首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A differentiation-arrested primary cell culture model was used to examine the role of reactive oxygen species in the control of prostacyclin (PGI2) production in the perinatal rat lung. Coincubation of the lung cells with arachidonic acid (AA) and xanthine (X, 0.25 mM) plus xanthine oxidase (XO, 10 mU/ml) or with AA and glucose (25 mM) plus glucose oxidase (25 mU/ml) augmented the AA-induced PGI2 output. Superoxide dismutase (10 U/ml) did not alter the X + XO effect, whereas catalase (10 U/ml) eliminated both X + XO and glucose plus glucose oxidase effects. H2O2 (1-200 microM) showed a dose-related biphasic augmentation with peak stimulation at 20 microM. Catalase again blocked this effect, but dimethylthiourea, a hydroxyl radical scavenger, did not. A 20-min pretreatment of the cells with X + XO, glucose plus glucose oxidase, or H2O2, however, diminished the capacity of the cells to convert exogenous AA to PGI2. This pretreatment effect was also blocked by catalase. The responses were similar in lung cells obtained from day 20 rat fetuses (term = 22 days) and 1-day-old newborn rats. Lactate dehydrogenase release was not detected during treatment periods but increased significantly after exposure to reactive oxygen species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Quantification of intracellular and extracellular levels and production rates of reactive oxygen species is crucial to understanding their contribution to tissue pathophysiology. We measured basal rates of oxidant production and the activity of xanthine oxidase, proposed to be a key source of O2- and H2O2, in endothelial cells. Then we examined the influence of tumor necrosis factor-alpha and lipopolysaccharide on endothelial cell oxidant metabolism, in response to the proposal that these inflammatory mediators initiate vascular injury in part by stimulating endothelial xanthine oxidase-mediated production of O2- and H2O2. We determined a basal intracellular H2O2 concentration of 32.8 +/- 10.7 pM in cultured bovine aortic endothelial cells by kinetic analysis of aminotriazole-mediated inactivation of endogenous catalase. Catalase activity was 5.72 +/- 1.61 U/mg cell protein and glutathione peroxidase activity was much lower, 8.13 +/- 3.79 mU/mg protein. Only 0.48 +/- 0.18% of total glucose metabolism occurred via the pentose phosphate pathway. The rate of extracellular H2O2 release was 75 +/- 12 pmol.min-1.mg cell protein-1. Intracellular xanthine dehydrogenase/oxidase activity determined by pterin oxidation was 2.32 +/- 0.75 microU/mg with 47.1 +/- 11.7% in the oxidase form. Intracellular purine levels of 1.19 +/- 1.04 nmol hypoxanthine/mg protein, 0.13 +/- 0.17 nmol xanthine/mg protein, and undetectable uric acid were consistent with a low activity of xanthine dehydrogenase/oxidase. Exposure of endothelial cells to 1000 U/ml tumor necrosis factor (TNF) or 1 microgram/ml lipopolysaccharide (LPS) for 1-12 h did not alter basal endothelial cell oxidant production or xanthine dehydrogenase/oxidase activity. These results do not support a casual role for H2O2 in the direct endothelial toxicity of TNF and LPS.  相似文献   

