首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
The sex chromosome pairs of many species do not undergo genetic recombination, unlike the autosomes. It has been proposed that the suppressed recombination results from natural selection favouring close linkage between sex-determining genes and mutations on this chromosome with advantages in one sex, but disadvantages in the other (these are called sexually antagonistic mutations). No example of such selection leading to suppressed recombination has been described, but populations of the guppy display sexually antagonistic mutations (affecting male coloration), and would be expected to evolve suppressed recombination. In extant close relatives of the guppy, the Y chromosomes have suppressed recombination, and have lost all the genes present on the X (this is called genetic degeneration). However, the guppy Y occasionally recombines with its X, despite carrying sexually antagonistic mutations. We describe evidence that a new Y evolved recently in the guppy, from an X chromosome like that in these relatives, replacing the old, degenerated Y, and explaining why the guppy pair still recombine. The male coloration factors probably arose after the new Y evolved, and have already evolved expression that is confined to males, a different way to avoid the conflict between the sexes.  相似文献   

3.
Human Y chromosome is used as a tool in male infertility and population genetic studies. The aims of this research were to analyse the prevalence of Y chromosome microdeletions among infertile Latvian men, and to identify possible lineages of Y chromosome that may be at increased risk of developing infertility. A study encompassed 105 infertile men with different spermatogenic disturbances. Deletions on Y chromosome were detected in 5 out of 105 (∼5%) cases analysed in this study. Three of them carried deletion in AZFc region and two individuals had AZFa+b+c deletion. Study of Y chromosome haplogroups showed that N3a1 and R1a1 lineages were found less frequently in the infertile male group compared to ethnic Latvian group, however K* cluster was predominantly found in infertile male Y chromosomes. Conclusions: (1) Our study advocates running Y chromosome microdeletion analyses only in cases of severe form of infertility; (2) Ychromosome haplogroup analysis showed statistically significant tendencies that some haplogroups are more common in ethnic male group, but others are more common in infertile males.  相似文献   

4.
Is ZFY the sex-determining gene on the human Y chromosome?   总被引:3,自引:0,他引:3  
The sex-determining region of the human Y chromosome contains a gene, ZFY, that encodes a zinc-finger protein. ZFY may prove to be the testis-determining factor. There is a closely related gene, ZFX, on the human X chromosome. In most species of placental mammals, we detect two ZFY-related loci: one on the Y chromosome and one on the X chromosome. However, there are four ZFY-homologous loci in mouse: Zfy-1 and Zfy-2 map to the sex-determining region of the mouse Y chromosome, Zfx is on the mouse X chromosome, and a fourth locus is autosomal.  相似文献   

5.
Recent findings of low sequence variability of Y chromosome genes has led to suggestions that the most recent ancestor of human Y chromosomes existed around 50,000 years ago and human population size expanded about 28,000 years ago. But what level of confidence can we have in these estimates?  相似文献   

6.
The Y chromosome evolves from an autochromosome and accumulates male-related genes including sex-determining region of Y-chromosome (SRY) and several spermatogenesis-related genes.The human Y chromosome (60 Mb long) is largely composed of repeti-tive sequences that give it a heterochromatic appearance,and it consists of pseudoautosomal,euchromatic,and heterochromatic regions.Located on the two extremities of the Y chromosome,pseudoautosomal regions 1 and 2 (PAR1 and PAR2,2.6 Mb and 320 bp long,re-spectively) are homologs with the termini of the X chromosome.The euchromatic region and some of the repeat-rich heterochromatic parts of the Y chromosome are called "male-specific Y" (MSY),which occupy more than 95% of the whole Y chromosome.After evolu-tion,the Y chromosome becomes the smallest in size with the least number of genes but with the most number of copies of genes that are mostly spermatogenesis-related.The Y chromosome is characterized by highly repetitive sequences (including direct repeats,inverted repeats,and palindromes) and high polymorphism.Several gene rearrangements on the Y chromosome occur during evolution owing to its specific gene structure.The consequences of such rearrangements are not only loss but also gain of specific genes.One hundred and fifty three haplotypes have been discovered in the human Y chromosome.The structure of the Y chromosome in the GenBank belongs to haplotype R1.There are 220 genes (104 coding genes,111 pseudogenes,and 5 other uncategorized genes) according to the most recent count.The 104 coding genes encode a total of about 48 proteins/protein families (including putative proteins/protein families).Among them,16 gene products have been discovered in the azoospermia factor region (AZF) and are related to spermatogenesis.It has been dis-covered that one subset of gene rearrangements on the Y chromosome,"micro-deletions",is a major cause of male infertility in some populations.However,controversies exist about different Y chromosome haplotypes.Six AZFs of the Y chromosome have been discov-ered including AZFa,AZFb,AZFc,and their combinations AZFbc,AZFabc,and partial AZFc called AZFc/gr/gr.Different deletions in AZF lead to different content spermatogenesis loss from teratozoospermia to infertility in different populations depending on their Y hap-lotypes.This article describes the structure of the human Y chromosome and investigates the causes of micro-deletions and their relation-ship with male infertility from the view of chromosome evolution.After analysis of the relationship between AZFc and male infertility,we concluded that spermatogenesis is controlled by a network of genes,which may locate on the Y chromosome,the autochromosomes,or even on the X chromosome.Further investigation of the molecular mechanisms underlying male fertility/infertifity will facilitate our knowledge of functional genomics.  相似文献   

