/TNF-α in diverse autoinflammatory diseases such as IBD, and its inhibition may contribute to the therapeutic efficacy of anti-TNFs and JAKinibs.Subject terms: Necroptosis, Cell death and immune response, Interferons, Tumour-necrosis factors, Crohn''s disease 相似文献
6.
Yoshinari Yamazaki Yumiko Hayashi Masatoshi Arita Tadaharu Hieda Yoichi Mikami 《Applied microbiology》1988,54(10):2354-2360
α-Ionone, α-methylionone, and α-isomethylionone were converted by Aspergillus niger JTS 191. The individual bioconversion products from α-ionone were isolated and identified by spectrometry and organic synthesis. The major products were cis-3-hydroxy-α-ionone, trans-3-hydroxy-α-ionone, and 3-oxo-α-ionone. 2,3-Dehydro-α-ionone, 3,4-dehydro-β-ionone, and 1-(6,6-dimethyl-2-methylene-3-cyclohexenyl)-buten-3-one were also identified. Analogous bioconversion products from α-methylionone and α-isomethylionone were also identified. From results of gas-liquid chromatographic analysis during the fermentation, we propose a metabolic pathway for α-ionones and elucidation of stereochemical features of the bioconversion. 相似文献
7.
8.
9.
Saverio Francesco Retta Georgia Cassar Monica D'Amato Riccardo Alessandro Maurizio Pellegrino Simona Degani Giacomo De Leo Lorenzo Silengo Guido Tarone 《Molecular biology of the cell》2001,12(10):3126-3138
There is increasing evidence that a fine-tuned integrin cross talk can generate a high degree of specificity in cell adhesion, suggesting that spatially and temporally coordinated expression and activation of integrins are more important for regulated cell adhesive functions than the intrinsic specificity of individual receptors. However, little is known concerning the molecular mechanisms of integrin cross talk. With the use of beta(1)-null GD25 cells ectopically expressing the beta(1)A integrin subunit, we provide evidence for the existence of a cross talk between beta(1) and alpha(V) integrins that affects the ratio of alpha(V)beta(3) and alpha(V)beta(5) integrin cell surface levels. In particular, we demonstrate that a down-regulation of alpha(V)beta(3) and an up-regulation of alpha(V)beta(5) occur as a consequence of beta(1)A expression. Moreover, with the use of GD25 cells expressing the integrin isoforms beta(1)B and beta(1)D, as well as two beta(1) cytoplasmic domain deletion mutants lacking either the entire cytoplasmic domain (beta(1)TR) or only its "variable" region (beta(1)COM), we show that the effects of beta(1) over alpha(V) integrins take place irrespective of the type of beta(1) isoform, but require the presence of the "common" region of the beta(1) cytoplasmic domain. In an attempt to establish the regulatory mechanism(s) whereby beta(1) integrins exert their trans-acting functions, we have found that the down-regulation of alpha(V)beta(3) is due to a decreased beta(3) subunit mRNA stability, whereas the up-regulation of alpha(V)beta(5) is mainly due to translational or posttranslational events. These findings provide the first evidence for an integrin cross talk based on the regulation of mRNA stability. 相似文献
10.
Function of the Tetraspanin CD151–α6β1 Integrin
Complex during Cellular Morphogenesis 总被引:5,自引:0,他引:5 下载免费PDF全文
Xin A. Zhang Alexander R. Kazarov Xiuwei Yang Alexa L. Bontrager Christopher S. Stipp Martin E. Hemler 《Molecular biology of the cell》2002,13(1):1-11
Upon plating on basement membrane Matrigel, NIH3T3 cells formed an anastomosing network of cord-like structures, inhibitable by anti-alpha6beta1 integrin antibodies. For NIH3T3 cells transfected with human CD151 protein, the formation of a cord-like network was also inhibitable by anti-CD151 antibodies. Furthermore, CD151 and alpha6beta1 were physically associated within NIH3T3 cells. On removal of the short 8-amino acid C-terminal CD151 tail (by deletion or exchange), exogenous CD151 exerted a dominant negative effect, as it almost completely suppressed alpha6beta1-dependent cell network formation and NIH3T3 cell spreading on laminin-1 (an alpha6beta1 ligand). Importantly, mutant CD151 retained alpha6beta1 association and did not alter alpha6beta1-mediated cell adhesion to Matrigel. In conclusion, the CD151-alpha6beta1 integrin complex acts as a functional unit that markedly influences cellular morphogenesis, with the CD151 tail being of particular importance in determining the "outside-in" functions of alpha6beta1-integrin that follow ligand engagement. Also, antibodies to alpha6beta1 and CD151 inhibited formation of endothelial cell cord-like networks, thus pointing to possible relevance of CD151-alpha6beta1 complexes during angiogenesis. 相似文献
11.