3.
Clinical and experimental data indicate that activated oxygen species interfere with vascular endothelial cell function. Here, the impact of extracellular oxidant injury on the fibrinolytic response of cultured human umbilical vein endothelial (HUVE) cells was investigated at the protein and mRNA levels. Xanthine (50 microM) and xanthine oxidase (100 milliunits), which produces the superoxide anion radical (O2-) and hydrogen peroxide (H2O2), was used to sublethally injure HUVE cells. Following a 15-min exposure, washed cells were incubated for up to 24 h in serum-free culture medium. Tissue-type plasminogen activator (t-PA) antigen, plasminogen activator inhibitor-1 (PAI-1) antigen, and PAI-1 activity were determined in 1.25 ml of conditioned medium and t-PA and PAI-1 mRNA in the cell extracts of 2 x 10(6) HUVE cells. Control cells secreted 3.9 +/- 1.3 ng/ml (mean +/- S.D., n = 12) within 24 h. Treatment with xanthine/xanthine oxidase for 15 min induced a 2.8 +/- 0.4-fold increase (n = 12, p less than 0.05) of t-PA antigen secretion after 24 h. The t-PA antigen was recovered predominantly in complex with PAI-1. The oxidant injury caused a 3.0 +/- 0.8-fold increase (n = 9, p less than 0.05) in t-PA mRNA within 2 h. Total protein synthesis was unaltered by xanthine/xanthine oxidase. The oxidant scavengers superoxide dismutase and catalase, in combination, abolished the effect of xanthine/xanthine oxidase on t-PA secretion and t-PA mRNA synthesis. Xanthine/xanthine oxidase treatment of HUVE cells did not affect the PAI-1 secretion in conditioned medium nor the PAI-1 mRNA levels in cell extracts. Thus extracellular oxidant injury induces t-PA but not PAI-1 synthesis in HUVE cells.  相似文献   

4.
Summary Culture conditions modulating cell damage from xanthine plus xanthine oxidase-derived partially reduced oxygen species were studied. Porcine thoracic aorta endothelial cells and porcine lung fibroblasts were maintained in monolayer culture. Cells were prelabeled with51Cr before xanthine plus xanthine oxidase exposure. Endothelial cells showed 30 to 100% more lysis than fibroblasts and thus seemed more sensitive to this oxidant stress. The effect of cell culture age, as indicated by population doubling level (PDL), was examined. Response of low PDL endothelial cells and fibroblasts subjected to oxidant stress was compared with the response of PDL 15 cells. Both low PDL endothelial cells and fibroblasts responded differently to the lytic effect of xanthine oxidase-derived free radicals than did higher PDL cells. Specific activities of the antioxidant enzymes catalase, managanese superoxide dismutase, copper-zinc superoxide dismutase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase were measured in both low and high PDL fibroblasts and endothelial cells. Antioxidant enzyme specific activities could only partially explain the differences in response to oxidant stress between fibroblasts and endothelial cells and between low and high PDL cells. Cell culture medium composition modulated the rate of production, and relative proportions of xanthine plus xanthine oxidase-derived partially reduced species of oxygen, i.e. superoxide, hydrogen peroxide, and hydroxyl radical. Serum content of medium was important in modulating free radical generation; superoxide production rates decreased 32%, H2O2 became undetectable, and hydroxyl radical generation decreased 54% in the presence of 10% serum. The medium protein and iron content also modulated free radical generation. The data suggest that cell culture media constituents, cell type, and cell culture age greatly affect in vitro response of cells subjected to oxidant stress. Research supported by American Lung Association Fellowship Training Grant and Research Training Grant, the R. J. Reynolds Corporation, and National Institutes of Health Grants HL29784 and 1 HL 23805.  相似文献   

5.
Human platelets attenuate oxidant injury in isolated rabbit lungs   总被引:2,自引:0,他引:2  
Because platelets contain active antioxidant systems, the capacity of platelets to attenuate oxidant lung injury was investigated. Purine and xanthine oxidase were infused into isolated perfused rabbit lungs (IPL) to generate H2O2, thereby causing increased membrane permeability edema. The coinfusion of washed human platelets (1.20 +/- 0.07 x 10(10) cells) attenuated the degree of edema formation as measured by lung weight gain and lung lavage albumin concentration. Electron microscopy of lung preparations demonstrated platelet adherence to capillary endothelial luminal surfaces of oxidant-injured lungs, but there was no evidence of vascular plugging with platelet macroaggregates. The platelet glutathione redox cycle or platelet catalase were inhibited before infusion of platelets into the IPL with purine and xanthine oxidase. Inhibition of the glutathione redox cycle with 1,3-bis(2-chloroethyl)-1-nitrosourea, 1-chloro-2,4-dinitrobenzene, or buthionine sulfoximine prevented platelet attenuation of lung injury. Inactivation of platelet catalase with 3-amino-1,2,4-triazole, however, did not significantly reduce the platelet-induced lung protection. We conclude that the platelet glutathione redox cycle plays a major role in reducing enzymatically generated toxic O2 metabolites and attenuating lung injury.  相似文献   