7.
8.
Population genetics successfully applies surnames as quasi-genetic markers when estimating similarity between populations and calculating the level of random inbreeding. These calculations are based on the isonymy coefficient, which assumes that every surname is monophyletic, i.e., it originated from a single common ancestor and all namesakes are therefore relatives. On the other hand, there is a general opinion that a typical Russian surname is polyphyletic: it originated multiple times and most namesakes are, therefore, not related to each other. Combined studies of Y chromosomes and surnames now allow us to address this issue. This study discusses approaches to statistical evaluation of Y chromosome haplogroup frequencies in groups of people bearing the same surname (namesakes). The proposed index of accumulated haplogroup frequency eliminates the artifactual effect of a randomly increased haplogroup frequency in namesakes by subtracting its population (expected) frequency from the observed value, while the expected frequency is calculated as the weighted average of the frequencies of this haplogroup in the populations where the surname carriers come from. From the total sample (comprising 1244 persons from 13 populations of the historical Russian area), 123 individuals carrying 14 most frequent surnames were chosen. A comparison of the haplogroup frequencies in these 14 namesake groups and in 14 respective population control groups compiled from the total sample showed that accumulation of certain Y chromosome haplogroups was nonrandom even in carriers of widespread surnames. An analysis of Y-STR haplotypes rather than Y-SNP haplogroups could provide a better insight into relationships between namesakes and will be the subject of further research.  相似文献   

9.
10.
11.
A two year-old child presented with mild developmental delay. On karyotype analysis, a supernumerary small marker chromosome (SMC) was found in all cells examined. This SMC was approximately the size of an isochromosome 18p, being symmetrical with a central constriction. C-banding and silver staining were negative and FISH with all chromosome-specific paints, centromere probes and telomere probes showed no hybridization to the SMC; telomere repeat sequences were however present on both arms. Comparative genomic hybridization showed no amplification of any chromosome region. Flow sorting of the SMC and reverse painting onto normal metaphase spreads showed no hybridization to any chromosome, whereas reverse painting onto the patient's own metaphases showed hybridization to the SMC only. This SMC may thus represent either a complex amplicon of different genomic regions, or a multifold amplification of a very small region, with a neocentromere comprising an active kinetochore but no alphoid DNA. Prognostic implications for the proband were difficult to assess due to the absence of reports of similar marker chromosomes in the literature.  相似文献   

12.
Summary The Y/F ratio was established in 128 mentally disordered offenders in a maximum security hospital. The 50 Y/F 0.90 subjects were compared with the 78 Y/F<0.90 subjects as regards intelligence and behaviour. With the exception of the highest frequency of intelligence quotients lower than 70 in the criminal patients Y/F 0.90, no statistical correlation exists to support the theory of a relation between a long Y chromosome and the type of psychiatric (psychopathy, psychosis) or criminality diagnosis.

