首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The murine allele temperature-sensitive (ts) p53Val-135 encodes a ts p53 protein that behaves as a mutant polypeptide at 37 degrees C and as a wild-type polypeptide at 32 degrees C. This ts allele was introduced into the p53 nonproducer Friend erythroleukemia cell line DP16-1. The DP16-1 cell line was derived from the spleen cells of a mouse infected with the polycythemia strain of Friend virus, and like other erythroleukemia cell lines transformed by this virus, it grows independently of erythropoietin, likely because of expression of the viral gp55 protein which binds to and activates the erythropoietin receptor. When incubated at 32 degrees C, DP16-1 cells expressing ts p53Val-135 protein, arrested in the G0/G1 phase of the cell cycle, rapidly lost viability and expressed hemoglobin, a marker of erythroid differentiation. Erythropoietin had a striking effect on p53Val-135-expressing cells at 32 degrees C by prolonging their survival and diminishing the extent of hemoglobin production. This response to erythropoietin was not accompanied by down-regulation of viral gp55 protein.  相似文献   

2.
The course of acute infection of mice with ts mutant or the native strain DNA and the antigens of HSV in brain nerve cells were determined. Virus DNA was detected in brains of all mice in both animal groups while the virus antigens--only in cells of mice infected with the native strain. It can be suggested, therefore, that the ability of ts mutant to replicate in central nervous system of the infected mice is lacking or much lower. The detection of virus nucleic acid 3-5 months after virus infection might indicate a possibility of establishing latent infection. However, ts mutant showed a significantly lower possibility of latency induction, as compared with highly virulent strains. It was found that the mutant ability to induce latent infection was markedly increased when mice were treated with both ts mutant and Depo-Medrol as immunosuppressive agent. This finding shows both a possibility of increase of frequency of latent infections in the state of immunosuppression, and of activation of the latent infection (recurrence of acute form of infection).  相似文献   

3.
Genetic studies of the ploidy of Moloney murine leukemia virus.   总被引:7,自引:6,他引:1       下载免费PDF全文
An assay for Moloney murine leukemia virus was developed that made use of the production of morphologically altered foci in nonproducer mouse cells (15F) carrying murine sarcoma virus. Wild-type (wt) virus gave a ratio of titers at 39 degrees C/34degrees C = 1.05 +/- 0.45 (standard deviation;n = 20). A spontaneous, thermosensitive (ts) mutant of Moloney murine leukemia virus, ts3, defective in a late viral function, gave 39 degrees C/34degrees C = 0. A murine cell line (TB) was mixedly infected with ts3 and wt (multiplicities of infection, 7.8:4.3), cloned after infection, and shown to be infected by both viruses. At 34 degrees C it produced wt, ts, and particles of mixed parentage. The heterozygotes (hz) had ratios of assays 39 degrees C/34 degrees C = 0.06 to 0.84 (mean, 0.36). To eliminate possible interference by multiploid particles with determination of the proportions of the three types of particles, the virus produced by the mixedly infected, cloned cell line at 34 degrees C was distributed by velocity sedimentation in a sucrose gradient, and virus was picked from the lightest part of the gradient. The proportions of ts, wt, and hz were 0.27, 0.26, and 0.47. Those particles identified as hz segreated ts, wt, and hz in the proportions 0.24, 0.27, and 0.49, respectively. These values were not significantly different from those predicted from a diploid model of the genome.  相似文献   