6.
Primary cultures of porcine aortic endothelial cells were used to assess the effects of O2 intermediates produced by 10-40 mU/ml xanthine oxidase (XO; +2 mM hypoxanthine) or 25-100 mU/ml glucose oxidase (GO; +5 mM glucose). A 60-min incubation in the presence of the enzyme systems resulted in a dose-dependent toxic effect with evidence of cytolysis (increased LDH release) and cell loss (decrease in DNA and protein content), when these indexes were measured 24 hr after completion of the enzyme reaction. Decreased [3H]thymidine incorporation into DNA was the most sensitive index of cell dysfunction for both enzyme systems. The effects of various scavengers and enzymes indicated that H2O2 was the main O2 intermediate involved in the cytotoxicity resulting from the XO-hypoxanthine reaction. Increased glutathione peroxidase activity associated with the addition of 2 X 10(-7) M selenomethionine to culture medium had a partial protective effect which could be related to an increased rate of H2O2 degradation. Evidence for increased DNA synthesis after injury was found in cells previously exposed to XO-hypoxanthine, the degree of increase in [3H]thymidine incorporation being dependent on the intensity of the initial cytotoxicity. Cultured endothelial cells provide a useful tool to evaluate the role of O2 intermediates in endothelial cell injury, to test the effects of protective agents, and to study the repair process.  相似文献   

7.
The massive leakage of intracellular enzymes which occurs during reoxygenation of heart tissue after hypoxic or ischemic episodes has been suggested to result from the formation of oxygen radicals. One purported source of such radicals is the xanthine oxidase-mediated metabolism of hypoxanthine and xanthine. Xanthine oxidase (O form) has been suggested to be formed in vivo by limited proteolysis of xanthine dehydrogenase (D form) during the hypoxic period (Granger el ai. Gastroenterology 81, 22 (1981)). We measured the activities of xanthine oxidase in both fresh and isolated-perfused (Langendorff) rat heart tissue. Approximately 32% of the total xanthine oxidase was in the O form in fresh and isolated-perfused rat heart. This value was unchanged following 60min of hypoxia and 30 minutes of reoxygenation. The infusion of 250/JM allopurinol throughout the perfusion completely inhibited xanthine oxidase activity but had no effect on the massive release of lactate dehydrogenase (LDH) into the coronary effluent upon reoxygenation of heart tissue subjected to 30 or 60min of hypoxia. Protection from 30min of hypoxia was also not obtained when rats were pretreated for 48 h with allopurinol at a dose of 30mg/kg/day and perfused with allopurinol containing medium. Superoxide dismutase (50 units/ml), catalase (200 units/ml), or the antioxidant cyanidanol (100μM) also had no effect on LDH release upon reoxygenation after 60 min of hypoxia. Xanthine oxidase activity was detected in a preparation enriched in cardiac endothelial cells while no allupurinol-inhibitable activity could be measured in purified isolated cardiomyocytes. It is concluded that xanthine dehydrogenase is not converted to xanthine oxidase in hypoxic tissue of the isolated perfused rat heart, and that the release of intracellular enzymes upon reoxygenation in this experimental model is mediated by factors other than reactive oxygen generated by xanthine oxidase.  相似文献   

