首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The 18-kDa protein of Mycobacterium leprae was purified from recombinant plasmids pUL108 and pML-3 grown in Saccharomyces cerevisiae and Escherichia coli, respectively. Significant lymphoproliferative responses were observed when T cells from immunized mice were challenged in culture with purified 18-kDa protein. Synthetic peptides have been prepared that span most of the 148 amino acid residues that constitute the sequence of the 18-kDa protein and used to map epitopes recognized by T cells. When mice were immunized with 18-kDa protein and lymph node cells subsequently prepared and challenged in microculture proliferative assays by using synthetic peptides, only one region of the intact protein appeared stimulatory. This T cell epitope was located between residues 116 and 121, adjacent to an epitope between residues 110 and 115 which we have previously shown to bind the L5 mAb. Immunization of mice with peptides, and subsequent challenge of lymph node cells in assays by using the 18-kDa protein as Ag revealed that residues 111-125 were the most effective in priming responses. Furthermore, the ability of 18-kDa primed lymph node cells to recognize determinants on both M. leprae and Mycobacterium tuberculosis indicates that in addition to possessing an M. leprae-specific B cell determinant, the 18-kDa protein contains a cross-reactive T cell epitope(s).  相似文献   

2.
Autoreactive T cells responding to systemic autoantigens have been characterized in patients and mice with autoimmune diseases and in healthy individuals. Using peptides covering the whole sequence of histone H4, we characterized several epitopes recognized by lymph node Th cells from nonsystemic lupus erythematosus-prone mice immunized with the same peptides, the H4 protein, or nucleosomes. Multiple T epitopes were identified after immunizing H-2d BALB/c mice with H4 peptides. They spanned residues 28-42, 30-47, 66-83, 72-89, and 85-102. Within the region 85-102, a minimal CD4+ T epitope containing residues 88-99 was characterized. Although Abs to peptide 88-99 recognized H4, this peptide does not contain a dominant B cell epitope recognized by anti-H4 Abs raised in BALB/c mice or Abs from NZB/NZW H-2d/z lupus mice. Th cells primed in vivo with H4 responded to H4, but not to peptide 88-99. However, this peptide was able to stimulate the proliferation and IL-2 secretion of Th cells generated after immunization with nucleosomes. H488-99 thus represents a cryptic epitope with regard to H4 and a supradominant epitope presented by nucleosome, a supramolecular complex that plays a key role in lupus. This study shows that in the normal repertoire of naive BALB/c mice, autoreactive Th cells specific for histones are not deleted. The reactivity of these Th cells seems to be relatively restricted and resembles that of Th clones generated from SNF1 ((SWR x NZB)F1; I-Ad/q) lupus mice described earlier.  相似文献   

3.
Proliferative T-cell responses to poliovirus in various strains of mice have been analyzed by using either killed purified virus or capsid protein VP1 synthetic peptides. Following immunization of mice with inactivated poliovirus type 1 (PV1), a specific proliferative response of their lymph node CD4+ T cells was obtained after in vitro stimulation with purified virus. In mice immunized with PV1, PV2, or PV3, a strong cross-reactivity of the T-cell responses was observed after in vitro stimulation with heterologous viruses. By using various strategies, a dominant T-cell epitope was identified in the amino acid 103 to 115 region of capsid polypeptide VP1, close by the C3 neutralization epitope. The T-cell response to VP1 amino acids 103 to 115 is H-2 restricted: H-2d mice are responders, whereas H-2k and H-2b mice do not respond to this T-cell epitope. Immunization of BALB/c (H-2d) mice with the uncoupled p86-115 peptide, which represents VP1 amino acids 86 to 115 and contains both the T-cell epitope and the C3 neutralization epitope, induced poliovirus-specific B- and T-cell responses. Moreover, these mice developed poliovirus neutralizing antibodies.  相似文献   

4.
Immunization of animals with proteolipid protein, the major protein constituent of central nervous system myelin, produces experimental allergic encephalomyelitis. The goal of the present study was to identify an encephalitogenic determinant of this protein. For this purpose, SWR mice were immunized with five groups of pooled synthetic peptides corresponding to various regions of the myelin proteolipid protein sequence. Clinical EAE was observed in only one group. Inguinal lymph node cells from animals in this group responded ([3H]thymidine incorporation) to a peptide within the pool containing residues 103-116 YKTTICGKGLSATV. Mice subsequently immunized with 50 nmol of this peptide developed severe EAE within 3 wk, and their T cell-enriched inguinal lymph node cells responded specifically to this peptide. Control mice immunized to proteolipid peptide 202-217 DARMYGVLPWNAFPGK did not develop experimental allergic encephalomyelitis, and their inguinal lymph node cells were unresponsive to either peptide. Thus, a peptide corresponding to a sequence within the proteolipid protein can produce classical acute experimental allergic encephalomyelitis. This is the first report of a synthetic encephalitogenic peptide from myelin proteolipid protein.  相似文献   