4.
Propagation of cells infected with temperature-sensitive (ts) mutants of respiratory syncytial (RS) virus at nonpermissive temperature (39 degrees C) resulted in cytolytic, abortive, or persistent infection, depending on the mutant used to initiate infection. Five mutants from complementation group B produced cytolytic or abortive infections, whereas a single mutant (ts1) from group D and a noncomplbmenting mutant produced persistent infections. The persistently infected culture initiated by mutant ts1 (RS ts1/BS-C-1) has been maintained in serial culture for greater than 100 transfers, and infectious-center assays and immunofluorescent staining indicated that all cells harbored the RS virus genome. RS ts1/BS-C-1 cultures were resistant to superinfection by homologous and some heterologous viruses, and interferon-like activity against some heterologous viruses was present in the culture medium. Small amounts (0.002 to 0.2 PFU/cell) of infectious virus were present in the culture fluid, but autointerfering defective particles were not detected. This released virus formed small plaques and produced persistent infection of BS-C-1 cells at 37 degrees C. The RS ts1/BS-C-1 cells contained abundant RS virus antigen internally, but little at the surface, although the cells showed enhanced agglutinability by concanavalin A. Nucleocapsids and the 41,000-molecular-weight nucleoprotein were present in extracts of both nucleated and enucleated cells. No infectious RS virus was obtained by transfection of DNA from RS tsl/BS-C-1 cells to susceptible BS-C-1 or feline embryo cells under conditions allowing efficient transfection of a foamy virus proviral DNA. It was concluded that persistent infection was maintained in part by a non-ts variant of RS virus partially defective in maturation. The karyotype of the RS ts1/BS-C-1 culture differed from that of unifected cells.  相似文献   

5.
A replicated sector-plating procedure was used to isolate 35 induced temperature-sensitive (ts) mutants and one spontaneous ts mutant from a wild-type stock of respiratory syncytial (RS) virus cloned from recent clinical material. Seven of these mutants were ts for plaque formation at 37 degrees C as well as at the restrictive temperature of 39 degrees C. The wild-type strain did not differ markedly from standard laboratory strains of RS virus. It was dependent on exogenous arginine (84 mug/ml) for optimal growth, and was not significantly inhibited by mitomycin C (10 mug/ml). It was sensitive to actinomycin D (2.5 mug/ml) during the early part of the growth phase. A characteristic focal cytopathic effect was obtained in BS-C-1 cells. Staining of infected monolayers by an indirect immunofluorescence procedure revealed a profusion of filamentous processes extending from the plasma membrane, and a similar modification of the surface of infected cells could be visualized by scanning electron microscopy. Filament production was inhibited when certain ts mutants were incubated at 39 degrees C, confirming the virus-specific nature of the phenomenon. Thirty-four of the mutants were classified into three groups by immunofluorescence. Complementation was observed in mixed infection with a single mutant from each group. Nuclear, as well as cytoplasmic, immunofluorescence was detected in RS virus-infected cells using a high-titer bovine anti-bovine RS virus serum. Visualization of nuclear antigen was dependent on the inhibition of cytoplasmic fluorescence obtained when ts mutants in groups I and III were incubated at restrictive temperature.  相似文献   

