首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
NdWFamide is an Aplysia cardioexcitatory tri-peptide containing D-tryptophan. To investigate the roles of this peptide, we examined the immunohistochemical distribution of NdWFamide-positive neurons in Aplysia tissues. All the ganglia of the central nervous system (CNS) contained NdWFamide-positive neurons. In particular, two left upper quadrant cells in the abdominal ganglion, and the anterior cells in the pleural ganglion showed extensive positive signals. NdWFamide-positive processes were observed in peripheral tissues, such as those of the cardio-vascular system, digestive tract, and sex-accessory organs, and in the connectives or neuropils in the CNS. NdWFamide-positive neurons were abundant in peripheral plexuses, such as the stomatogastric ring. To examine the NdWFamide contents of tissues, we fractionated peptidic extracts from the respective tissues by reversed-phase high-pressure liquid chromatography and then assayed the fractions by competitive enzyme-linked immunosorbent assay. A fraction corresponding to the retention time of synthetic NdWFamide contained the most immunoreactivity, indicating that the tissues contained NdWFamide. The prevalence of the NdWFamide content was roughly in the order: abdominal ganglion >heart >gill >blood vessels >digestive tract. In most of the tissues containing NdWFamide-positive nerves, NdWFamide modulated the motile activities of the tissues. Thus, NdWFamide seems to be a versatile neurotransmitter/modulator of Aplysia and probably regulates the physiological activities of this animal.  相似文献   

2.
Although diverse peptides are known to affect invertebrate cardiac activity, the peptidergic regulation of the cardiovascular system of Aplysia is still poorly understood. Asn-D-Trp-Phe-NH(2) (NdWFamide) is a recently purified cardioactive peptide in Aplysia. Pharmacological experiments showed that NdWFamide was one of the most potent cardioexcitatory peptides among the known endogenous cardioactive peptides in Aplysia. NdWFamide-immunopositive neuronal processes were abundant in the cardiovascular region of Aplysia, and many of them originated from neurosecretory cells in the abdominal ganglion (R3-R13 cells). The data suggest that NdWFamide is a cardioexcitatory peptide utilized by R3-R13 cells of Aplysia.  相似文献   

3.
The electrical properties of Aplysia brasiliana myogenic heart were evaluated. Two distinct types of action potentials (APs) were recorded from intact hearts, an AP with a slow rising phase followed by a slow repolarizing phase and an AP with a 'fast' depolarizing phase followed by a plateau. Although these two APs differ in their rates of depolarization (2.2 x 0.3 V/s), both APs were abolished by the addition of Co2+, Mn2+ and nifedipine or by omitting Ca2+ from the external solution. These data suggest that a Ca2+ inward current is responsible for the generation of both types of APs. Two outward currents activated at -40 mV membrane potential were prominent in isolated cardiac myocytes: a fast activating, fast inactivating outward current similar to the A-type K+ current and a slow activating outward current with kinetics similar to the delayed rectifier K+ current were recorded under voltage clamp conditions. Based on the effects of 4-AP and TEA on the electrical properties of ventricular myocytes, we suggest that the fast kinetic outward current substantially attenuates the peak values of the APs and that the slow activating outward current is involved on membrane repolarization.  相似文献   

4.
The distribution and function of an Aplysia cardioexcitatory peptide, NdWFamide, were examined in the nervous system of pulmonate snails. We chemically identified the authentic NdWFamide from a land snail (Euhadra congenita) and a freshwater snail (Lymnaea stagnalis). NdWFamide potentiated the heartbeat of those snails. Immunohistochemistry using anti-NdWFamide antibody demonstrated the distribution of NdWFamide-containing neurons and fibers in the central nervous system, as well as peripheral tissues, such as the cardiovascular region and accessory sex organs. These results suggest that NdWFamide is a neuropeptide mediating the neural regulation of the activity of the cardiovascular and reproductive systems of snails.  相似文献   

5.
We investigated the possible role of ion channels and transporters in cell volume control using Aplysia brasiliana ventricular tissues exposed to a 26% hyposmotic shock, by assessing changes in wet weight, intracellular water and ionic contents. Thirty minutes after the shock, the wet weight of isolated ventricles increase about 20% above control levels and then attain near original weight within 60 min after the shock. At the time when the wet weight returned to control values, intracellular water and KCl contents are decreased by 22 and 20%, respectively. The K(+) channel blockers, 4-AP and TEA, but not the cotransport blockers, hydrochlorothiazide and furosemide, greatly affect the magnitude of wet weight gain and the time course of weight recovery, indicating that KCl loss occur through conductive pathways. Intracellular recordings performed on ventricular myocytes during exposure to the osmotic shock showed an immediate membrane hyperpolarization and blockade of spontaneous electrical activity; diastolic membrane potential recover over time and spontaneous action potentials are completely restored 60 min after the hyposmotic shock. Because significant weight loss is observed during the exposure of ventricular tissues to 26% hypo-ionic, but isosmotic saline, it is suggested that ventricular volume restoration is accomplished by two distinct but simultaneously occurring processes: a volume-dependent and a volume-independent mechanism. Because wet weight restoration is completely prevented by exposing ventricular tissue to a Ca(2+)-free hyposmotic solution, we postulate that both processes involved in A. brasiliana ventricular weight restoration are Ca(2+)-dependent mechanisms.  相似文献   

