首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The characteristic ecology of floodplain lakes is in part due to their relatively strong water-level fluctuations. We analyzed the factors determining water-level fluctuations in 100 floodplain lakes (during non-flooded conditions) in the active floodplains of the Lower Rhine in the Netherlands. Furthermore, we explored the relationship between water-level fluctuations and macrophyte species richness, and analyzed the suitability of artificially created lakes for macrophyte vegetation. During non-flooded conditions along the Rhine, lake water-level fluctuations are largely driven by groundwater connection to the river. Hence, water-level fluctuations are largest in lakes close to the main channel in strongly fluctuating sectors of the river and smallest in isolated lakes. Additionally, water-level fluctuations are usually small in old lakes, mainly due to reduced groundwater hydraulic conductivity resulting from accumulated clay and silt on the bottom. Species richness of floating-leaved and emergent macrophytes was reduced at both small and large water-level fluctuations, whereas species richness of submerged macrophytes was reduced at small water-level fluctuations only. In addition, species richness of submerged macrophytes was higher in lakes that experienced drawdown, whereas no similar pattern was detected for floating-leaved and emergent macrophytes. The decline in amplitude of lake water-level with lake age implies that the number of hydrologically dynamic lakes will decrease over time. Therefore, we suggest that excavation of new lakes is essential to conserve the successional sequence of floodplain water bodies including conditions of high biodiversity. Shallow, moderately isolated, lakes with occasional bottom exposure have the highest potential for creating macrophyte-rich floodplain lakes along large lowland rivers. The water-level regime of such lakes can in part be designed, through choice of the location along the river, the distance away from the river and the depth profile of the lake.  相似文献   

3.
This study presents the long‐term evolution of two floodplains lakes (San Juana and Barbacoas) of the Magdalena River in Colombia with varying degree of connectivity to the River and with different responses to climate events (i.e., extreme floods and droughts). Historical limnological changes were identified through a multiproxy‐based reconstruction including diatoms, sedimentation, and sediment geochemistry, while historical climatic changes were derived from the application of the Standardised Precipitation‐Evapotranspiration Index. The main gradients in climatic and limnological change were assessed via multivariate analysis and generalized additive models. The reconstruction of the more isolated San Juana Lake spanned the last c. 500 years. Between c. 1,620 and 1,750 CE, riverine‐flooded conditions prevailed as indicated by high detrital input, reductive conditions, and dominance of planktonic diatoms. Since the early 1800s, the riverine meander became disconnected, conveying into a marsh‐like environment rich in aerophil diatoms and organic matter. The current lake was then formed around the mid‐1960s with a diverse lake diatom flora including benthic and planktonic diatoms, and more oxygenated waters under a gradual increase in sedimentation and nutrients. The reconstruction for Barbacoas Lake, a waterbody directly connected to the Magdalena River, spanned the last 60 years and showed alternating riverine–wetland–lake conditions in response to varying ENSO conditions. Wet periods were dominated by planktonic and benthic diatoms, while aerophil diatom species prevailed during dry periods; during the two intense ENSO periods of 1987 and 1992, the lake almost desiccated and sedimentation rates spiked. A gradual increase in sedimentation rates post‐2000 suggests that other factors rather than climate are also influencing sediment deposition in the lake. We propose that hydrological connectivity to the Magdalena River is a main factor controlling lake long‐term responses to human pressures, where highly connected lakes respond more acutely to ENSO events while isolated lakes are more sensitive to local land‐use changes.  相似文献   