6.
The relative antigenicity of the individual herpes simplex virus type 1 (KOS) glycoproteins gC and gB was analyzed in BALB/c mice by using KOS mutants altered in their ability to present these antigens on cell surface membranes during infection. The mutants employed were as follows: syn LD70 , a non-temperature-sensitive mutant defective in the synthesis of cell surface membrane gC; tsF13 , a temperature-sensitive mutant defective in the processing of the precursor form of gB to the mature cell surface form at 39 degrees C; and ts606 , an immediate early temperature-sensitive mutant defective in the production of all early and late proteins including the glycoproteins. By comparing the relative susceptibility to immunolysis of mouse 3T3 cells infected at 39 degrees C with wild-type virus, presenting the full complement of the glycoprotein antigens, gC, gB, and gD, with target cells infected with mutants presenting only subsets of these antigens, we determined that a major portion of cytolytic antibody contained in hyperimmune anti-herpes simplex virus type 1 (KOS) mouse antiserum was directed against glycoproteins gC and gB. The relative immunogenicity of wild-type and mutant virus-infected cells also was compared in BALB/c mice. Immunogen lacking the mature form of gB induced a cytolytic antibody titer comparable to that of the wild-type virus, whereas that lacking the mature form of gC showed a 70% reduction in titer. The absence of the mature cell surface forms of gB and gC in immunogen preparations resulted in a 4- to 15-fold reduction in in virus neutralizing titer. Animals immunized with ts606 -infected cells (39 degrees C) induced relatively little virus-specific cytolytic and neutralizing antibody. Analysis of the glycoprotein specificities of these antisera by radioimmunoprecipitation showed that the antigens immunoprecipitated reflected the viral plasma membrane glycoprotein profiles of the immunogens. The absence of the mature forms of gC or gB in the immunizing preparation did not appreciably affect the immunoprecipitating antibody response to other antigens. Mice immunized with wild-type and mutant virus-infected cells were tested for their resistance to intracranial and intraperitoneal challenge with the highly virulent WAL strain of herpes simplex virus type 1. Despite the observed alterations in serum virus-specific antibody induced with the individual immunogens, all animals survived an intraperitoneal challenge of 10 50% lethal doses. However, differences in the survival of animals were obtained upon intracranial challenge.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
8.
We have isolated a new type of temperature-sensitive mutant of simian virus 40 (SV40) that is capable of productive infection in permissive cells but not of maintenance of viral DNA integration in transformed cells at the conditional temperature. Virus development is induced when cells transformed by this mutant are shifted to temperatures above 39 degrees C, but is not induced below this temperature. The plaque-purified, temperature-sensitive mutant virus confers heat inducibility to new host cells, indicating that the conditional function is a property of the viral genome. Unlike previously described temperature-sensitive SV40 mutants, in (ts)-1501 is capable of productive infection in permissive cells at the conditional temperature. The morphology, growth, and oncogenicity of in (ts)-1501-transformed cells at 37 degrees C are similar to those of cell lines transformed by wild-type SV40. HK10-c2(in(ts)-1501), a cloned cell line, transformed at 37 degrees C by the mutant virus, exhibits a transient increase in DNA synthesis before cell death at the conditional temperature. Many properties of in(ts)-1501 are analogous to those of the heat-inducible mutants of bacteriophages in which a heat-inactivated protein is responsible for the stable integration of the prophage in the bacterial chromosome.  相似文献   

9.
Lymphoid cell lines were isolated that were inducible for the expression of surface immunoglobulin by shift from 35.5 to 39.5 degrees C after infection of mouse bone marrow cells with a mutagen-treated Abelson murine leukemia virus. Virus produced by one of the cell lines (ts49) transmitted the temperature-sensitive phenotype to new lymphoid transformants as well as to NIH/3T3 cells. In addition, the tyrosine autophosphorylating activity of the p120gag-abl protein synthesized in ts49-transformed cells was found to be temperature-sensitive. Shift experiments using ts49-transformed lymphoid cells showed that at 39.5 degrees C they synthesize increased amounts of mu and kappa chain RNA and protein, and that they can be further induced to secrete IgM when treated with lipopolysaccharide.  相似文献   

10.
11.
Temperature-sensitive (ts) mutants of mouse hepatitis virus A59 (MHV-A59) are drastically attenuated in their pathogenic properties. Intracerebral inoculation of mice with 10(5) PFU of mutant ts342 results in prolonged infection of the central nervous system, whereas 100 PFU of wild-type virus are lethal (M. J. M. Koolen, A. D. M. E. Osterhaus, G. van Steenis, M. C. Horzinek, and B. A. M. van der Zeijst, Virology 125:393-402, 1983). In the Sac(-) cell line ts342 grows as well at 37 degrees C (the body temperature of mice) as at 31 degrees C (the permissive temperature). There is, however, a difference in primary cultures of mouse brain astrocytes. After infection with ts342, astrocytes produced low levels of infectious virus (5.2 +/- 3.7%) compared with virus yields after infection with wild-type virus. The fraction of wild-type virus- and ts342-infected cells was similar. Electron microscopy showed in wild-type virus-infected cells abundant virions in smooth vesicles usually closely associated with a well-developed Golgi apparatus. In mutant-infected cells no mature ts342 virus particles were found. There was no difference between ts342 and wild-type virus regarding the intracellular virus-specific RNAs. In ts342-infected cells the viral glycoproteins E2 and E1 were not detectable or were barely detectable. Either the mRNAs for the glycoproteins are not translated or the proteins are rapidly broken down. Revertants of ts342 were isolated. They grew as well as wild-type virus in astrocytes, indicating that they apparently produced sufficient amounts of E2 and E1, the ts defect itself rather than a second site mutation is responsible for the defect in replication, and the ts defect acts in unison with host-cell factors. The revertants also regained the lethal properties of wild-type virus.  相似文献   