6.
The tripeptide Asn-d-Trp-Phe-NH(2) (NdWFamide) is a D-amino acid-containing cardioexcitatory peptide initially isolated from Aplysia. Previously we detected NdWFamide immunoreactivity in the visceral giant cells, the largest neurons in the brain of the terrestrial slug Limax located at the dorsal surface of the visceral ganglia. In the present study, we further analyzed the morphological features of these neurons by an intracellular injection of Lucifer yellow, and found that these neurons extend neurites out of the brain through at least 5 nerve bundles. We then isolated a gene and a cDNA clone potentially encoding a NdWFamide precursor, and investigated expression at the levels of mRNA and protein in Limax. The NdWFamide gene consists of 5 exons spanning at least 17 kb of the genome, and its open reading frame extends over 3 exons. The spatial expression pattern of NdWFamide mRNA was almost identical to that of the NdWFamide peptide, with some minor discrepancies in between. Although the most remarkable expression was evident in the visceral giant cells, we also found the expression of NdWFamide mRNA and peptide in the cerebral and pedal ganglia. These results suggest the involvement of NdWFamide in the regulation of a broad area of the slug's body.  相似文献   

7.
The transient outward current (I(to)) is a major repolarizing current in the heart. Marked reduction of I(to) density occurs in heart failure and is accompanied by significant action potential duration (APD) prolongation. To understand the species-dependent role of I(to) in regulating the ventricular action potential morphology and duration, we introduced simulated I(to) conductance in guinea pig and canine endocardial ventricular myocytes using the dynamic clamp technique and perforated patch-clamp recordings. The effects of simulated I(to) in both types of cells were complex and biphasic, separated by a clear density threshold of approximately 40 pA/pF. Below this threshold, simulated I(to) resulted in a distinct phase 1 notch and had little effect on or moderately prolonged the APD. I(to) above the threshold resulted in all-or-none repolarization and precipitously reduced the APD. Qualitatively, these results agreed with our previous studies in canine ventricular cells using whole cell recordings. We conclude that 1) contrary to previous gene transfer studies involving the Kv4.3 current, the response of guinea pig ventricular myocytes to a fully inactivating I(to) is similar to that of canine ventricular cells and 2) in animals such as dogs that have a broad cardiac action potential, I(to) does not play a major role in setting the APD.  相似文献   

8.
Global contractile heart failure was induced in turkey poults by furazolidone feeding (700 ppm). Abnormal calcium regulation appears to be a key factor in the pathophysiology of heart failure, but the cellular mechanisms contributing to changes in calcium fluxes have not been clearly defined. Isolated ventricular myocytes from non-failing and failing hearts were therefore used to determine whether the whole heart and ventricular muscle contractile dysfunctions were realized at the single cell level. Whole cell current- and voltage-clamp techniques were used to evaluate action potential configurations and L-type calcium currents, respectively. Intracellular calcium transients were evaluated in isolated myocytes with fura-2 and in isolated left ventricular muscles using aequorin. Action potential durations were prolonged in failing myocytes, which correspond to slowed cytosolic calcium clearing. Calcium current-voltage relationships were normal in failing myocytes; preliminary evidence suggests that depressed transient outward potassium currents contribute to prolonged action potential durations. The number of calcium channels (as measured by radioligand binding) were also similar in non-failing and failing hearts. Isolated ventricular muscles from failing hearts had enhanced inotropic responses, in a dose-dependent fashion, to a calcium channel agonist (Bay K 8644). These data suggest that changes in intracellular calcium mobilization kinetics and longer calcium-myofilament interaction may be able to compensate for contractile failure. We conclude that the relationship between calcium current density and sarcoplasmic reticulum calcium release is a dynamic process that may be altered in the setting of heart failure at higher contraction rates. Accepted: 1 March 2000  相似文献   