4.
The sometimes sharp thermal variations and irregular precipitations and force concentrated over short periods characterize the Mediterranean climate. The structure of the zooplanktonic settlement was analyzed during one year in three Algerian reservoirs (lakes) with different geographical and climatic situation, in relation to abiotic factors (temperature, dissolved oxygen, pH, suspended matter, carbonates, nitrogenized and phosphorated nutritive salts). A canonical correspondence analysis was used to estimate the influence of the abiotic factors on the temporal distribution.The studied lakes are located, on the one hand, in northern Algeria, in a sub-humid area (Lake Boukourdane) and, on the other hand, in the South of the country, in the arid region (Foum El Ghorza and Djorf Torba). Analysis of the environmental parameters indicates that there is a seasonal variation in the three reservoirs. In Lake Foum El Ghorza, the temperature and hydrology variations, linked with the arid climate, affects the concentration of dissolved oxygen, which strongly decreases (1.5 mg/l), involving a pH reduction; suspended matters are sometimes high, coming from the stripped catchment area, causing a turbidity in this not very deep lake. The study of the distribution of the species allowed us to highlight a seasonal temporal variation. Lake Boukourdane, in the sub-humid zone, has an increased specific richness (SR=13). The various species evolve in alternation during the annual cycle. The representative species of this lake is Copidodiaptomus numidicus, characteristic of the rainy and endemic zone of the western Mediterranean; it is dominant (67%) in the spring. The Stenothermal species Diaphanosoma brachyurum, endemic of hot waters, is common to the two lakes; it evolves particularly in the summer (51.3%) at Boukourdane, whereas it is perennial and dominant (55%) in the spring at Djorf Torba. The specific richness is lower in Djorf Torba (SR=7) and in Foum El Ghorza (SR=6). The species collected in these two lakes are common and cosmopolitan, but they are adapted to the extreme conditions of the arid climate. Nevertheless, the species evolving in Lake Foum El Ghorza have undergone a significant decline, which has reduced the number of species and their density in the summer-autumn period. Thus, we can say that in the studied lakes, the hydrological factors and the temperature related to the Mediterranean climate would be two of the principal causes of the temporal distribution of the species. To cite this article: M. Cherbi et al., C. R. Biologies 331 (2008).  相似文献   

5.
Aim Hydrological disconnection of floodplains from rivers is among the top factors threatening river‐floodplain ecosystems. To keep enough floodplain area is of great importance to biodiversity conservation. In the Yangtze River floodplain, most lakes were disconnected from the mainstream by dams in 1950–1970s. By analysing fish diversity data, we aim at determining the effects of river‐lake disconnection on fish diversity, at estimating the minimum protected area of river‐connected lakes and at proposing a holistic strategy for fish conservation in the mid‐lower reaches of the river. Location The Yangtze River floodplain, China. Methods We collected recorded data of fish diversity of 30 Yangtze floodplain lakes. Species–area relationships were analysed and compared between river‐connected and river‐disconnected lakes. Cumulative species–area models were constructed to estimate the minimum protected area of river‐connected lakes. Results River‐lake disconnection reduced fish diversity of Yangtze lakes by 38.1%, so that the river‐connected lakes play an important role in maintaining the floodplain biodiversity. The minimum protected area of river‐connected lakes was estimated to be 14,400 km2. Therefore, we should not only protect the existent connected lakes of 5500 km2, but also reconnect disconnected lakes of at least 8900 km2 in the Yangtze basin. Main conclusions Species–area relationships are of importance in reserve design. We suggest that cumulative species–area model might be more suitable for ecosystems with high connectivity among regions such as floodplains. As the Yangtze River floodplain is an integrative ecosystem, we suggest establishing a holistic nature reserve in the mid‐lower basin for effective conservation of biodiversity.  相似文献   

6.
7.
SUMMARY 1. We analysed the vegetation structure of 215 lakes in the flood plain of the river Lower Rhine in relation to environmental variables related to hydrological connectivity, lake morphometry, lake age and land use on adjacent land. 2. The frequency distribution of the cover of submerged macrophytes was not normal, implying that submerged macrophytes in any one lake were either scarce or abundant. 3. We observed clear water lakes with submerged macrophyte dominance over a wide range of total P concentration (0.020–0.40 mg total P L?1). 4. Multiple logistic regression indicated that the probability of dominance by submerged macrophytes decreased markedly with the surface area, depth and age of the lakes. The surface area effect occurred independently of the depth. Further, there was a negative relationship between submerged macrophyte dominance and the long‐term annual duration of inundation by the river. 5. Nymphaeid cover showed a distinct optimum with respect to mean lake depth, being almost absent in lakes shallower than 0.5 m. In contrast to what was found for submerged plants, the probability of occurrence of nymphaeids increased with lake age. 6. The probability of helophyte occurrence increased with lake age, and decreased with the presence of trees, cattle grazing, surface area, use of manure and mean lake depth. 7. In all cases the critical level of one factor (e.g. mean lake depth) depended on other factors (e.g. surface area or age of lake). Thus, in the present study, small lakes tended to remain dominated by submerged macrophytes up to a greater depth than large lakes, and helophytes colonised smaller lakes in an earlier phase. 8. The effect of inundation by the river was modest. This could be because most of our lakes are rarely inundated during the growing season and experience only moderate current velocities while flooded. 9. The results have practical implications for future management of flood plains for conservation purposes. In new water bodies, macrophyte domination will be promoted if many small shallow lakes, rather than few large deep ones, are excavated.  相似文献   