5.
免疫性不育病人的血清(IPS)能100%地抑制人体外受精.用该血清筛选人睾丸cDNA基因表达文库,发现了一种新的睾丸特异抗原(称作C2).通过DNA顺序研究,并与基因库中的有关同源性基因数据进行比较,证实C2是一个新的特异蛋白.C2基因仅与睾丸组织的mRNA杂交.该克隆在大肠杆菌中所表达的融合蛋白能够被3个不同的不育病人血清识别.利用嵌套缺失和Western印迹的方法研究其抗原决定簇定位,发现B细胞抗原决定簇在羧基端29个氨基酸范围内.用GCG软件分析该抗原的氨基酸的亲水性和疏水性以及其存在于蛋白表面的可能性,确定其中的15个氨基酸为抗原决定簇所必需,并合成了多肽  相似文献   

6.
To understand the immunologic characteristics of pertussis toxin molecule and to explore the possibility of developing a synthetic vaccine, T cell epitopes on the enzymatic S1 subunit of pertussis toxin were studied by measuring the proliferative response of immune murine lymph node cells and T cell lines to Ag and to synthetic peptides. The maximum in vitro T cell proliferative response was obtained by stimulating immune lymphoid cells with 20 nM of the enzymatic S1 subunit. When the T cell proliferative response of murine lymphoid cells with different MHC backgrounds was tested, only mice bearing the H-2d haplotype were high responder to the S1 subunit. To determine T cell epitopes on the S1 subunit, the proliferative response of BALB/c immune lymphoid cells to several synthetic S1 peptides was measured. Only the peptide containing amino acid residues, 65-79, was recognized by BALB/c lymphoid cells and was confirmed to contain a T cell epitope by generating S1 specific BALB/c T cell line. By using this T cell line, the response of BALB/c mice to the S1 subunit as well as to peptide 65-79 was shown to be restricted to the I-Ad sublocus of class II Ag. Finally, we showed that lymph node cells of mice immunized with peptide 65-79 respond to the native S1 subunit.  相似文献   

7.
Using the murine system we have analyzed an immunogenic T cell peptide epitope corresponding to amino acids 96-112 of the simian immunodeficiency virus-negative regulatory protein sequence. This epitope was unusual in that it was strongly immunogenic in mice of five of the six H-2 haplotypes tested. We generated a T cell hybridoma (SVNF) specific for this peptide in order to determine how manipulating the peptide might alter its immunogenicity. Substitution analysis showed that His 103, Pro 104, Val 106, and Pro 107 were important amino acids for stimulating SVNF because substitutions at these positions diminished the reactivity of SVNF. However, we also found that substituting an Ala for a Val at position 100 or a Val for an Ala at position 110 enhanced reactivity of SVNF. We were able to further enhance the immunogenicity of this epitope by extending the carboxyl terminus two amino acids and making the resulting carboxyl-terminal Lys an amide and by adding a Glu to the amino terminus. These modifications shifted the in vitro activity of SVNF at least two orders of magnitude. We also compared the ability of this modified peptide and the wild-type SIV nef 96-112 to prime a T cell response in vivo. We primed mice with various doses of either the wild-type or the modified peptide and looked at the ability of the draining lymph node cells to proliferate to wild-type peptide. We found that the modified peptide was 10- to 100-fold better at priming a T cell response than the wild-type peptide. Therefore, we were able to create a peptide that was more immunogenic than the wild-type peptide in vivo as well as in vitro. Manipulations such as these that enhance the immunogenicity of T cell epitopes must be considered in developing peptide vaccines against HIV or other infectious agents.  相似文献   