9.
Many studies suggest that early afterdepolarizations (EADs) arising from Purkinje fibers initiate triggered arrhythmias under pathological conditions. However, electrotonic interactions between Purkinje and ventricular myocytes may either facilitate or suppress EAD formation at the Purkinje-ventricular interface. To determine conditions that facilitated or suppressed EADs during Purkinje-ventricular interactions, we coupled single Purkinje myocytes and aggregates isolated from rabbit hearts to a passive model cell via an electronic circuit with junctional resistance (R(j)). The model cell had input resistance (R(m,v)) of 50 M Omega, capacitance of 39 pF, and a variable rest potential (V(rest,v)). EADs were induced in Purkinje myocytes during superfusion with 1 microM isoproterenol. Coupling at high R(j) to normally polarized V(rest,v) established a repolarizing coupling current during all phases of the Purkinje action potential. This coupling current preferentially suppressed EADs in single cells with mean membrane resistance (R(m,p)) of 297 M Omega, whereas EAD suppression in larger aggregates with mean R(m,p) of 80 M Omega required larger coupling currents. In contrast, coupling to elevated V(rest,v) established a depolarizing coupling current during late phase 2, phase 3, and phase 4 that facilitated EAD formation and induced spontaneous activity in single Purkinje myocytes and aggregates. These results have important implications for arrhythmogenesis in the infarcted heart when reduction of the ventricular mass due to scarring alters the R(m,p)-to-R(m,v) ratio and in the ischemic heart when injury currents are established during coupling between polarized Purkinje myocytes and depolarized ventricular myocytes.  相似文献   

10.
Aplysia Mytilus inhibitory peptide-related peptides (AMRPs) are multiple hexapeptides coded on a single precursor. By comparing the AMRP precursors of two species of Aplysia (Aplysia californica and Aplysia kurodai), we found that there are substantial numbers of species-specific AMRPs. We next compared the function of AMRPs on the anterior aorta between A. kurodai and Aplysia juliana. In A. juliana, AMRPs inhibited the contractile activity of the aorta (EC(50)=10(-9) to 10(-8)M), whereas the peptides had no obvious action in A. kurodai up to 10(-7)M. These results indicate that AMRPs are both structurally and functionally diverse neuropeptides even among closely related species.  相似文献   

11.
The Kv2.1 gene encodes a highly conserved delayed rectifier potassium channel that is widely expressed in neurons of the central nervous system. In the bag cell neurons of Aplysia, Kv2.1 channels contribute to the repolarization of action potentials during a prolonged afterdischarge that triggers a series of reproductive behaviors. Partial inactivation of Aplysia Kv2.1 during repetitive firing produces frequency-dependent broadening of action potentials during the afterdischarge. We have now found that, as in mammalian neurons, Kv2.1 channels in bag cell neurons are localized to ring-like clusters in the plasma membrane of the soma and proximal dendrites. Either elevation of cyclic AMP levels or direct electrical stimulation of afterdischarge rapidly enhanced formation of these clusters on the somata of these neurons. In contrast, injection of a 13-amino acid peptide corresponding to a region in the C terminus that is required for clustering of Kv2.1 channels produced disassociation of the clusters, resulting in a more uniform distribution over the somata. Voltage clamp recordings demonstrated that peptide-induced dissociation of the Kv2.1 clusters is associated with an increase in the amplitude of delayed rectifier current and a shift of activation toward more negative potentials. In current clamp recording, injection of the unclustering peptide reduced the width of action potentials and reduced frequency-dependent broadening of action potentials. Our results suggest that rapid redistribution of Kv2.1 channels occurs during physiological changes in neuronal excitability.  相似文献   

12.
The membrane potential and membrane currents of single canine ventricular myocytes were studied using either single microelectrodes or suction pipettes. The myocytes displayed passive membrane properties and an action potential configuration similar to those described for multicellular dog ventricular tissue. As for other cardiac cells, in canine ventricular myocytes: (a) an inward rectifier current plays an important role in determining the resting membrane potential and repolarization rate; (b) a tetrodotoxin-sensitive Na current helps maintain the action potential plateau; and (c) the Ca current has fast kinetics and a large amplitude. Unexpected findings were the following: (a) in approximately half of the myocytes, there is a transient outward current composed of two components, one blocked by 4-aminopyridine and the other by Mn or caffeine; (b) there is clearly a time-dependent outward current (delayed rectifier current) that contributes to repolarization; and (c) the relationship of maximum upstroke velocity of phase 0 to membrane potential is more positive and steeper than that observed in cardiac tissues from Purkinje fibers.  相似文献   