12.
13.
Prototype temperature-sensitive (ts) mutants of a coxsackievirus B3 parent virus capable of replication to similar levels at 34 or 39.5 degrees C were examined for the nature of the temperature-sensitive event restricting replication in HeLa cells at 39.5 degrees C. The ts mutant prototypes represented three different non-overlapping complementation groups. The ts1 mutant (complementation group III) synthesized less than 1% of the infectious genomic RNA synthesized by the coxsackievirus B3 parent virus at 39.5 degrees C and was designated an RNA- mutant. Agarose gel analysis of glyoxal-treated RNA from cells inoculated with ts1 virus revealed that cell RNA synthesis continued in the presence of synthesis of the small amount of viral RNA. This mutant was comparatively ineffective in inducing cell cytopathology and in directing synthesis of viral polypeptides, likely due to the paucity of nascent genomes for translation. The ts5 mutant (complementation group II) directed synthesis of appreciable quantities of both viral genomes (RNA+) and capsid polypeptides; however, assembly of these products into virions occurred at a low frequency, and virions assembled at 39.5 degrees C were highly unstable at that temperature. Shift-down experiments with ts5-inoculated cells showed that capsid precursor materials synthesized at 39.5 degrees C can, after shift to 34 degrees C, be incorporated into ts5 virions. We suggest that the temperature-sensitive defect in this prototype is in the synthesis of one of the capsid polypeptides that cannot renature into the correct configuration required for stability in the capsid at 39.5 degrees C. The ts11 mutant (complementation group I) also synthesized appreciable amounts of viral genomes (RNA+) and viral polypeptides at 39.5 degrees C. Assembly of ts11 virions at 39.5 degrees C occurred at a low frequency, and the stability of these virions at 39.5 degrees C was similar to that of the parent coxsackievirus B3 virions. The temperature-sensitive defect in the ts11 prototype is apparently in assembly. The differences in biochemical properties of the three prototype ts mutants at temperatures above 34 degrees C may ultimately offer insight into the differences in pathogenicity observed in neonatal mice for the three prototype ts mutants.  相似文献   

14.
Y C Chen  M J Hayman  P K Vogt 《Cell》1977,11(3):513-521
Fibroblasts from European field vole (Microtus agrestis) and from normal rat kidney (NRK) have been infected by avian sarcoma virus mutants which are temperature-sensitive for the maintenance of transformation. These cells are transformed at 33 degrees C, but show normal cell characteristics in morphology, colony formation in agar, saturation density, sugar uptake and membrane proteins at 39 degrees C and 40 degrees C, the nonpermissive temperatures. Ts mutant virus was rescued from most of the ts transformed cell lines. NRK cells infected by avian sarcoma virus ts mutants and kept at the nonpermissive temperature can be transformed by wild-type avian sarcoma virus. The susceptibility of the temperature-sensitive NRK lines to this transformation is higher than the susceptibility of uninfected NRK at either permissive or nonpermissive temperature.  相似文献   

15.
In an assay measuring virus-directed RNA synthesis, infection of BHK cells by a standard test dose of vesicular stomatitis virus (VSV) was inhibited by ultraviolet light-irradiated wt VSV and by ts 045, one of a number of thermolabile, temperature-sensitive G protein mutants of VSV. After heat treatment for 1 h at 45 degrees C, the thermolabile mutants were no longer able to inhibit the VSV infection. In contrast, the thermolabile M protein mutant ts G31 and the nonthermolabile G protein mutant ts 044 could still inhibit the test VSV dose. Thus, the presence of G protein in its native conformation was necessary for inhibition of infection. There was little difference in the binding to cells or the internalization to a trypsin-resistant state of ts 045 or wt VSV before and after heat treatment, and there was no evidence of specific saturable receptors on the cell surface. None of the irradiated virions at concentrations that gave maximal inhibition of infection could prevent binding of infectious VSV to, or internalization by, BHK cells. The G protein-specific inhibition, therefore, did not occur at the cell surface but must have occurred at some intracellular site, which has been suggested to be the lysome. The lysosomal inhibitor chloroquine, when added with the infecting virus, completely inhibited VSV infection at all multiplicities of infection tested, and it gave 50% inhibition when added to 1.5 h after infection. The possible importance of the lysosome in the intracellular pathway of infection is discussed.  相似文献   