8.
SUMMARY 1. The seasonal dynamics of light attenuation, and the relative roles of total suspended solids (TSS), dissolved organic carbon (DOC) and chlorophyll as light attenuators among two sets of lakes in the Mackenzie Delta, were assessed during the open‐water periods of 1998 and 1999. 2. The first set consisted of 40 spatially discrete lakes where the frequency of flooding with river water was controlled by sill height (‘sill‐set lakes’). The second set consisted of a chain of six lakes connected to a main river channel (frequently flooded, all with same frequency), but where riverine influence was controlled by the distance from the channel connection point (‘chain‐set lakes’). 3. As the flooding frequency of lakes decreased (sill‐set), and as the distance from the channel connection point increased (chain‐set), lake water became increasingly transparent and the stability (decreasing temporal variability) of underwater light increased. 4. The effect of flooding on transparency was greater in years with a high minimum summer water level. However, the effect of river flooding on lake water transparency was damped more by an increase in the frequency and duration of flooding than by an increase in distance from the channel connection point. 5. The index of scattering was linearly related to TSS over the common range of concentrations in both sets of lakes. The specific attenuation coefficient for TSS (and scattering) increased substantially from the most turbid to the most transparent waters. 6. During the summer, DOC provided an approximate index of water colour in the sill‐set lakes but not in the chain‐set lakes, where the gradient of DOC ran counter to the gradient of water colour. The specific attenuation coefficient for water colour was roughly constant among both sets of lakes. 7. Calculations of partial attenuation show that, during the spring flood peak, TSS is the dominant attenuator among most lakes, other than those with high sills or positioned far from channel connection points. During the lengthy summer period of open water, however, water colour appeared to be the most important light attenuator among almost all of the lakes in the central delta, with chlorophyll a of only minor importance. 8. Lakes of the Mackenzie Delta may be quite sensitive to changes in climate and ultraviolet‐b (UV‐b) radiation in the circumpolar arctic because of the role of DOC as an attenuator of photosynthetically active radiation and UV‐b irradiance and as an energy source for microbial foodwebs in this system.  相似文献   

9.
Understanding of the forces driving the structure of biotic communities has long been an important focus for ecology, with implications for applied and conservation science. To elucidate the factors driving phytoplankton genus richness in the Danish landscape, we analyzed data derived from late-summer samplings in 195 Danish lakes and ponds in a spatially-explicit framework. To account for the uneven sampling of lakes in the monitoring data, we performed 1,000 permutations. A random set of 131 lakes was assembled and a single sample was selected randomly for each lake at each draw and all the analyses were performed on permuted data 1,000 times. The local environment was described by lake water chemistry, lake morphology, land-use in lake catchments, and climate. Analysis of the effects of four groups of environmental factors on the richness of the main groups of phytoplankton revealed contrasting patterns. Lake water chemistry was the strongest predictor of phytoplankton richness for all groups, while lake morphology also had a strong influence on Bacillariophyceae, Cyanobacteria, Dinophyceae, and Euglenophyceae richness. Climate and land-use in catchments contributed only little to the explained variation in phytoplankton richness, although both factors had a significant effect on Bacillariophyceae richness. Notably, total nitrogen played a more important role for phytoplankton richness than total phosphorus. Overall, models accounted for ca. 30% of the variation in genus richness for all phytoplankton combined as well as the main groups separately. Local spatial structure (<30 km) in phytoplankton richness suggested that connectivity among lakes and catchment-scale processes might also influence phytoplankton richness in Danish lakes.  相似文献   