13.
To better understand the mechanisms that underlie cardiac repolarization abnormalities in the immature heart, this study characterized and compared K(+) currents in mouse ventricular myocytes from day 1, day 7, day 20, and adult CD1 mice to determine the effects of postnatal development on ventricular repolarization. Current- and patch-clamp techniques were used to examine action potentials and the K(+) currents underlying repolarization in isolated myocytes. RT-PCR was used to quantify mRNA expression for the K(+) channels of interest. This study found that action potential duration (APD) decreased as age increased, with the shortest APDs observed in adult myocytes. This study also showed that K(+) currents and the mRNA relative abundance for the various K(+) channels were significantly greater in adult myocytes compared with day 1 myocytes. Examination of the individual components of total K(+) current revealed that the inward rectifier K(+) current (I(K1)) developed by day 7, both the Ca(2+)-independent transient outward current (I(to)) and the steady-state outward K(+) current (I(ss)) developed by day 20, and the ultrarapid delayed rectifier K(+) current (I(Kur)) did not fully develop until the mouse reached maturity. Interestingly, the increase in I(Kur) was not associated with a decrease in APD. Comparison of atrial and ventricular K(+) currents showed that I(to) and I(Kur) density were significantly greater in day 7, day 20, and adult myocytes compared with age-matched atrial cells. Overall, it appears that, in mouse ventricle, developmental changes in APD are likely attributable to increases in I(to), I(ss), and I(K1), whereas the role of I(Kur) during postnatal development appears to be less critical to APD.  相似文献   

14.
The electrophysiological effects of the beta-agonist, isoprenaline, on hypertrophied left ventricular myocardium were measured to understand better the arrhythmic effects of beta-stimulation on the hypertrophied heart. Left ventricular hypertrophy was induced in guinea-pigs by constriction of the thoracic aorta. An age-matched sham-operated group served as controls. Isolated myocytes were held under voltage- and current clamp and the effect of isoprenaline on the L-type Ca2+ current, I(Ca), a Cl- current, I(Cl), and action potential morphology were measured. Cardiac growth was mirrored by cellular hypertrophy. I(Ca) and I(Cl) current density were reduced as myocyte hypertrophy progressed. The augmentation of I(Ca) and I(Cl) by isoprenaline was also reduced in hypertrophy, but no other characteristics of the two currents, or the dose-dependency of the action of isoprenaline were a function of cardiac growth. Isoprenaline prolonged the action potential, but to a smaller extent in hypertrophied myocytes. This difference in action potential prolongation was abolished by glibenclamide. The changes to I(Ca) and I(Cl) in hypertrophy would not tend to increase triggered activity in this situation. Under maximum inotropic stimulation hypertrophied myocytes show action potential changes which are consistent with intracellular ATP depletion, and which could enhance the likelihood of re-entrant circuits. A simple diffusion model for oxygen is constructed to demonstrate the possibility of cellular hypoxia in hypertrophied myocytes.  相似文献   

15.
The role of IKCa in cardiac repolarization remains controversial and varies across species. The relevance of the current as a therapeutic target is therefore undefined. We examined the cellular electrophysiologic effects of IKCa blockade in controls, chronic heart failure (HF) and HF with sustained atrial fibrillation. We used perforated patch action potential recordings to maintain intrinsic calcium cycling. The IKCa blocker (apamin 100 nM) was used to examine the role of the current in atrial and ventricular myocytes. A canine tachypacing induced model of HF (1 and 4 months, n = 5 per group) was used, and compared to a group of 4 month HF with 6 weeks of superimposed atrial fibrillation (n = 7). A group of age-matched canine controls were used (n = 8). Human atrial and ventricular myocytes were isolated from explanted end-stage failing hearts which were obtained from transplant recipients, and studied in parallel. Atrial myocyte action potentials were unchanged by IKCa blockade in all of the groups studied. IKCa blockade did not affect ventricular myocyte repolarization in controls. HF caused prolongation of ventricular myocyte action potential repolarization. IKCa blockade caused further prolongation of ventricular repolarization in HF and also caused repolarization instability and early afterdepolarizations. SK2 and SK3 expression in the atria and SK3 in the ventricle were increased in canine heart failure. We conclude that during HF, IKCa blockade in ventricular myocytes results in cellular arrhythmias. Furthermore, our data suggest an important role for IKCa in the maintenance of ventricular repolarization stability during chronic heart failure. Our findings suggest that novel antiarrhythmic therapies should have safety and efficacy evaluated in both atria and ventricles.  相似文献   