8.
A 20-residue sequence from the C-terminal region of the circumsporozoite protein of the malaria parasite Plasmodium falciparum is considered a universal helper T cell epitope because it is immunogenic in individuals of many major histocompatibility complex (MHC) haplotypes. Subunit vaccines containing T* and the major B cell epitope of the circumsporozoite protein induce high antibody titers to the malaria parasite and significant T cell responses in humans. In this study we have evaluated the specificity of the T* sequence with regard to its binding to the human class II MHC protein DR4 (HLA-DRB1*0401), its interactions with antigen receptors on T cells, and the effect of natural variants of this sequence on its immunogenicity. Computational approaches identified multiple potential DR4-binding epitopes within T*, and experimental binding studies confirmed the following two tight binding epitopes: one located toward the N terminus (the T*-1 epitope) and one at the C terminus (the T*-5 epitope). Immunization of a human DR4 volunteer with a peptide-based vaccine containing the T* sequence elicited CD4+ T cells that recognize each of these epitopes. Here we present an analysis of the immunodominant N-terminal epitope T*-1. T*-1 residues important for interaction with DR4 and with antigen receptors on T*-specific T cells were mapped. MHC tetramers carrying DR4/T*-1 MHC-peptide complexes stained and efficiently stimulated these cells in vitro. T*-1 overlaps a region of the protein that has been described as highly polymorphic; however, the particular T*-1 residues required for anchoring to DR4 were highly conserved in Plasmodium sequences described to date.  相似文献   

9.
The CTL response to SV40 in C3H/HeJ mice is directed against the tumor (T) Ag and is H-2Kk restricted. CTL specific for both the amino terminus (residues 1-271) and the carboxyl terminus (residues 512-708) of the T Ag molecule have been detected, and we have previously cloned CTL of both specificities. In this paper we show that the panel of 10 CTL clones specific for the C-terminal region includes clones specific for three different epitopes, termed C1, C2, and C3. Epitopes C1 and C2 are conserved in the T Ag of the related papova viruses BK and SA12, and only epitopes C2 and C3 are present on SV40 transformed targets bearing the Kk mutant Kkml. Epitopes C1 and C2 were mapped to residues 563-576 by using in-frame deletion mutants of SV40 T antigen, and all clones specific for these two epitopes can lyse Kk bearing target cells in the presence of a synthetic peptide comprising residues 559-576. Kk and Kkml differ at residue 152, which is located in the Ag-binding pocket. Because epitopes C1 and C2 can be formed by the same antigenic peptide, but epitope C1 is not present on SV40 transformed Kkml cells, epitopes C1 and C2 must differ in the contribution made by residue 152 of the MHC class I molecule. These data show that CTL epitopes on transformed cells can be made up of Ag fragments, and strengthen the idea that this is a general phenomenon for both class I and class II restricted T cell epitopes.  相似文献   

10.
Experimental autoimmune myasthenia gravis (EAMG) is an important model for testing current concepts in autoimmunity and novel immunotherapies for autoimmune diseases. The EAMG autoantigen, acethylcholine receptor (AChR), is structurally and immunologically complex, a potential obstacle to the application of therapeutic strategies aimed at oligoclonal T cell populations. Inasmuch as we had previously shown that the clonal heterogeneity of T cell epitope recognition in EAMG was unexpectedly limited, we examined TCR V beta expression. AChR primed lymph node T cells and established AChR reactive T cell clones from EAMG-susceptible C57BL/6 (B6; H-2b, Mls-1b) mice showed preferential utilization of the TCR V beta 6 segment of the TCR. After in vivo priming and in vitro restimulation for 7 days with AChR or a synthetic peptide bearing an immunodominant epitope, V beta 6 expressing lymph node cells (LNC) were expanded several-fold, accounting for up to 75% of recovered viable CD4+ cells. The LNC of B6.C-H-2bm12 (bm12; H-2bm12, Mls-1b) mice, which proliferated in response to AChR but not to the B6 immunodominant peptide, failed to expand V beta 6+ cells. Inasmuch as nonimmune bm12 and B6 animals had similar numbers of V beta 6+ LNC (4-5%), this suggested that structural requirements for TCR recognition of Ag/MHC complexes dictated V beta usage. Results concerning peptide reactivity and V beta 6 expression among T cells from (B6 x bm12)F1 animals also suggested that structure-function relationships, rather than negative selection or tolerance, accounted for the strain differences between B6 and bm12. To examine the potential effects of thymic negative selection of V beta 6+ cells on the T cell response to AChR, CB6F1 (H-2bxd, Mls-1b; V beta 6-expressing) and B6D2F1 (H-2bxd, Mls-1axb; V beta 6-deleting) strains were analyzed for AChR and peptide reactivity and V beta 6 expression. Both F1 strains responded well to AChR but the response of B6D2F1 mice to peptide was significantly reduced compared to CB6F1. Short and long term cultures of peptide-reactive B6D2F1 LNC showed no expansion of residual V beta 6+ cells, although similar cultures of CB6F1 LNC were composed of more than 60% V beta 6+ cells. The results from the F1 strains further indicated that the T cell repertoire for peptide was highly constrained and that non-V beta 6 expressing cells could only partially overcome Mls-mediated negative selection of V beta 6+ TCR capable of recognizing peptide.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
To elucidate the structural basis for membrane attachment of the alpha subunit of the stimulatory G protein (Gs alpha), mutant Gs alpha cDNAs with deletions of amino acid residues in the amino and/or carboxy termini were transiently expressed in COS-7 cells. The particulate and soluble fractions prepared from these cells were analyzed by immunoblot using peptide specific antibodies to monitor distribution of the expressed proteins. Transfection of mutant forms of Gs alpha with either 26 amino terminal residues deleted (delta 3-28) or with 59 amino terminal residues deleted (delta 1-59) resulted in immunoreactive proteins which localized primarily to the particulate fraction. Similarly, mutants with 10 (delta 385-394), 32 (delta 353-384), or 42 (delta 353-394) amino acid residues deleted from the carboxy terminus also localized to the particulate fraction, as did a mutant form of Gs alpha lacking amino acid residues at both the amino and carboxy termini (delta 3-28)/(delta 353-384). Mutant and wild type forms of Gs alpha demonstrated a similar degree of tightness in their binding to membranes as demonstrated by treatment with 2.5 M NaCl or 6 M urea, but some mutant forms were relatively resistant compared with wild type Gs alpha to solubilization by 15 mM NaOH or 1% sodium cholate. We conclude that: (a) deletion of significant portions of the amino and/or carboxyl terminus of Gs alpha is still compatible with protein expression; (b) deletion of these regions is insufficient to cause cytosolic localization of the expressed protein. The basis of Gs alpha membrane targeting remains to be elucidated.  相似文献   