10.
Patterns of fish species richness in China's lakes   总被引:1,自引:0,他引:1  
Aim To document the patterns of fish species richness and their possible causes in China's lakes at regional and national scales. Location Lakes across China. Methods We compiled data of fish species richness, limnological characteristics and climatic variables for 109 lakes across five regions of China: East region, Northeast region, Southwest region, North‐Northwest region, and the Tibetan Plateau. Correlation analyses, regression models and a general linear model were used to explore the patterns of fish species richness. Results At the national scale, lake altitude, energy availability (potential evapotranspiration, PET) and lake area explained 79.6% of the total variation of the lake fish species richness. The determinants of the fish richness pattern varied among physiographic regions. Lake area was the strongest predictor of fish species richness in the East and Southwest lakes, accounting for 22.2% and 82.9% of the variation, respectively. Annual PET explained 68.7% of the variation of fish richness in the Northeast lakes. Maximum depth, mineralization degree, and lake area explained 45.5% of the fish variation in the lakes of the North‐Northwest region. On the Tibetan Plateau, lake altitude was the first predictor variable, interpreting 32.2% of the variation. Main conclusions Lake altitude was the most important factor explaining the variation of fish species richness across China's lakes, and accounted for 74.5% of the variation. This may stem in part from the fact that the lakes investigated in our study span the largest altitudinal range anywhere in the world. The effects of the lake altitude on fish species richness can be separated into direct and indirect aspects due to its collinearity with PET. We also found that the fish diversity and its determinants were scale‐dependent. Fish species richness was probably energy‐determined in the cold region, while it was best predicted by the lake area in the relatively geologically old region. The independent variables we used only explained a small fraction of the variations in the lake fish species richness in East China and the Tibetan Plateau, which may be due to the effects of human activity and historical events, respectively.  相似文献   

11.
The diversity of aquatic biota in two large river systems of The Netherlands,viz. the Lower Rhine and Meuse, is discussed in order to: (1) reveal historical changes in biodiversity; (2) examine the role of river-floodplain connectivity; (3) set guide lines for ecological river management. The taxonomical diversity, or species richness, is used to describe the former and recent state of aquatic biota in these river systems. The ecological diversity, obtained by incorporating the concept of ecological groups into the concept of biodiversity, appears very useful in delineating guide-lines for ecological river management. The present species richness in the main channels still appears to be relatively low, despite major water quality improvements. Although present biodiversity is much improved compared with a few decades ago, it is evident that the present species are mainly eurytopic, including many exotics. The inhibition of a further biodiversity recovery results from river regulation and normalization, which have caused the deterioration and functional isolation of main channel and floodplain biotopes. The importance of connectivity for the diversity of aquatic biota is found to be different for various taxa. Moreover, a transversal zonation by the biota in the floodplain lakes is found, emphazising the importance of differences in the degree of connectivity for a diverse aquatic flora and fauna. It is concluded that floodplain lakes contribute significantly to the total biodiversity of the entire riverine ecosystem. The redevelopment of active secondary channels is required to restore the most typical riverine habitats and biota.  相似文献   

12.
Based on a unique dataset of more than 50 000 observations of ice phenology from 1213 lakes and 236 rivers in 12 different countries, we show that interannual variations in the timing of ice‐on and ice‐off on lakes and rivers are not equally pronounced over the entire Northern Hemisphere, but increase strongly towards geographical regions that experience only short periods during which the air temperature falls below 0 °C. We explain our observations by interannual fluctuation patterns of air temperature and suggest that lake and river ecosystems in such geographical regions are particularly vulnerable to global warming, as high interannual variability is known to have important ramifications for ecosystem structure and functioning. We estimate that the standard deviation of the duration of ice cover, viewed as a measure of interannual variability, exceeds 25 days for lakes and rivers located on 7% of the land area of the Northern Hemisphere. Such high variability might be an early warning signal for a critical transition from strictly dimictic, ice‐covered systems to monomictic, open‐water systems. Using the Global Lake and Wetland Database, we suggest that 3.7% of the world's lakes larger than 0.1 km2 are at high risk of becoming open‐water systems in the near future, which will have immediate consequences for global biogeochemical cycles.  相似文献   