To whom offprint requests should be sent  相似文献   

13.
Nucleotide diversity of the human Y chromosome is much lower than that in the rest of the genome. A new hypothesis postulates that this invariance may result from mutations in maternally inherited mitochondrial DNA (mtDNA), leading to impaired reproduction among males and lowered male effective population size. If correct, we should expect to see low levels of polymorphism in the male-specific Y chromosome of many organisms but not necessarily in the female-specific W chromosome in organisms with female heterogamety. However, recent observations from birds suggest that the avian W chromosome is very low in nucleotide diversity. This indicates that mtDNA mutations cannot broadly explain the evolution of the sex-limited chromosome. Other work has suggested that sexual selection at loci involved in sex determination or secondary sexual characteristics might reduce levels of genetic variability on Y through hitch-hiking effects. Although the W chromosome does not seen to play a dominant role for sex determination in birds, it cannot be excluded that selective sweeps arising from natural or sexual selection contribute to the low levels of genetic variability seen on this chromosome.  相似文献   

14.
15.
Whole genome shotgun assemblies have proven remarkably successful in reconstructing the bulk of euchromatic genes, with the only limit appearing to be determined by the sequencing depth. For genes imbedded in heterochromatin, however, the low cloning efficiency of repetitive sequences, combined with the computational challenges, demand that additional clues be used to annotate the sequences. One approach that has proven very successful in identifying protein coding genes in Y-linked heterochromatin of Drosophila melanogaster has been to make a BLASTable database of the small, unmapped contigs and fragments leftover at the end of a shotgun assembly, and to attempt to capture these by blasting with an appropriate query sequence. This approach often yields a staggered alignment of contigs from the unmapped set to the query sequence, as though the disjoint contigs represent small portions of the gene. Further inspection frequently shows that the contigs are broken by very large, heterochromatic introns. Methods of this sort are being expanded to make best use of all available clues to determine which unmapped contigs are associated with genes. These include use of EST libraries, and, in the case of the Y chromosome, testing of male specific genes and reduced shotgun depth of relevant contigs. It appears much more hopeful than anyone would have imagined that whole genome shotgun assemblies can recover the great bulk of even heterochromatic genes.  相似文献   

16.
The Boechera holboellii complex comprises B. holboellii and B. drummondii, both of which can reproduce through sex or apomixis. Sexuality is associated with diploidy, whereas apomictic individuals can either be diploid, aneuploid or triploid. Aneuploid individuals are found in geographically and genetically distinct populations and contain a single extra chromosome. It is unknown whether the supernumerary chromosomes are shared by common descent (single origin) or have originated via introgressive hybridizations associated with the repeated transition from diploidy to triploidy. Diploid plants containing the extra chromosome(s) reproduce apomictically, suggesting that the supernumerary elements are associated with apomixis. In this study we compared flow cytometry data, chromosome morphology, and DNA sequences of sexual diploid and apomictic aneuploids in order to establish whether the extra chromosome fits the classical concept of a B chromosome. Karyotype analyses revealed that the supernumerary chromosome in the metaphase complement is heterochromatic and often smaller than the A chromosomes, and differs in length between apomictic plants from different populations. DNA sequence analyses furthermore demonstrated elevated levels of non-synonymous substitutions in one of the alleles, likely that on the aneuploid chromosome. Although the extra chromosome in apomictic Boechera does not go through normal reductional meiosis, in which it may get eliminated or accumulated by a B-chromosome-specific process, its variable size and heterochromatic nature does meet the remaining criteria for a genuine B chromosome in other species. Its prevalence and conserved genetic composition nonetheless implies that this chromosome, if truly a B, may be atypical with respect to its influence on its carriers.  相似文献   

17.
人们已经知道染色体的变化与癌症等疾病相关。作为一种视觉检测方法,FISH法受到人们的关注。将正常细胞和痛细胞的染色体进行比较的CGH法也在开发当中。本讲由东京医科齿科大学的稻泽让治教授进行讲解。[编者按]  相似文献   

18.
One of the most remarkable and yet poorly understood events during the cell cycle is how dispersed chromatin fragments are transformed into chromosomes every time cells undergo mitosis. It has been postulated that mitotic chromosomes might contain an axial scaffold that is involved in condensation but its molecules and structure have remained elusive. Recent data suggests that the condensin complex might indeed be an essential part of the scaffold that provides a platform for other proteins to localize and promote different aspects of chromosome condensation.  相似文献   

19.
X chromosome imprinting in fragile×syndrome   总被引:3,自引:3,他引:0  
  相似文献   

20.
Summary Analysis of pedigrees given in the literature suggests that a second elliptocytosis locus (not linked to Rh) may be linked to Duffy (=1.97 at ) and therefore on chromosome 1. Significant heterogeneity is found between the El1 and El2 total lod scores with Fy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号