12.
The carboxy-terminal sequence of p56lck can regulate p60c-src.   总被引:9,自引:5,他引:4       下载免费PDF全文
A chimera containing the coding region for residues 1 to 516 of p60c-src and residues 495 to 509 (the carboxy terminus) of p56lck was constructed and expressed in mouse fibroblasts. The chimeric protein appeared to be phosphorylated and regulated in the same fashion as p60c-src.  相似文献   

13.
Zhang L  Huang G  Wu J  Ruan KH 《Biochemistry》2005,44(34):11389-11401
The first intracellular loop (iLP1, residues 39-51) of human prostacyclin receptor (IP) was proposed to be involved in signaling via its interaction with the Galphas protein. First, evidence of the IP iLP1 interaction with the C-terminus of the Galphas protein was observed by the fluorescence and NMR spectroscopy using the synthetic peptide (Galphas-Ct) mimicking the C-terminal 11 residues of the Galphas protein in the presence of a constrained synthetic peptide mimicking the IP iLP1. Then, the residues (Arg42, Ala44, and Arg45) in the IP iLP1 peptide possibly involved in contacting the Galphas-Ct peptide were initially assigned by observation of the significant proton resonance shifts of the side chains of the constrained IP iLP1 peptide using 2D (1)H NMR spectroscopy. The results of the NMR studies were used as a guide for further identification of the residues in the IP important to the receptor signaling using a recombinant protein approach. A profile of the residues in the IP iLP1, including the residues observed from the NMR studies involved in the Galphas mediated signaling, was mapped out by mutagenesis. According to our results, it can be predicted that the seven residues (Arg42-Ala48) with the conserved Arg45 at the center will form an epitope with a specific conformation involved in the Galphas mediated signaling. The conservation of the basic residues (Arg45 in the IP) in all of the prostanoid receptors suggests that the iLP1 regions of the other prostanoid receptors may also contain the epitopes important to their signaling.  相似文献   