13.
Many aquatic plant species are distributed over large areas and diverse environments with populations interconnected by abiotic and biotic mediators. Here, we examined differences and similarities in the population genetic structure of six sympatric and widespread aquatic plant species. We sampled the aquatic species from six Chinese lakes found on plateaus, plains, and different river systems and analyzed them using inter‐simple sequence repeat (ISSR) markers. Samples originating from each lake tended to cluster together. Of the six species, only Nymphoides peltata and Myriophyllum spicatum could be divided into plateau and plain groups, once Taihu Lake individuals were excluded. Genetic similarities between populations connected by the Yangtze River were not consistently higher than unconnected populations. Populations from Taihu Lake and/or Weishanhu Lake were distant from other lake populations for all species except Potamogeton lucens. The Taihu and Weishanhu populations clustered for Ceratophyllum demersum and Typha latifolia. Hydrophilous C. demersum had the lowest gene flow (Nm = 0.913), whereas the entomophilous Hydrocharis dubia (Nm = 2.084) and N. peltata (Nm = 2.204) had the highest gene flow. The genetic relationships among distant populations of aquatic plants reflect the comprehensive effects of environmental selection pressure and biotic and abiotic connectivity. Differences in environmental factors between plateau and plain lakes and long distance hydrochory have limited importance on aquatic plant genetic structures. Among multiple evolutionary forces, gene flow mediated by birds may play the most important role in the formation of genetic patterns in the six species examined. For example, the close genetic relationship between Taihu Lake and Weishanhu Lake populations, each in different river systems and with different climates, may be related to the migration routes of birds. Differences in gene flow among the six aquatic plants may be attributable to different bird‐transport and the fruit traits of each species.  相似文献   

14.
1. Bassenthwaite Lake in Cumbria is one of only two English lakes containing a population of vendace (Coregonus albula). The spatial distribution and survival of this fish is strongly influenced by the temperature and oxygen content of the water. In summer, this fish moves into deeper, colder water but avoids areas where the oxygen content is low. 2. In recent years, there has been a dramatic decline in the number of vendace found in the lake, a trend that may have been exacerbated by a succession of warm summers. Bassenthwaite only becomes stably stratified during calm, warm periods when a significant proportion of the deep water becomes anoxic. 3. Here, a one dimensional (1‐D) process‐based temperature‐oxygen model is used to simulate the year‐to‐year variations in the severity of these ‘extreme events’. The model is validated using field measurements acquired in the 1990s and used to predict the range of depths accessible to the vendace. 4. An empirical, weather‐driven model is then used to ‘hindcast’ the mixing characteristics of the lake in the 1980s and estimate the proportion of the habitat lost during warm, calm summers. These simulations show that periods of stable thermal stratification have become increasingly common in recent years. In the 1980s, only one ‘extreme event’ was identified but four such events were recorded in the 1990s. 5. The results are discussed in relation to the conservation status of the species and the potential effect of climate change on its survival in the English Lake District.  相似文献   

15.
Several aspects of community organization wereanalyzed comparatively in a small side-arm of theParaná River (Correntoso) and a shallowfloodplain lake (El Tigre) (31° 41 S and60° 42 W), in relation to the hydrology of thesystem. Taxonomic and morphological composition inthe river differed from that in the lake: the riverhad lower species richness (151 vs 218),different contributions of some Classes to totalspecies number (higher Cyano-, Zygo- andDiatomophyceae vs higher Chlorophyceae), anddiffent proportions of nannoplanktonic algae (67.5%vs 80.7%) and netplanktonic filamentousspecies (18.2% vs 4.2%). Phytoplanktonbiomass, higher in the lake than in the river due tothe retention time, was mostly dominated bynannoplankton and netplankton. Loticphytoplankton was dominated by typical fluvialspecies of Diatomophyceae (R-strategists). Riverconditions seem to maintain a subclimacticcommunity, which was little impacted by the flushingof populations from floodplain lakes. Water levelwas the main factor controlling phytoplanktonbiomass, species diversity (H), evenness (E) andcommunity change rate () in the river. Inthe lake, phytoplankton had an autogenicsuccessional sequence during the isolation phase (C-to S-strategists) and other responses todisturbance, mainly during the flood(R-strategists). Frequent changes in phytoplanktoncomposition, biomass, H, E and , revealed aenvironmental instability in the lake, which may beexplained by interactions of external factors(hydrology and climatology) and those of internalorigin, such as nutrients and grazing.  相似文献   

16.
Small intermittent rivers play an important role in the limnology of African lakes. The Mwenda River occurs on the southern shore of Lake Kariba. Its flow is governed by the incidence of tropical thunderstorms. During the dry period the river is reduced to a series of turbid pools. Physicochemically the river behaves similarly to a sheltered region of the lake. One river station deviates from the normal pattern because of the insulating effect of a Salvinia mat, and because of its permanent connection with the lake. River flooding flushes both nutrients and major ions into the lake. River phytoplankton populations peak prior to the flushing out of the river. Diatom populations are composed of cosmopolitan tropical taxa.  相似文献   