The α5β1 Integrin Mediates Elimination of Amyloid-β Peptide and Protects Against Apoptosis 下载免费PDF全文
Michelle L. Matter Zhuohua Zhang Christer Nordstedt Erkki Ruoslahti 《The Journal of cell biology》1998,141(4):1019-1030
The amyloid-β peptide (Aβ) can mediate cell attachment by binding to β1 integrins through an arg-his-asp sequence. We show here that the α5β1 integrin, a fibronectin receptor, is an efficient binder of Aβ, and mediates cell attachment to nonfibrillar Aβ. Cells engineered to express α5β1 internalized and degraded more added Aβ1-40 than did α5β1-negative control cells. Deposition of an insoluble Aβ1-40 matrix around the α5β1-expressing cells was reduced, and the cells showed less apoptosis than the control cells. Thus, the α5β1 integrin may protect against Aβ deposition and toxicity, which is a course of Alzheimer's disease lesions. 相似文献
12.
Sequence Divergence in the 3′ Untranslated Regions of Human ζ- and α-Globin mRNAs Mediates a Difference in Their Stabilities and Contributes to Efficient α-to-ζ Gene Developmental Switching 下载免费PDF全文
J. Eric Russell Julia Morales Aleksandr V. Makeyev Stephen A. Liebhaber 《Molecular and cellular biology》1998,18(4):2173-2183
13.
The IgG3 subclass of β1-adrenergic receptor autoantibodies is an endogenous biaser of β1AR signaling
Maradumane L. Mohan Yuji Nagatomo Prasenjit Prasad Saha Sromona D. Mukherjee Timothy Engelman Rommel Morales Stanley L. Hazen W. H. Wilson Tang Sathyamangla V. Naga Prasad 《Molecular biology of the cell》2021,32(7):622
Dysregulation of immune responses has been linked to the generation of immunoglobulin G (IgG) autoantibodies that target human β1ARs and contribute to deleterious cardiac outcomes. Given the benefits of β-blockers observed in patients harboring the IgG3 subclass of autoantibodies, we investigated the role of these autoantibodies in human β1AR function. Serum and purified IgG3(+) autoantibodies from patients with onset of cardiomyopathy were tested using human embryonic kidney (HEK) 293 cells expressing human β1ARs. Unexpectedly, pretreatment of cells with IgG3(+) serum or purified IgG3(+) autoantibodies impaired dobutamine-mediated adenylate cyclase (AC) activity and cyclic adenosine monophosphate (cAMP) generation while enhancing biased β-arrestin recruitment and Extracellular Regulated Kinase (ERK) activation. In contrast, the β-blocker metoprolol increased AC activity and cAMP in the presence of IgG3(+) serum or IgG3(+) autoantibodies. Because IgG3(+) autoantibodies are specific to human β1ARs, non–failing human hearts were used as an endogenous system to determine their ability to bias β1AR signaling. Consistently, metoprolol increased AC activity, reflecting the ability of the IgG3(+) autoantibodies to bias β-blocker toward G-protein coupling. Importantly, IgG3(+) autoantibodies are specific toward β1AR as they did not alter β2AR signaling. Thus, IgG3(+) autoantibody biases β-blocker toward G-protein coupling while impairing agonist-mediated G-protein activation but promoting G-protein–independent ERK activation. This phenomenon may underlie the beneficial outcomes observed in patients harboring IgG3(+) β1AR autoantibodies. 相似文献
14.
M. C. Corfield 《The Biochemical journal》1962,84(3):602-610
15.
