首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M E Mazurov 《Biofizika》1990,35(3):494-499
Principal physiological hypotheses concerning the setting of united rhythm in the heart sinoatrial node (SAN) are considered. A mathematical model of SAN is proposed which takes into account properties of individual elementary pacemakers and their interaction. Assuming paired interaction of the pacemakers there are revealed the main P.D. parameters, affecting the setting of the united rhythm. Quantitative expressions are obtained for the united rhythm period, delay and propagation velocity of the excitation. The calculated data are compared with the experimental ones. The hypothesis concerning the setting of the united rhythm as a result of the interaction of SAN pacemakers is confirmed.  相似文献   

2.
The dynamics of establishing a unified sinoatrial node rhythm are considered. Mutual synchronization is shown to result in phase shifts and excitation delays. Rhythmogenesis in systems of two or many interacting pacemaker cells is examined in several point models and distributed models (Noble, Bonhoeffer-van der Pol, FitzHugh, Hodgkin-Huxley, Morris-Lecar).  相似文献   

3.
4.
Pan Z  Yamaguchi R  Doi S 《Bio Systems》2011,106(1):9-18
The electrical excitation (action potential generation) of sinoatrial node (cardiac pacemaker) cells is directly related to various ion channels (pore-forming proteins) in cell membranes. In order to analyze the relation between action potential generation and ion channels, we use the Yanagihara-Noma-Irisawa (YNI) model of sinoatrial node cells, which is described by the Hodgkin-Huxley-type equations with seven variables. In this paper, we analyze the global bifurcation structure of the YNI model by varying various conductances of ion channels, and examine the effects of these conductance changes on pacemaker rhythm (frequency of action potential generation). The coupling effect on pacemaker rhythm is also examined approximately by applying external current to the YNI model.  相似文献   

5.
Single pacemaker heart cells discharge irregularly. Data on fluctuations in interbeat interval of single pacemaker cells isolated from the rabbit sinoatrial node are presented. The coefficient of variation of the interbeat interval is quite small, approximately 2%, even though the coefficient of variation of diastolic depolarization rate is approximately 15%. It has been hypothesized that random fluctuations in interbeat interval arise from the stochastic behavior of the membrane ionic channels. To test this hypothesis, we constructed a single channel model of a single pacemaker cell isolated from the rabbit sinoatrial node, i.e., a model into which the stochastic open-close kinetics of the individual membrane ionic channels are incorporated. Single channel conductances as well as single channel open and closed lifetimes are based on experimental data from whole cell and single channel experiments that have been published in the past decade. Fluctuations in action potential parameters of the model cell are compared with those observed experimentally. It is concluded that fluctuations in interbeat interval of single sinoatrial node pacemaker cells indeed are due to the stochastic open-close kinetics of the membrane ionic channels.  相似文献   

6.
M. E. Mazurov 《Biophysics》2006,51(6):959-965
The most significant experimental data on the formation of the common rhythm of the heart sinoatrial node are presented for both the intact heart sinoatrial node and cardiomyocytes in cell structures. The basic mathematical models for studying the synchronization processes in the sinoatrial node, including the Noble equation, Bonhoffer-van der Pol model, and modified axiomatic models, are described. The basic results obtained with the mathematical models are presented. The most important causes affecting the formation of the common rhythm—the pacemaker potential shape in the slow diastolic depolarization phase, its porosity, the coupling force between pacemakers, and the electrical power of pacemakers—are revealed. Rhythmogenesis is studied using the modified axiomatic model. The method allows the calculation of the common rhythm of the sinoatrial node, with allowance for the mutual effect of the pacemaker cells, including the coupling force, electric power of cells, and possibility of the cells clustering. It has been shown that the common rhythm of the sinoatrial node is generally formed at the intermediate level of the rhythms of all pacemaker cells.  相似文献   