8.
Although in vitro studies have shown that oxygen free radicals depress the sarcolemmal Ca2+-pump activity and thereby may cause the occurrence of intracellular Ca2+ overload for the genesis of contractile failure, the exact relationship between changes in sarcolemmal Ca2+-pump activity and cardiac function due to these radicals is not clear. In this study we examined the effects of oxygen radicals on sarcolemmal Ca2+ uptake and Ca2+-stimulated ATPase activities as well as contractile force development by employing isolated rat heart preparations. When hearts were perfused with medium containing xanthine plus xanthine oxidase, the sarcolemmal Ca2+-stimulated ATPase activity and ATP-dependent Ca2+ accumulation were depressed within 1 min whereas the developed contractile force, rate of contraction and rate of relaxation were increased at 1 min and decreased over 3–20 min of perfusion. The resting tension started increasing at 2 min of perfusion with xanthine plus xanthine oxidase. Catalase showed protective effects against these alterations in heart function and sarcolemmal Ca2+-pump activities upon perfusion with xanthine plus xanthine oxidase whereas superoxide dismutase did not exert such effects. The combination of catalase and superoxide dismutase did not produce greater effects in comparison to catalase alone. These results are consistent with the view that the depression of heart sarcolemmal Ca2+ pump activities may result in myocardial dysfunction due to the formation of hydrogen peroxide and/or hydroxyl radicals upon perfusing the hearts with xanthine plus xanthine oxidase.  相似文献   

9.
1. The survival of mammalian epithelial cells exposed in vitro to the xanthine/xanthine oxidase system in phosphate-buffered saline (PBS) or serum-containing medium (SCMEM) was investigated. 2. The cytotoxic effect observed depended on the composition of the medium in which the enzymic reaction was carried out; a surviving fraction of 5 x 10(-5) was found for cells exposed in PBS and 5.2 x 10(-1) for those in SCMEM. 3. The cytotoxic product(s) formed by the xanthine/xanthine oxidase system was relatively stable in PBS; survival of cells incubated after completion of the enzymic reaction was always less than that found for cells exposed during the reaction in the same system. 4. Superoxide dismutase or mannitol present during the enzymic reaction did not inhibit the cytotoxic effect. 5. NaN3 (a single-oxygen quencher and a catalase inhibitor) added to the system in SCMEM caused a reduction in survival to the level observed for cells exposed to the enzymic reaction in PBS. 6. Catalase completely protected cells, but no protection was observed when both catalase and NaN3 were present in the reaction mixture. 7. A similar cytotoxic effect was produced when cells were treated with H2O2 alone. 8. The rate of H2O2 decomposition in medium was accelerated by the presence of serum, but this was completely inhibited by NaN3. 9. It is concluded that H2O2 is the major cytotoxic product formed by the xanthine/xanthine oxidase system.  相似文献   

10.
Mechanisms of the killing of cultured hepatocytes by hydrogen peroxide   总被引:9,自引:0,他引:9  
Mechanisms of H2O2-induced cell injury were explored in primary cultures of rat hepatocytes. Cells prepared from male rats and cultured for 1 day prior to treatment were killed by H2O2 either added directly to the medium at 0.25-2 mM or generated in situ by glucose oxidase (0.25-2 U/ml) or xanthine oxidase (20-120 mM/ml) and 2 mM xanthine. Catalase protected the cells in each case. Lipid peroxidation as measured by the accumulation of malondialdehyde (MDA) preceded the cell death due to H2O2 added directly to the cultures or generated in the medium. The antioxidants N,N'-diphenyl-p-phenylenediamine (DPPD) and promethazine prevented the accumulation of MDA in both cases and protected the cells treated with H2O2 directly. DPPD and promethazine did not react directly with H2O2. Other antioxidants including butylated hydroxytoluene, vitamin E, and N-propylgallate had varied protective activity against the addition of H2O2 in proportion to their ability to reduce MDA accumulation. In glucose oxidase-treated cultures, DPPD and promethazine prevented the cell killing during the first hour but failed to protect between 1 and 3 h despite prevention of lipid peroxidation. The cell killing between 1 and 3 h in the presence of DPPD was prevented by catalase indicating its dependence upon continued generation of H2O2. Further addition of H2O2 in the presence of DPPD also increased the number of dead cells without lipid peroxidation. The data are consistent with at least two mechanisms of hepatocyte killing by H2O2. The first pathway is prevented by the antioxidants DPPD and promethazine and is very likely related to the peroxidation of membrane phospholipids. The second is independent of lipid peroxidation yet dependent upon the continued presence of H2O2.  相似文献   