Integrin Cross Talk: Activation of Lymphocyte Function-associated Antigen-1 on Human T Cells Alters α4β1- and α5β1-mediated Function 下载免费PDF全文
A regulated order of adhesion events directs leukocytes from the vascular compartment into injured tissues in response to inflammatory stimuli. We show that on human T cells, the interaction of the β2 integrin leucocyte function–associated antigen-1 (LFA-1) with its ligand intercellular adhesion molecule-1 (ICAM-1) will decrease adhesion mediated by α4β1 and, to a lesser extent, α5β1. Similar inhibition is also seen when T cells are exposed to mAb 24, which stabilizes LFA-1 in an active state after triggering integrin function through divalent cation Mg2+, PdBu, or T cell receptor/ CD3 complex (TCR/CD3) cross-linking. Such cross talk decreases α4β1 integrin–mediated binding of T cells to fibronectin and vascular cell adhesion molecule-1 (VCAM-1). In contrast, ligand occupancy or prolonged activation of β1 integrin has no effect on LFA-1 adhesion to ICAM-1. We also show that T cell migration across fibronectin, unlike adhesion, is mediated solely by α5β1, and is increased when the α4β1-mediated component of fibronectin adhesion is decreased either by cross talk or the use of α4-blocking mAb. The ability of mAb 24 Fab′ fragments to induce cross talk without cross-linking LFA-1 suggests signal transduction through the active integrin. These data provide the first direct evidence for cross talk between LFA-1 and β1 integrins on T cells. Together, these findings imply that activation of LFA-1 on the extravasating T cell will decrease the binding to VCAM-1 while enhancing the subsequent migration on fibronectin. This sequence of events provides a further level of complexity to the coordination of T cell integrins, whose sequential but overlapping roles are essential for transmigration. 相似文献
16.
Scott D. McCulloch Robert J. Kokoska Parie Garg Peter M. Burgers Thomas A. Kunkel 《Nucleic acids research》2009,37(9):2830-2840
A DNA lesion created by oxidative stress is 7,8-dihydro-8-oxo-guanine (8-oxoG). Because 8-oxoG can mispair with adenine during DNA synthesis, it is of interest to understand the efficiency and fidelity of 8-oxoG bypass by DNA polymerases. We quantify bypass parameters for two DNA polymerases implicated in 8-oxoG bypass, Pols δ and η. Yeast Pol δ and yeast Pol η both bypass 8-oxoG and misincorporate adenine during bypass. However, yeast Pol η is 10-fold more efficient than Pol δ, and following bypass Pol η switches to less processive synthesis, similar to that observed during bypass of a cis-syn thymine-thymine dimer. Moreover, yeast Pol η is at least 10-fold more accurate than yeast Pol δ during 8-oxoG bypass. These differences are maintained in the presence of the accessory proteins RFC, PCNA and RPA and are consistent with the established role of Pol η in suppressing ogg1-dependent mutagenesis in yeast. Surprisingly different results are obtained with human and mouse Pol η. Both mammalian enzymes bypass 8-oxoG efficiently, but they do so less processively, without a switch point and with much lower fidelity than yeast Pol η. The fact that yeast and mammalian Pol η have intrinsically different catalytic properties has potential biological implications. 相似文献
17.
《PLoS biology》2021,19(11)
During the first weeks of postnatal heart development, cardiomyocytes undergo a major adaptive metabolic shift from glycolytic energy production to fatty acid oxidation. This metabolic change is contemporaneous to the up-regulation and activation of the p38γ and p38δ stress-activated protein kinases in the heart. We demonstrate that p38γ/δ contribute to the early postnatal cardiac metabolic switch through inhibitory phosphorylation of glycogen synthase 1 (GYS1) and glycogen metabolism inactivation. Premature induction of p38γ/δ activation in cardiomyocytes of newborn mice results in an early GYS1 phosphorylation and inhibition of cardiac glycogen production, triggering an early metabolic shift that induces a deficit in cardiomyocyte fuel supply, leading to whole-body metabolic deregulation and maladaptive cardiac pathogenesis. Notably, the adverse effects of forced premature cardiac p38γ/δ activation in neonate mice are prevented by maternal diet supplementation of fatty acids during pregnancy and lactation. These results suggest that diet interventions have a potential for treating human cardiac genetic diseases that affect heart metabolism.This study elucidates the role of the protein kinases p37γ and p38δ in regulating the metabolic switch that occurs in early postnatal development, revealing that they inhibit glycogen synthase 1 and glycogen metabolism. Deregulation of this mechanism results in cardiac defects and metabolic alterations which can be prevented by maternal fatty acid diet supplementation during pregnancy and lactation. 相似文献
18.