16.
J Ibarra  G E Morley    M Delmar 《Biophysical journal》1991,60(6):1534-1539
The potassium selective, inward rectifier current (IK1) is known to be responsible for maintaining the resting membrane potential of quiescent ventricular myocytes. However, the contribution of this current to the different phases of the cardiac action potential has not been adequately established. In the present study, we have used the action potential clamp (APC) technique to characterize the dynamic changes of a cesium-sensitive (i.e., Ik1) current which occur during the action potential. Our results show that (a) Ik1 is present during depolarization, as well as in the final phase of repolarization of the cardiac action potential. (b) The current reaches the zone of inward-going rectification before the regenerative action potential ensues. (c) The maximal outward current amplitude during repolarization is significantly lower than during depolarization, which supports the hypothesis that in adult guinea pig ventricular myocytes, Ik1 rectification is accentuated during the action potential plateau. Our results stress the importance of Ik1 in the modulation of cell excitability in the ventricular myocyte.  相似文献   

17.
Tumor necrosis factor-alpha (TNF-alpha) is a proinflammatory cytokine that has been implicated in the pathogenesis of heart failure. Prolongation of the action potential duration and downregulation of several K(+) currents might participate in the genesis of arrhythmias associated with chronic heart failure. Little information is available related to the mechanism by which TNF-alpha modulates cardiac K(+) channels. The present study analyzes the effect of TNF-alpha on the transient outward K(+) current (I(to)) in rat ventricular myocytes, using the whole cell patch-clamp technique. We found that TNF-alpha is able to induce a significant reduction of I(to) density, modifies its inactivation, and downregulates the Kv4.2 protein expression, while calcium current density is not affected. We have also demonstrated that the reduction of I(to) density induced by TNF-alpha was prevented by the selective inducible nitric oxide synthase (iNOS) inhibitor 1400-W, the protein synthesis inhibitor cycloheximide, the antioxidant tocopherol, and the superoxide dismutase mimetic manganese(III) tetrakis (4-benzoic acid) porphyrin. In addition, a reduced I(to) density was recorded in ventricular myocytes exposed to peroxynitrite, supporting a possible participation of this oxidant in the effects of TNF-alpha on I(to). We conclude that TNF-alpha exposure, through iNOS induction and generation of oxidant species, promotes electrophysiological changes (decreased I(to) and action potential duration prolongation) in rat ventricular myocytes, providing new insights into how cytokines modulate K(+) channels in the heart.  相似文献   

18.
The ventricular action potential (AP) is characterized by a fast depolarizing phase followed by a repolarization that displays a second upstroke known as phase 2. This phase is generally not present in mouse ventricular myocytes. Thus we performed colocalized electrophysiological and optical recordings of APs in Langendorff-perfused mouse hearts founding a noticeable phase 2. Ryanodine as well as nifedipine reduced phase 2. Our hypothesis is that a depolarizing current activated by Ca(2+) released from the sarcoplasmic reticulum (SR) rather than the "electrogenicity" of the L-type Ca(2+) current is crucial in the generation of mouse ventricular phase 2. When Na(+) was partially replaced by Li(+) in the extracellular perfusate or the organ was cooled down, phase 2 was reduced. These results suggest that the Na(+)/Ca(2+) exchanger functioning in the forward mode is driving the depolarizing current that defines phase 2. Phase 2 appears to be an intrinsic characteristic of single isolated myocytes and not an emergent property of the tissue. As in whole heart experiments, ventricular myocytes impaled with microelectrodes displayed a large phase 2 that significantly increases when temperature was raised from 22 to 37°C. We conclude that mouse ventricular APs display a phase 2; however, changes in Ca(2+) dynamics and thermodynamic parameters also diminish phase 2, mostly by impairing the Na(+)/Ca(2+) exchanger. In summary, these results provide important insights about the role of Ca(2+) release in AP ventricular repolarization under physiological and pathological conditions.  相似文献   

19.
20.
Stretch activation of the Aplysia S-channel   总被引:2,自引:0,他引:2  
The S-channel, a receptor-mediated K+ channel of Aplysia sensory neurons which functions in neuromodulation, bears a strong resemblance to the ubiquitous stretch-activated channels of snail neurons. Snail neuron stretch channels are stretch sensitive only in the patch, not at the macroscopic level, a situation which leaves open the question of their physiological role. If S-channels resemble snail stretch channels because both belong to the same general class of channels, the S-channel, too, should display stretch sensitivity in the patch. We show, using single-channel recording, that the S-channel can be activated by stretch. Furthermore, we show that Aplysia neurons in general have stretch-activated K+ channels. We suggest that the stretch-sensitive K+ channels of molluscan neurons and other preparations (e.g., Drosophila muscle, snail heart) are S-like channels, i.e., receptor-mediated channels which adventitiously exhibit mechanosensitivity in the patch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号