11.
《Free radical research》2013,47(1-5):69-78
The massive leakage of intracellular enzymes which occurs during reoxygenation of heart tissue after hypoxic or ischemic episodes has been suggested to result from the formation of oxygen radicals. One purported source of such radicals is the xanthine oxidase-mediated metabolism of hypoxanthine and xanthine. Xanthine oxidase (O form) has been suggested to be formed in vivo by limited proteolysis of xanthine dehydrogenase (D form) during the hypoxic period (Granger el ai. Gastroenterology 81, 22 (1981)). We measured the activities of xanthine oxidase in both fresh and isolated-perfused (Langendorff) rat heart tissue. Approximately 32% of the total xanthine oxidase was in the O form in fresh and isolated-perfused rat heart. This value was unchanged following 60min of hypoxia and 30 minutes of reoxygenation. The infusion of 250/JM allopurinol throughout the perfusion completely inhibited xanthine oxidase activity but had no effect on the massive release of lactate dehydrogenase (LDH) into the coronary effluent upon reoxygenation of heart tissue subjected to 30 or 60min of hypoxia. Protection from 30min of hypoxia was also not obtained when rats were pretreated for 48 h with allopurinol at a dose of 30mg/kg/day and perfused with allopurinol containing medium. Superoxide dismutase (50 units/ml), catalase (200 units/ml), or the antioxidant cyanidanol (100μM) also had no effect on LDH release upon reoxygenation after 60 min of hypoxia. Xanthine oxidase activity was detected in a preparation enriched in cardiac endothelial cells while no allupurinol-inhibitable activity could be measured in purified isolated cardiomyocytes. It is concluded that xanthine dehydrogenase is not converted to xanthine oxidase in hypoxic tissue of the isolated perfused rat heart, and that the release of intracellular enzymes upon reoxygenation in this experimental model is mediated by factors other than reactive oxygen generated by xanthine oxidase.  相似文献   

12.
Neutrophils and other phagocytes can injure cells by means of oxygen-dependent mechanisms, particularly the myeloperoxidase (MPO)-H2O2-halide system. The extent of such damage depends in part on the antioxidant defenses of the target cell. To facilitate the study of this phenomenon, we developed a model system in which we employed liposomes as targets for the myeloperoxidase system. The most useful species of liposomes employed 51Cr as the aqueous space marker and phosphatidyl choline with or without dicetyl phosphate and cholesterol as the structural lipid. Marker entrapment was established on the basis of 1) resolution of free from lipid-associated 51Cr by gel exclusion chromatography, 2) latency of 51Cr on rechromatography of detergent-treated liposomes, and 3) a correlation between entrapment and surface charge density. Exposure of liposomes to the complete MPO system resulted in release of 50 to 75% of the entrapped 51Cr. Release was abrogated by omission of myeloperoxidase or H2O2, heating of MPO, or addition of azide, cyanide, or catalase. Reagent H2O2 could be replaced by glucose plus glucose oxidase. Kinetic studies indicated a rapid process, lysis reaching half-maximal levels in less than 2 min. The addition of cyanide at various times interrupted lysis at once, indicating a requirement for ongoing myeloperoxidase-dependent reactions. Liposome disruption by the MPO system was pH dependent, increasing dramatically as pH was decreased from neutrality to 6.0. In the absence of halides, no lysis was observed. Maximum lysis was found with chloride at 10 to 100 mM, although at 1 mM concentrations, iodide, bromide, and thiocyanate were more active than chloride. Fluoride was inactive. Antagonism between halide species was demonstrated in that low concentrations of iodide or bromide inhibited the effect of optimal concentrations of chloride. Using 125I, we found that exposure of liposomes to the MPO system resulted in an association between iodide and liposomes; moreover, there was a close correspondence between this phenomenon and 51Cr release, suggesting that halogenation may be one mechanism of injury. These studies establish the usefulness of the liposome as a model of oxidant injury by a physiologically relevant system. They bear a striking parallel to work being done on MPO-mediated injury to eukaryotic and prokaryotic cells. By using this simplified model system, it should be possible to explore a number of determinants of target cell injury at a biochemical and molecular level.  相似文献   