16.
17.
18.
Two temperature-sensitive (ts) mutants of mouse hepatitis virus strain A59, ts43 and ts379, have been described previously to be ts in infectivity but unaffected in RNA synthesis (M. J. M. Koolen, A. D. M. E. Osterhaus, G. van Steenis, M. C. Horzinek, and B. A. M. van der Zeijst, Virology 125:393-402, 1983). We present a detailed analysis of the protein synthesis of the mutant viruses at the permissive (31 degrees C) and nonpermissive (39.5 degrees C) temperatures. It was found that synthesis of the nucleocapsid protein N and the membrane protein M of both viruses was insensitive to temperature. However, the surface protein S of both viruses was retained in the endoplasmic reticulum at the nonpermissive temperature. This was shown first by analysis of endoglycosidase H-treated and immunoprecipitated labeled S proteins. The mature Golgi form of S was not present at the nonpermissive temperature for the ts viruses, in contrast to wild-type (wt) virus. Second, gradient purification of immunoprecipitated S after pulse-chase labeling showed that only wt virus S was oligomerized. We conclude that the lack of oligomerization causes the retention of the ts S proteins in the endoplasmic reticulum. As a result, ts virus particles that were devoid of S were produced at the nonpermissive temperature. This result could be confirmed by biochemical analysis of purified virus particles and by electron microscopy.  相似文献   

19.
The origin and characteristics of the first naturally occurring temperature-sensitive (ts) strain of influenza A virus identified in 1973, Xia-ts, are described. Natural ts strains were found to occur in the early egg passage material of all influenza A subtypes examined, but the proportion of ts virus varied from 8.3% for old H1N1 virus (1949 to 1957) to 82.4% for recent H3N2 virus (1979 to 1980). A number of strains were found to be composed of a mixture of ts and wild-type (ts+) particles. Six natural ts strains with different shutoff temperatures and one ts+ strain of the H1N1 subtype were tested in antibody-free volunteers. Strains with a shutoff temperature of 38 degrees C or lower caused very mild symptoms, whereas those with a shutoff temperature of 39 degrees C and the ts+ strain were much more reactogenic. By complementation tests against a set of prototype WSN ts mutants with a defined genetic lesion, the ts lesion of two H3N2 viruses (HK/8/68 and Xia-ts) was located on the NP gene and that of two H1N1 viruses (Tianjin/78/77 and Beijing/1/79) was located on the M protein gene. The present study demonstrates the widespread occurrence in nature of influenza viruses of different degrees of temperature sensitivity and presumably of different degrees of virulence.  相似文献   

20.
We investigated the intracellular block in the transport of hemagglutinin (HA) and the role of HA in virus particle formation by using temperature-sensitive (ts) mutants (ts134 and ts61S) of influenza virus A/WSN/33. We found that at the nonpermissive temperature (39.5 degrees C), the exit of ts HA from the rough endoplasmic reticulum to the Golgi complex was blocked and that no additional block was apparent in either the exit from the Golgi complex or post-Golgi complex transport. When MDBK cells were infected with these mutant viruses, they produced noninfectious virus particles at 39.5 degrees C. The efficiency of particle formation at 39.5 degrees C was essentially the same for both wild-type (wt) and ts virus-infected cells. When compared with the wt virus produced at either 33 or 39.5 degrees C or the ts virus formed at 33 degrees C, these noninfectious virus particles were lighter in density and lacked spikes on the envelope. However, they contained the full complement of genomic RNA as well as all of the structural polypeptides of influenza virus with the exception of HA. In these spikeless particles, HA could not be detected at the limit of 0.2% of the HA present in wt virions. In contrast, neuraminidase appeared to be present in a twofold excess over the amount present in ts virus formed at 33 degrees C. These observations suggest that the presence of HA is not an obligatory requirement for the assembly and budding of influenza virus particles from infected cells. The implications of these results and the possible role of other viral proteins in influenza virus morphogenesis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号