Magorzata Gadyszyska Justyna Bobrowska Magorzata Lekka Paulina Radwaska Lucyna Piera Jacek Szymaski Jacek Drobnik 《Journal of cellular and molecular medicine》2020,24(23):13853
Cardiac fibroblasts are able to sense the rigidity of their environment. The present study examines whether the stiffness of the substrate in cardiac fibroblast culture can influence the release of interleukin‐6 (IL‐6), interleukin‐11 (IL‐11) and soluble receptor of IL‐6 (sIL‐6R). It also examines the roles of integrin α2β1 activation and intracellular signalling in these processes. Cardiac fibroblasts were cultured on polyacrylamide gels and grafted to collagen, with an elasticity of E = 2.23 ± 0.8 kPa (soft gel) and E = 8.28 ± 1.06 kPa (stiff gel, measured by Atomic Force Microscope). Flow cytometry and ELISA demonstrated that the fibroblasts cultured on the soft gel demonstrated higher expression of the α2 integrin subunit and increased α2β1 integrin count and released higher levels of IL‐6 and sIL‐6R than those on the stiff gel. Substrate elasticity did not modify fibroblast IL‐11 content. The silencing of the α2 integrin subunit decreased the release of IL‐6. Similar effects were induced by TC‐I 15 (an α2β1 integrin inhibitor). The IL‐6 levels in the serum and heart were markedly lower in α2 integrin‐deficient mice B6.Cg‐Itga2tm1.1Tkun/tm1.1Tkun than wild type. Inhibition of Src kinase by AZM 475271 modifies the IL‐6 level. sIL‐6R secretion is not dependent on α2β1 integrin. Conclusion: The elastic properties of the substrate influence the release of IL‐6 by cardiac fibroblasts, and this effect is dependent on α2β1 integrin and kinase Src activation. 相似文献
19.
M.S. Chen E.A.C. Almeida A.-P.J. Huovila Y. Takahashi L.M. Shaw A.M. Mercurio J.M. White 《The Journal of cell biology》1999,144(3):549-561
Integrins can exist in different functional states with low or high binding capacity for particular ligands. We previously provided evidence that the integrin α6β1, on mouse eggs and on α6-transfected cells, interacted with the disintegrin domain of the sperm surface protein ADAM 2 (fertilin β). In the present study we tested the hypothesis that different states of α6β1 interact with fertilin and laminin, an extracellular matrix ligand for α6β1. Using α6-transfected cells we found that treatments (e.g., with phorbol myristate acetate or MnCl2) that increased adhesion to laminin inhibited sperm binding. Conversely, treatments that inhibited laminin adhesion increased sperm binding. Next, we compared the ability of fluorescent beads coated with either fertilin β or with the laminin E8 fragment to bind to eggs. In Ca2+-containing media, fertilin β beads bound to eggs via an interaction mediated by the disintegrin loop of fertilin β and by the α6 integrin subunit. In Ca2+-containing media, laminin E8 beads did not bind to eggs. Treatment of eggs with phorbol myristate acetate or with the actin disrupting agent, latrunculin A, inhibited fertilin bead binding, but did not induce laminin E8 bead binding. Treatment of eggs with Mn2+ dramatically increased laminin E8 bead binding, and inhibited fertilin bead binding. Our results provide the first evidence that different states of an integrin (α6β1) can interact with an extracellular matrix ligand (laminin) or a membrane-anchored cell surface ligand (ADAM 2). 相似文献
20.
Estornes Y Toscano F Virard F Jacquemin G Pierrot A Vanbervliet B Bonnin M Lalaoui N Mercier-Gouy P Pachéco Y Salaun B Renno T Micheau O Lebecque S 《Cell death and differentiation》2012,19(9):1482-1494
Toll-like receptor 3 (TLR3) is a pattern-recognition receptor known to initiate an innate immune response when stimulated by double-stranded RNA (dsRNA). Components of TLR3 signaling, including TIR domain-containing adapter inducing IFN-α (TRIF), have been demonstrated to contribute to dsRNA-induced cell death through caspase-8 and receptor interacting protein (RIP)1 in various human cancer cells. We provide here a detailed analysis of the caspase-8 activating machinery triggered in response to Poly(I:C) dsRNA. Engagement of TLR3 by dsRNA in both type I and type II lung cancer cells induces the formation of an atypical caspase-8-containing complex that is devoid of classical death receptors of the TNFR superfamily, but instead is physically associated to TLR3. The recruitment of caspase-8 to TLR3 requires RIP1, and is negatively modulated by cellular inhibitor of apoptosis protein (cIAP)2-TNF receptor-associated factor (TRAF)2-TNFR-associated death domain (TRADD) ubiquitin ligase complex, which regulates RIP1 ubiquitination. Intriguingly, unlike Fas- or TRAILR-dependent death signaling, caspase-8 recruitment and activation within the TLR3 death-signaling complex appears not to be stringently dependent on Fas-associated with death domain (FADD). Our findings uncover a novel aspect of the molecular mechanisms involved during apoptosis induced by the innate immune receptor TLR3 in cancer cells. 相似文献