13.
We have investigated the effect of oxidants on ligand recognition and internalization by the macrophage mannose receptor. Rat bone marrow macrophages were treated with increasing concentrations of H2O2 for 30 min at 37 degrees C. Fifty percent inhibition of ligand uptake was observed at 250 microM, with only 10% of control uptake remaining following exposure to 1 mM H2O2 for 30 min. Electron micrographic analysis of macrophages following H2O2 treatment showed no morphological alterations compared to untreated cells. Ligand uptake was also inhibited by the following H2O2 generating systems: menadione, xanthine/xanthine oxidase, glucose/glucose oxidase, and phorbol 12-myristate 13-acetate-stimulated polymorphonuclear leukocytes. Inhibition could be blocked by catalase plus or minus superoxide dismutase. Treatment of macrophages at 4 degrees C with H2O2 had no effect on ligand binding, whereas treatment with H2O2 at 37 degrees C reduced binding to 15% of control levels and decreased the number of surface receptors to one-third of control cells. H2O2 treatment inhibited ligand degradation by macrophages, but did not prevent ligand movement from the surface to the interior of the cell. In addition, ligand delivery to lysosomes was blocked by oxidant treatment. These results suggest that treatment of macrophages with reagent H2O2 or H2O2-generating systems inhibits the normal ligand delivery and receptor recycling process involving the mannose receptor. Potential mechanisms might include receptor oxidation, alterations in ATP levels, or membrane lipid peroxidation.  相似文献   

14.
The generation of oxidants in reperfused ischemic tissues by xanthine oxidase (XO) may contribute to tissue damage. We exposed bovine pulmonary microvascular endothelial (BPMVE) cells to hypoxia and subsequent reoxygenation and examined alterations in intracellular and extracellular XO activities. BPMVE cells incubated 24 h under hypoxic conditions (less than 1% O2) showed a twofold increase in intracellular xanthine dehydrogenase activity and a smaller increase in intracellular XO activity compared to normoxic BPMVE. Both normoxic and hypoxic BPMVE cells constitutively released XO activity into their culture media. Incubation of hypoxic or normoxic BPMVE cells with oxygenated medium (95% O2) stimulated the release of XO activity into the extracellular medium within 5 min. The XO activity could not be detected in the oxygenated medium after 60 min incubation with 95% O2. These results indicate that endothelial cells in culture constitutively release XO and that oxygenation rapidly enhances XO release. The released XO activity may play an important role in generation of oxidants in the extracellular milieu during reperfusion.  相似文献   

15.
Endotoxin injures bovine pulmonary endothelial cells in culture but the cytotoxicity is unaffected by a host of antiinflammatory drugs. We hypothesized that agents which could decrease intracellular concentrations of toxic metabolites of O2 would prevent endotoxin effects on cultured pulmonary artery endothelial cells. We measured endotoxin-induced release of lactate dehydrogenase (LDH) from and production of prostanoids by cultured bovine pulmonary endothelial cells in the presence and absence of dimethyl sulfoxide (DMSO) and the xanthine oxidase inhibitor allopurinol. Escherichia coli endotoxin (0.001-10 micrograms/ml) caused a dose-related release of LDH and stimulated production of both prostacyclin [measured as 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha)] and prostaglandin E2 (PGE2). Both DMSO and allopurinol decreased endotoxin-induced LDH release; this effect was related to concentration of the drugs (0-2% for DMSO and 0-0.3 mg/ml for allopurinol). Both drugs also prevented endotoxin-induced changes in endothelial morphology. Endotoxin increased intracellular reduction of the redox dye nitro blue tetrazolium, caused intracellular oxidation of 2',7'-dichlorofluorescein diacetate and caused release of conjugated dienes from endothelial cells; both DMSO and allopurinol inhibited those responses. DMSO, but not allopurinol, prevented endotoxin-induced production of prostacyclin and PGE2 by endothelium. Direct injury of pulmonary endothelium by endotoxin is inhibited by two chemically dissimilar drugs which have a common potential for decreasing intracellular concentrations of toxic metabolites of O2; indirect evidence suggests that potential as a mechanism for the protective effects of the drugs.  相似文献   