17.
生态需水是河流与湖泊生态系统健康的重要基础。湖泊流域的河流与湖泊生态系统之间存在密切的水量联系,目前对流域内生态用水的研究多为单一生态系统生态需水简单相加,忽略了河流和湖泊之间复杂的水量联系。基于河湖复合生态系统之间的水量联系构建了河湖生态系统生态用水优化模型,并以滇池为例分析了河湖生态系统生态用水规律。结果表明:湖泊流域中单一河流或湖泊生态需水计算结果不能满足复合生态系统的生态用水要求,需要综合考虑河流和湖泊之间的水量联系;在当前水质状况下,牛栏江每年的调水量不能满足滇池流域的生态用水要求;滇池流域水体污染对流域内生态用水影响较大,随着水体污染程度的下降,流域生态用水量和调水量呈指数下降,河流生态用水呈线性下降。  相似文献   

18.
Quantifying rotifer species richness in temperate lakes   总被引:2,自引:0,他引:2  
1. Biodiversity assessments of lakes depend on the ability to identify the complement of species present, although the degree of sampling required is often uncertain. We utilise long‐term data to predict rotifer species richness in three habitats in three Polish lakes using rarefaction sampling methods. 2. Richness in littoral and psammon habitats did not saturate, even with up to 130 samples. Highest richness was observed in psammon habitat (119 species) in Lake Mikolajskie, followed by littoral habitat in Lakes ?uknajno (114 species) and Kuc (110 species). Littoral habitats in Lakes ?uknajno (56%) and Kuc (51%) had the most species not shared with other habitats in the same lake. 3. Species richness (Chao2) estimates ranged between 44 for pelagic and 135 for psammon habitat in Lake Mikolajskie, to 100 for psammon and 137 for littoral habitat in Lake Kuc, and 65 for pelagic and 162 for littoral habitat in Lake ?uknajno. Whole lake estimates were 167, 205 and 171 species, respectively, for these lakes, higher than the 150 to 160 species predicted by Dumont and Segers (Hydrobiologia, 1996, 341 , 125). 4. Using standardised sampling, richness was significantly higher in littoral than either pelagic or psammon habitats. Contrasts of standardised rarefaction curves revealed that richness in Lakes Kuc and Mikolajskie was described as well by littoral‐only or psammon‐only samples, respectively, as by those randomly drawn from across all habitats in the lake. 5. Species richness estimates for Lake Mikolajskie were highest in summer, followed by autumn and spring. Interannual estimates differed by up to 427%, nearly an order of magnitude greater than maximal seasonal variation of 70%. 6. Results indicate that much higher sampling intensity is required to establish species richness than is presently carried out in most lakes. Because many species can be detected only with very intensive sampling, conservation programmes must consider sampling intensity when designing studies.  相似文献   

19.
20.
Climate change and human activities simultaneously alter river–lake relationships. Determining the dynamics of river–lake runoff systems on multiple time scales and their differences in response to driving forces can provide insights into hydrological processes and water resource management. This study investigates the synergistic evolution of river–lake runoff systems in the middle and lower reaches of the Yangtze River basin (MLYR) using the cross-wavelet transform method. The effects of different driving force changes on river–lake runoff regimes are quantified based on the Budyko hypothesis, and an InVEST model is developed to assess the spatial and temporal patterns of habitat quality. The results indicate that during the variation period, the runoff distributions of the Yangtze River–Dongting Lake and Yangtze River–-Poyang Lake runoff systems are both skewed towards lower values in the flood seasons compared with those in the base period. The storage of lakes mitigates the extent of human disturbance to the mainstream hydrological regime, particularly under extremely low conditions. From 1960 to 2021, five significant resonance periods are indicated in the river–lake runoff system, and the phase–angle relationships indicate a positive phase coupling between the lake and mainstream hydrological regimes, with the lake lagging behind the mainstream; however, this interaction tends to weaken. In the mainstream and Dongting Lake basins, subsurface conditions are the dominant factor contributing to runoff variability, with contributions ranging from 50.9% to 72.6%; in the Poyang Lake basin, precipitation is the dominant factor, with a contribution of 50.6%; and in the Han River basin, changes in the potential evapotranspiration contribute to 50.6% of runoff variability. The proportion of high habitat quality in the MLYR is approximately 52%, the Dongting and Poyang Lake basins indicate a high habitat quality rating. However, frequent human activity is the main reason of conversion from higher habitats to lower ones, which may result in wetland habitat degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号