7.
The question of the extent to which cytosolic Ca(2+) affects sinoatrial node pacemaker activity has been discussed for decades. We examined this issue by analyzing two mathematical pacemaker models, based on the "Ca(2+) clock" (C) and "membrane clock" (M) hypotheses, together with patch-clamp experiments in isolated guinea pig sinoatrial node cells. By applying lead potential analysis to the models, the C mechanism, which is dependent on potentiation of Na(+)/Ca(2+) exchange current via spontaneous Ca(2+) release from the sarcoplasmic reticulum (SR) during diastole, was found to overlap M mechanisms in the C model. Rapid suppression of pacemaker rhythm was observed in the C model by chelating intracellular Ca(2+), whereas the M model was unaffected. Experimental rupturing of the perforated-patch membrane to allow rapid equilibration of the cytosol with 10 mM BAPTA pipette solution, however, failed to decrease the rate of spontaneous action potential within ~30 s, whereas contraction ceased within ~3 s. The spontaneous rhythm also remained intact within a few minutes when SR Ca(2+) dynamics were acutely disrupted using high doses of SR blockers. These experimental results suggested that rapid disruption of normal Ca(2+) dynamics would not markedly affect spontaneous activity. Experimental prolongation of the action potentials, as well as slowing of the Ca(2+)-mediated inactivation of the L-type Ca(2+) currents induced by BAPTA, were well explained by assuming Ca(2+) chelation, even in the proximity of the channel pore in addition to the bulk cytosol in the M model. Taken together, the experimental and model findings strongly suggest that the C mechanism explicitly described by the C model can hardly be applied to guinea pig sinoatrial node cells. The possible involvement of L-type Ca(2+) current rundown induced secondarily through inhibition of Ca(2+)/calmodulin kinase II and/or Ca(2+)-stimulated adenylyl cyclase was discussed as underlying the disruption of spontaneous activity after prolonged intracellular Ca(2+) concentration reduction for >5 min.  相似文献   

8.
In comparison to the cellular basis of pacemaking, the electrical interactions mediating synchronization and conduction in the sinoatrial node are poorly understood. Therefore, we have taken a combined immunohistochemical and electrophysiological approach to characterize gap junctions in the nodal area. We report that the pacemaker myocytes in the center of the rabbit sinoatrial node express the gap junction proteins connexin (Cx)40 and Cx46. In the periphery of the node, strands of pacemaker myocytes expressing Cx43 intermingle with strands expressing Cx40 and Cx46. Biophysical properties of gap junctions in isolated pairs of pacemaker myocytes were recorded under dual voltage clamp with the use of the perforated-patch method. Macroscopic junctional conductance ranged between 0.6 and 25 nS with a mean value of 7.5 nS. The junctional conductance did not show a pronounced sensitivity to the transjunctional potential difference. Single-channel recordings from pairs of pacemaker myocytes revealed populations of single-channel conductances at 133, 202, and 241 pS. With these single-channel conductances, the observed average macroscopic junctional conductance, 7.5 nS, would require only 30-60 open gap junction channels.  相似文献   

9.
In vivo, agonist binding to the open conformation of the ligand binding domain initiates the process of gating in ionotropic glutamate receptors. Arguably, an alternative manner to gate the receptors exists, which requires a point mutation in the most-conserved sequence motif in the second transmembrane domain. Originally, this mutation occurred spontaneously in the orphan glutamate receptor subunit delta2, causing the ataxic phenotype of lurcher mice.1 In the absence of a ligand that could initiate gating at this orphan subunit, the introduction of the lurcher mutation led to spontaneous currents through delta2-lurcher channels.1 Introduction of the corresponding mutation into the AMPA receptor GluR1 induced a number of aberrant gating properties.2-5 Among those, glutamate potency was highly increased, and competitive antagonists suddenly behaved as partial agonists.2,5 We reported that the introduction of delta2 amino acids in the domain preceding the first transmembrane domain in GluR1 resulted in a mutant receptor that displayed all characteristics of lurcher-typical gating. We proposed that lurcher-like mutations work to enhance gating by destabilizing the closed state of the receptor. As a result, no or minimal conformational changes in the ligand binding domain are sufficient for gating, explaining, respectively, why spontaneous currents and competitive antagonists act as partial agonists in lurcher-like channels. Strikingly, a similar conversion of antagonists upon coexpression of TARPs with glutamate receptors has recently been reported.6,7 We take this as indication that the actual mechanism of action might be very similar, and that both lurcher-like mutations and TARPs work as 'gating enhancers'.  相似文献   

10.
We have studied the dynamics of reentry inside the sinoatrial node (SAN). We have found that reentry is unstable at high intercellular conductance. Rotating reentry induces a slow migrating crescent-shaped functional block near the SAN boundary. Abnormal conduction from atrial tissue into the SAN occurs after decay of the reentry. Acetylcholine increases the lifespan of reentry in the SAN.  相似文献   

11.
Syunyaev  R. A.  Aliev  R. R. 《Biophysics》2010,55(6):1025-1029
The initiation and propagation of electrical pulses in the sinoatrial node under normal conditions and after application of acetylcholine have been simulated. It has been found that normally a single or a few leading centers are formed in the tissue. When acetylcholine is applied, a temporary functional block of conduction may appear; the leading center migrates under these conditions.  相似文献   