16.
Differential regulation of antioxidant enzymes in response to oxidants.   总被引:10,自引:0,他引:10  
We have demonstrated the selective induction of manganese superoxide dismutase (MnSOD) or catalase mRNA after exposure of tracheobronchial epithelial cells in vitro to different oxidant stresses. Addition of H2O2 caused a dose-dependent increase in catalase mRNA in both exponentially growing and confluent cells. A 3-fold induction of catalase mRNA was seen at a nontoxic dose of 250 microM H2O2. Increase in the steady-state mRNA levels of glutathione peroxidase (GPX) and MnSOD were less striking. Expression of catalase, MnSOD, and GPX mRNA was highest in confluent cells. In contrast, constitutive expression of copper and zinc SOD (CuZnSOD) mRNA was greatest in dividing cells and was unaffected by H2O2 in both exponentially growing and confluent cells. MnSOD mRNA was selectively induced in confluent epithelial cells exposed to the reactive oxygen species-generating system, xanthine/xanthine oxidase, while steady-state levels of GPX, catalase, and CuZnSOD mRNA remained unchanged. The 3-fold induction of MnSOD mRNA was dose-dependent, reaching a peak at 0.2 unit/ml xanthine oxidase. MnSOD mRNA increases were seen as early as 2 h and reached maximal induction at 24 h. Immunoreactive MnSOD protein was produced in a corresponding dose- and time-dependent manner. Induction of MnSOD gene expression was prevented by addition of actinomycin D and cycloheximide. These data indicate that epithelial cells of the respiratory tract respond to different oxidant insults by selective induction of certain antioxidant enzymes. Hence, gene expression of antioxidant enzymes does not appear to be coordinately regulated in these cell types.  相似文献   

17.
Effect of heme on Bacteroides distasonis catalase and aerotolerance   总被引:4,自引:1,他引:3       下载免费PDF全文
Parallel increases in intracellular catalase activity and resistance to extracellular H2O2 and to hyperbaric O2 toxicity were observed when Bacteroides distasonis VPI 4243 (ATCC 8503, type strain) was grown in either complex or defined medium containing graded amounts of hemin. Virtually all of the cells with high catalase activity (greater than 200 U/mg) remained viable upon exposure at 37 degrees C to 100-lb/in2 O2 on agar surfaces for 1 h, whereas low-catalase cells (less than 10 U/mg) lost 1.2 log units of viable cells during that treatment. Upon exposure to 500 microM H2O2, high-catalase cells lost 0.4 log units of the initial viable colonies during the same period in which low-catalase cells lost 3 log units of viable cells. The superoxide dismutase activity was the same in each test culture. These data support the role of intracellular catalase in protecting B. distasonis from oxidative damage resulting from hyperbaric oxygenation or H2O2 exposure. Catalase activity elicited by adding hemin to cells grown previously in medium lacking hemin was inhibited only 40% by prior incubation of the cells with chloramphenicol (30 micrograms/ml) and only 22% with rifampin (5 micrograms/ml). A model which is consistent with these data involves the production of an apocatalase in cells grown in low-hemin medium. Addition of hemin to the cells would result in a rapid chloramphenicolor rifampin-insensitive stimulation of catalase activity followed by further de novo biosynthesis of catalase.  相似文献   