14.
The 65 kilodalton heat shock protein (Hsp65) from mycobacterial species elicits immune responses and in some cases protective immunity. Here we have used a DNA sublibrary approach to identify antigenic fragments of Mycobacterium avium Hsp65 and a synthetic peptide approach to delineate CD4+ T cell determinants. A panel of Hsp65 reactive CD4+ T cell clones was established from lymph node cells obtained from BALB/c mice immunized with recombinant Hsp65. The clones were tested for proliferative reactivity against the products of the DNA sublibrary of the hsp65 gene. A T cell epitope, restricted by the I-Ad molecule, was identified within the C-terminal region of Hsp65 and the minimal epitope (amino acid residues 489-503) delineated using overlapping peptides spanning the C-terminal fragment. Additionally, the CD4+ T cell clone recognizing this epitope also responded to native Hsp65 present in M. avium lysates by both proliferation and cytokine production, indicating that the epitope was present and processed similarly both in the native and the recombinant forms of Hsp65. This sequence identified in BALB/c mice (Hsp65 489-503) is identical in other mycobacteria, notably M. tuberculosis, M. bovis and M. leprae, suggesting the epitope may have wider application in murine models of other mycobacterial infections.  相似文献   

15.
Vince JW  Reithmeier RA 《Biochemistry》2000,39(18):5527-5533
The human Cl(-)/HCO(3)(-) anion exchanger (AE1) possesses a binding site within its 33 residue carboxyl-terminal region (Ct) for carbonic anhydrase II (CAII). The amino acid sequence comprising this CAII binding site was determined by peptide competition and by testing the ability of truncation and point mutants of the Ct sequence to bind CAII with a sensitive microtiter plate binding assay. A synthetic peptide consisting of the entire 33 residues of the Ct (residues 879-911) could compete with a GST fusion protein of the Ct (GST-Ct) for binding to immobilized CAII, while a peptide consisting of the last 16 residues (896-911) could not. A series of truncation mutants of the GST-Ct showed that the terminal 21 residues of AE1 were not required for binding CAII. Removal of four additional residues (887-890) from the Ct resulted in loss of CAII binding. Acidic residues in this region (D887ADD) were critical for binding since mutating this sequence in the GST-Ct to DAAA, AAAA, or NANN caused loss of CAII binding. A GST-Ct construct mutated to D887ANE, the homologous sequence in AE2, could bind CAII. AE2 is a widely expressed anion exchanger and has a homologous Ct region with 60% sequence identity to AE1. A GST fusion protein of the 33 residue Ct of AE2 could bind to CAII similarly to the Ct of AE1. Tethering of CAII to an acidic motif within the Ct of anion exchangers may be a general mechanism for promoting bicarbonate transport across cell membranes.  相似文献   

16.
The sequence 260-283 of the nucleoprotein (NP) of influenza A virus is an epitope recognized by virus-immune lymph node cells from CBA (H-2k), B6 (H-2b), and B10.S (H-2s) mice. Further analysis shows that there are at least two Th epitopes within this sequence: the one close to the N-terminal (p260-273) is recognized by T cells from CBA and B6 mice while that close to the carboxyl-terminal (p270-283) is a dominant Th determinant in B10.S mice. The fine specificity of the recognition of this epitope by NP-specific T cell clones is also studied. When B10.S mice were infected intranasally or i.v. with live influenza virus, or immunized by different ways with various Ag preparations, P270-283 persistently emerged as a dominant T cell epitope. Immunization of B10.S mice with peptide p270-283 induces T cells with different in vivo functions including class II-restricted cytotoxicity, cognate help for Ag-specific antibody synthesis and delayed type hypersensitivity. This may have important implications for the understanding of the differentiation and classification of subsets of CD4+ T cells. The corresponding sequence of the NP of an equine influenza virus, A/Eq/Prague/56, which has a substitution (leucine to proline) at position 283, was not recognized by the lymph node cells from mice primed with either A/Okuda or A/Eq/Prague. However, the peptide, p270-283(E), representing this sequence induced T cell responses to both human and equine viruses. The data are discussed with respect to the development of viral vaccines.  相似文献   

17.
We have examined whether the peptide (368-381) from the murine adenovirus type 1 E1B sequence, exhibiting a high degree of homology with the known pathogenic thyroglobulin (Tg) T cell epitope (2695-2706), can induce experimental autoimmune thyroiditis (EAT) in SJL/J mice. The viral peptide was a poor immunogen at the T or B cell level and did not elicit EAT either directly or by adoptive transfer assays. Surprisingly, however, the viral peptide was highly antigenic in vitro, activating a Tg2695-2706-specific T cell clone and reacting with serum IgG from mice primed with the Tg homologue. The viral peptide also induced strong recall responses in Tg2695-2706-primed lymph node cells, and subsequent adoptive transfer of these cells into naive mice led to development of highly significant EAT. These data demonstrate that nonimmunogenic viral peptides can act as agonists for preactivated autoreactive T cells and suggest that epitope mimicry may at times play a potentiating rather than a precipitating role in the pathogenesis of autoimmune disease.  相似文献   