12.
The sinoatrial node performs its task as a cardiac impulse generator throughout the life of the organism, but this important function is not a constant. Rather, there are significant developmental changes in the expression and function of ion channels and other cellular elements, which lead to a postnatal slowing of heart rate and may be crucial to the reliable functioning of the node during maturation. In this review, we provide an overview of current knowledge regarding these changes, with the main focus placed on maturation of the ion channel expression profile. Studies on Na(+) and pacemaker currents have shown that their contribution to automaticity is greater in the newborn than in the adult, but this age-dependent decrease is at least partially opposed by an increased contribution of L-type Ca(2+) current. Whereas information regarding age-dependent changes in other transmembrane currents within the sinoatrial node are lacking, there are data on other relevant parameters. These include an increase in the nodal content of fibroblasts and in the area of nonexpression of connexin43, considered a molecular marker of nodal tissue. Although much remains to be done before a comprehensive view of the developmental biology of the node is available, important evidence in support of a molecular interpretation of developmental slowing of the intrinsic sinoatrial rate is beginning to emerge.  相似文献   

13.
14.
We investigated whether in the sinoatrial node (SAN) there are two different pacemaker mechanisms and whether either one can maintain spontaneous discharge. These questions were studied by means of an electrophysiological technique and of blockers of different diastolic currents in rabbit and guinea pig isolated SAN. In SAN subsidiary pacemakers of both species, Cs(+) (5-10 mM) or high [K(+)](o) (10-12 mM) decreased the maximum diastolic potential, abolished diastolic depolarization (DD) at polarized levels (subsidiary DD), unmasked a U-shaped dominant DD at depolarized levels, but did not stop the SAN. In rabbit SAN, E4031 (1 microM) and d-sotalol (100 microM) did not stop discharge, but did so after block of subsidiary DD by high [K(+)](o) or Cs(+). In guinea pig SAN, in Tyrode solution E4031, d-sotalol or indapamide (100 microM) did not stop SAN discharge. In the presence of Cs(+) or high [K(+)](o) indapamide (but not E4031 or d-sotalol) stopped the SAN. Ba(2+) (1-5 mM) led to stoppage of discharge both in Tyrode solution and in high [K(+)](o) or Cs(+). Depolarization by blockers of DD unmasked sinusoidal fluctuations, which during recovery were responsible for resumption of discharge. We conclude that in rabbit and guinea pig SAN, two different pacemaker mechanisms (Cs(+)- and K(+)-sensitive subsidiary DD, and Cs(+)- and K(+)-insensitive dominant DD) can independently sustain discharge, but block of both mechanisms leads to quiescence. Abolition of dominant DD by blockers of I(K) is consistent with a decay of I(K) as the dominant pacemaking mechanism, I(Kr) being more important in rabbit and I(Ks) in guinea pig. Sinusoidal fluctuations appear to be an essential component of the pacemaking process.  相似文献   

15.
In the past decade, three mathematical models describing the pacemaker activity of the rabbit sinoatrial node have been developed: the Bristow-Clark model, the Irisawa-Noma model, and the Noble-Noble model. In a comparative study it is demonstrated that these models, as well as subsequent modifications, all have several drawbacks. A more accurate model, describing the pacemaker activity of a single pacemaker cell isolated from the rabbit sinoatrial node, was constructed. Model equations, including equations for the T-type calcium current, are based on experimental data from voltage clamp experiments on single cells that were published during the last few years. In contrast to the other models, only a small amount of background current contributes to the overall electrical charge flow. The action potential parameters of the model cell, its responses to voltage clamp steps and its current-voltage relationships have been computed. The model is used to discuss the relative contribution of membrane current components to the slow diastolic depolarization phase of the action potential.  相似文献   

16.
Genetically modified mice are popular experimental models for studying the molecular bases and mechanisms of cardiac arrhythmia. A postgenome challenge is to classify the functional roles of genes in cardiac function. To unveil the functional role of various genetic isoforms of ion channels in generating cardiac pacemaking action potentials (APs), a mathematical model for spontaneous APs of mouse sinoatrial node (SAN) cells was developed. The model takes into account the biophysical properties of membrane ionic currents and intracellular mechanisms contributing to spontaneous mouse SAN APs. The model was validated by its ability to reproduce the physiological exceptionally short APs and high pacing rates of mouse SAN cells. The functional roles of individual membrane currents were evaluated by blocking their coding channels. The roles of intracellular Ca(2+)-handling mechanisms on cardiac pacemaking were also investigated in the model. The robustness of model pacemaking behavior was evaluated by means of one- and two-parameter analyses in wide parameter value ranges. This model provides a predictive tool for cellular level outcomes of electrophysiological experiments. It forms the basis for future model development and further studies into complex pacemaking mechanisms as more quantitative experimental data become available.  相似文献   