18.
Biochemical factors in pulmonary inflammatory disease   总被引:3,自引:0,他引:3  
Various biochemical events taking place during pulmonary inflammation were examined in the bronchoalveolar lavage (BAL) fluids from patients with acute respiratory distress syndrome (ARDS) and in experimental animal models. In patients with ARDS, active neutrophil elastase was found in the BAL fluids. In these fluids, inactivation of the major elastase inhibitor alpha 1-protease inhibitor (alpha 1-PI) occurred. This was caused by oxidation of a methionine residue at the active site of the alpha 1-PI, and offered indirect evidence of oxidation occurring in the inflamed pulmonary tissues. Studies with experimental animals have been initiated to gain understanding of the relative roles of proteases, oxidants, arachidonate metabolites, complement and contact system components, and other mediators in the pathogenesis of pulmonary inflammation. Intrabronchial instillation of glucose oxidase/glucose to produce oxidants or formylated norleucylleucylphenylalanine or phorbol myristate acetate as leukocytic stimuli induced severe acute pulmonary injury in New Zealand white rabbits and rhesus monkeys. The injury was accompanied by leukocytic protease (acid cathepsins) release in rabbit lungs and oxidant formation, and could be inhibited by neutrophil depletion. Oxidant formation was demonstrated by the inactivation of catalase by 3-amino-1,2,4-triazole in the presence of H2O2, a drop in intracellular glutathione levels, and in the rhesus monkey by inactivation of alpha 1-PI.  相似文献   

19.
We aimed to determine the status of iron in mediating oxidant-induced damage to cultured bovine aortic endothelial cells. Chromium-51-labeled cells were exposed to reaction mixtures of xanthine oxidase/hypoxanthine and glucose oxidase/glucose; these produce superoxide and hydrogen peroxide, or hydrogen peroxide, respectively. Xanthine oxidase caused a dose dependent increase of 51Cr release. Damage was prevented by allopurinol, oxypurinol, and extracellular catalase, but not by superoxide dismutase. Prevention of xanthine oxidase-in-duced damage by catalase was blocked by an inhibitor of catalase, aminotriazole. Glucose oxidase also caused a dose-dependent increase of 51Ci release. Glucose oxidase-induced injury, which was catalase-inhibitable, was not prevented by extracellular superoxide dismutase. Both addition of and pretreatment with deferoxamine (a chelator of Fe3+) prevented glucose oxidase-induced injury. The presence of phenanthroline (a chelator of divalent Fe2+) prevented glucose oxidase-induced 51Cr release, whereas pretreatment with the agent did not. Apotransferrin (a membrane impermeable iron binding protein) failed to influence damage. Neither deferoxamine nor phenanthroline influenced cellular antioxidant defenses, or inhibited lysis by non-oxidant toxic agents. Treatment with allopurinol and oxypurinol, which inhibited cellular xanthine oxidase, failed to prevent glucose oxidase injury. We conclude that (1) among the oxygen species extracellularly generated by xanthine oxidase/hypoxanthine, hydrogen peroxide induces damage via a reaction on cellular iron; (2) deferoxamine and phenanthroline protect cells by chelating Fe3+ and Fe2+, respectively; and (3) reduction of cellular stored iron (Fe3+) to Fe2+ may be a prerequisite for mediation of oxidantinduced injury, but this occurs independently of extracellular superoxide or cellular xanthine oxidase-derived superoxide. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    20.
    In a variety of disorders, endothelial cells are exposed to high levels of oxidants, generated within the cells and/or consequent to local inflammation. In the context of the sensitivity of endothelial cells to oxidant stress, particularly related to H2O2, we have designed a replication deficient recombinant adenovirus containing the human catalase cDNA (AdCL) to transfer the catalase cDNA to the endothelial cells, in order to augment intracellular anti-H2O2 protection. Human umbilical vein endothelial cells that were not infected or infected with control adenovirus maintained low levels of catalase mRNA. Endothelial cells infected with AdCL expressed AdCL-driven exogenous catalase mRNA, as early as 24 hr and at least for 7 days. Catalase protein levels were increased significantly over controls in cells infected with AdCL, as were catalase activity levels, with catalase activity correlated closely with levels of catalase protein. Importantly, when the endothelial cells were exposed to 500 microM H2O2, all the AdCL infected endothelial cells survived, compared to only 37% of the control cells. Thus, a recombinant adenovirus containing the human catalase cDNA is able to infect human endothelial cells in vitro and express high levels of functional intracellular catalase, protecting the cells against H2O2-mediated oxidant stress. These observations support the feasibility of the transfer of catalase cDNA to human endothelium to protect against oxidant injury.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号