18.
The immune response of Lewis rat lymph node T cells to guinea pig myelin basic protein (GP-BP) in experimental allergic encephalomyelitis is directed primarily against a region of basic protein encompassed by residues 72-89. T cells that respond to this epitope are restricted by the RT1.B class II molecule of the MHC and use V beta 8.2 exclusively in their TCR. A second region of GP-BP, residues 87-99, also induces experimental allergic encephalomyelitis in Lewis rats but this response is restricted primarily by RT1.D. Elsewhere we describe the biologic characteristics of T cell clones responding to the synthetic peptide, s87-99, and to a related peptide, s85-99. We present a detailed analysis of TCR V beta gene expression among these clones, derived from the lymph node and spinal cord of immunized animals, and among spinal cord derived T cell clones reactive to GP-BP 72-89. We find that spinal cord-derived clones, reactive to s85-99 and to s87-99, use V beta 6 predominantly. In contrast, T cell clones derived from lymph nodes and reactive to the same peptides express multiple V beta genes including V beta 6. This difference in heterogeneity of V beta usage at the clonal level is also seen in T cell lines derived from spinal cord and immune lymph node. DNA sequence comparison of the CDR3 regions in V beta 6+ spinal cord clones revealed a conserved amino acid motif also found in the majority of V beta 6 sequences from the spinal cord anti-s85-99 line. Although V beta 6 was expressed in some lymph node-derived clones, only one contained a CDR3 region similar to that seen in spinal cord isolates. All spinal cord-derived T cell clones reactive to GP-BP 72-89 used V beta 8.2 and most (five of six) contained the AspSer residues in CDR3 previously shown to be associated with V beta 8.2 receptors expressed by the majority of lymph node T cells responding to GP-BP 72-89. These data indicate that TCR V beta usage in peripheral T cells responding to an autoantigen does not always predict the V beta usage among T cells at the site of an autoimmune attack. Possible explantations for the relative homogeneity in TCR V beta expression seen in T cell clones derived from the spinal cord are discussed.  相似文献   

19.
In our effort to develop synthetic immunogens as vaccines, we have focused on the combination of a known T-cell stimulating peptide with putative B-cell stimulating peptide epitopes derived from the sequences of respiratory syncytial (RS) virus proteins. The T-cell stimulating peptide consists of residues 45 through 60 of the 1A protein of RS virus, and it also contains an overlapping antibody binding (B-cell) site. Herein, we have combined the 1A T-cell stimulating peptide with a putative B-cell peptide epitope derived from the viral G glycoprotein using linear synthesis or using chemical crosslinking. The chimeric immunogens were compared to each other and to free peptides for their T- and B-cell stimulating properties. Both chimeras had potent T-cell stimulating and antibody-inducing activity. However, T-cells primed to free peptide differentially recognized the two chimeras and immunization with the chimeras primed T-cells with different specificity. Most strikingly, the two chimeras had opposite antibody-inducing properties: The chimera constructed by linear synthesis overwhelmingly elicited antibody directed against the G peptide, whereas the chimera constructed by chemical crosslinking overwhelmingly elicited antibody directed against the 1A peptide. Competition blocking studies revealed that the chimeras adopted different configurations in solution. The resulting antibody response, and hence the B-cell clone elicited, was consistent with the antibody accessibility of the individual peptide epitope.  相似文献   

20.
A six-amino-acid insertion containing a Q-G amino acid pair was introduced into the carboxy terminus of the capsid protein VP3 (between residues 236 and 237). Transfection of monkey cells with full-length poliovirus cDNA containing the insertion described above yields a mutant virus (Sel-1C-02) in which cleavage occurs almost entirely at the inserted Q-G amino acid pair instead of at the wild-type VP3-VP1 cleavage site. Mutant Sel-1C-02 is delayed in the kinetics of virus production at 39 degrees C and exhibits a defect in VP0 cleavage into VP2 and VP4 at 39 degrees C. Sucrose gradient analysis of HeLa cell extracts prepared from cells infected by Sel-1C-02 at 39 degrees C shows an accumulation of fast-sedimenting replication-packaging complexes and a significant amount of uncleaved VP0 present in fractions containing mature virions. Our data provide in vivo evidence for the importance of determinants other than the conserved amino acid pair (Q-G) for recognition and cleavage of the P1 precursor by proteinase 3CD and show that an alteration in the carboxy terminus of VP3 or the amino terminus of VP1 affects the process of viral maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号