17.
一种分离大鼠窦房结自律细胞的简单方法   总被引:1,自引:0,他引:1  
Zeng YM  Li C 《生理学报》1998,50(4):474-478
介绍一种用胶原酶分离和初步鉴定大鼠窦房结起搏细胞的方法。操作简单方便,用酶量少。分离的起搏细胞与原位窦房结起搏细胞具有相类似的动作电位特点:有明显舒张期自动去极化,最大舒张电位平均-55mV,动作电位幅度平均58mV,APD50平均18ms,APD90平均29ms。为进一步的电生理学和组织化学研究提供适当标本。  相似文献   

18.
Cardiac pacemaking in the sinoatrial (SA) node and atrioventricular (AV) node is generated by an interplay of many ionic currents, one of which is the funny pacemaker current (If). To understand the functional role of If in two different pacemakers, comparative studies of spontaneous activity and expression of the HCN channel in mouse SA node and AV node were performed. The intrinsic cycle length (CL) is 179±2.7 ms (n=5) in SA node and 258±18.7 ms (n=5) in AV node. Blocking of If current by 1 μmol/L ZD7288 increased the CL to 258±18.7 ms (n=5) and 447±92.4 ms (n=5) in SA node and AV node, respectively. However, the major HCN channel, HCN4 expressed at low level in the AV node compared to the SA node. To clarify the discrepancy between the functional importance of If and expression level of HCN4 channel, a SA node cell model was used. Increasing the If conductance resulted in decreasing in the CL in the model, which explains the high pacemaking rate and high expression of HCN channel in the SA node. Resistance to the blocking of If in the SA node might result from compensating effects from other currents (especially voltage sensitive currents) involved in pacemaking. The computer simulation shows that the difference in the intrinsic CL could explain the difference in response to If blocking in these two cardiac nodes.  相似文献   

19.
Methionine-enkephalin-arginine-phenylalanine (MEAP) introduced into the interstitium of the canine sinoatrial (SA) node by microdialysis interrupts vagal bradycardia. In contrast, raising endogenous MEAP by occluding the SA node artery improves vagal bradycardia. Both are blocked by the same delta-selective antagonist, naltrindole. We tested the hypothesis that vagal responses to intranodal enkephalin are bimodal and that the polarity of the response is both dose- and opioid receptor subtype dependent. Ultralow doses of MEAP were introduced into the canine SA node by microdialysis. Heart rate frequency responses were constructed by stimulating the right vagus nerve at 1, 2, and 3 Hz. Ultralow MEAP infusions produced a 50-100% increase in bradycardia during vagal stimulation. Maximal improvement was observed at a dose rate of 500 fmol/min with an ED50 near 50 fmol/min. Vagal improvement was returned to control when MEAP was combined with the delta-antagonist naltrindole. The dose of naltrindole (500 fmol/min) was previously determined as ineffective vs. the vagolytic effect of higher dose MEAP. When MEAP was later reintroduced in the same animals at nanomoles per minute, a clear vagolytic response was observed. The delta1-selective antagonist 7-benzylidenenaltrexone (BNTX) reversed the vagal improvement with an ED50 near 1 x 10-21 mol/min, whereas the delta2-antagonist naltriben had no effect through 10-9 mol/min. Finally, the improved vagal bradycardia previously associated with nodal artery occlusion and endogenous MEAP was blocked by the selective delta1-antagonist BNTX. These data support the hypothesis that opioid effects within the SA node are bimodal in character, that low doses are vagotonic, acting on delta1-receptors, and that higher doses are vagolytic, acting on delta2-receptors.  相似文献   

20.
Smoothened is a key receptor of the hedgehog pathway, but the roles of Smoothened in cardiac development remain incompletely understood. In this study, we found that the conditional knockout of Smoothened from the mesoderm impaired the development of the venous pole of the heart and resulted in hypoplasia of the atrium/inflow tract (IFT) and a low heart rate. The blockage of Smoothened led to reduced expression of genes critical for sinoatrial node (SAN) development in the IFT. In a cardiac cell culture model, we identified a Gli2–Tbx5–Hcn4 pathway that controls SAN development. In the mutant embryos, the endocardial-to-mesenchymal transition (EndMT) in the atrioventricular cushion failed, and Bmp signalling was downregulated. The addition of Bmp2 rescued the EndMT in mutant explant cultures. Furthermore, we analysed Gli2+ scRNAseq and Tbx5−/− RNAseq data and explored the potential genes downstream of hedgehog signalling in posterior second heart field derivatives. In conclusion, our study reveals that Smoothened-mediated hedgehog signalling controls posterior cardiac progenitor commitment, which suggests that the mutation of Smoothened might be involved in the aetiology of congenital heart diseases related to the cardiac conduction system and heart valves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号