首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The basic concept, that specialized extracellular matrices rich in hyaluronan, chondroitin sulfate proteoglycans (aggrecan, versican, neurocan, brevican, phosphacan), link proteins and tenascins (Tn-R, Tn-C) can regulate cellular migration and axonal growth and thus, actively participate in the development and maturation of the nervous system, has in recent years gained rapidly expanding experimental support. The swift assembly and remodeling of these matrices have been associated with axonal guidance functions in the periphery and with the structural stabilization of myelinated fiber tracts and synaptic contacts in the maturating central nervous system. Particular interest has been focused on the putative role of chondroitin sulfate proteoglycans in suppressing central nervous system regeneration after lesions. The axon growth inhibitory properties of several of these chondroitin sulfate proteoglycans in vitro, and the partial recovery of structural plasticity in lesioned animals treated with chondroitin sulfate degrading enzymes in vivo have significantly contributed to the increased awareness of this long time neglected structure.  相似文献   

2.
We have examined the regional distribution of several chondroitin sulfate proteoglycans (neurocan, brevican, versican, aggrecan, phosphacan), of their glycosaminoglycan moieties, and of tenascin-R in the spinal cord of adult rat. The relationships of these molecules with glial and neuronal populations, identified with appropriate markers, were investigated by using multiple fluorescence labeling combined with confocal microscopy. The results showed that the distribution of the examined molecules was similar at all spinal cord levels but displayed area-specific differences along the dorso-ventral axis, delimiting functionally and developmentally distinct areas. In the gray matter, laminae I and II lacked perineuronal nets (PNNs) of extracellular matrix and contained low levels of chondroitin sulfate glycosaminoglycans (CS-GAGs), brevican, and tenascin-R, possibly favoring the maintenance of local neuroplastic properties. Conversely, CS-GAGs, brevican, and phosphacan were abundant, with numerous thick PNNs, in laminae III-VIII and X. Motor neurons (lamina IX) were surrounded by PNNs that contained all molecules investigated but displayed various amounts of CS-GAGs. Double-labeling experiments showed that the presence of PNNs could not be unequivocally related to specific classes of neurons, such as motor neurons or interneurons identified by their expression of calcium-binding proteins (parvalbumin, calbindin, calretinin). However, a good correlation was found between PNNs rich in CS-GAGs and the neuronal expression of the Kv3.1b subunit of the potassium channel, a marker of fast-firing neurons. This observation confirms the correlation between the electrophysiological properties of these neurons and the specific composition of their microenvironment.  相似文献   

3.
Versican is an extracellular matrix proteoglycan produced by many cells. Although versican is generally known as a large chondroitin sulfate proteoglycan (CSPG), the smallest splice variant, V3, consists only of the amino- and carboxy-terminal globular domains and is therefore predicted to be a small glycoprotein, lacking CS chains. The large size, negative charge, and ability of versican variants to form pericellular coats with hyaluronan are responsible for many of its effects. V3, lacking the large size and high charge density, but retaining the hyaluronan-binding domain of the larger isoforms, may have different effects on cell phenotype. To determine whether V3 alters cell phenotype, Fisher rat arterial smooth muscle cells (ASMCs), which express the larger CSPG versican splice forms (V0 and V1) were retrovirally transduced with the rat V3 cDNA. Northern analysis for versican RNAs confirmed that cells transduced with V3 retrovirus, but not cells tranduced with the empty vector, expressed RNA of the size expected for V3/neo(r) bicistronic RNA. V3 overexpressing cells were more spread on tissue culture plastic, had a smaller length-to-breadth ratio and were more resistant to release from the culture dish by trypsin. Interference reflection microscopy of sparsely plated cells showed larger areas of close contact between the V3 expressing cells and the coverslip, in comparison to control cells. Focal contacts in the periphery of V3 expressing cells were larger. Growth and migration studies revealed that V3 transduced cells grow slower and migrate a shorter distance in a scratch wound assay. The increased adhesion and the inhibition of migration and proliferation resulting from V3 overexpression are the opposites of the known and predicted effects of the other variants of versican. V3 may exert these effects through changes in pericellular coat formation, either by competing with larger isoforms for hyaluronan-binding, or by altering other components of the pericellular matrix.  相似文献   

4.
The aggregating proteoglycans (aggrecan, versican, neurocan, and brevican) are important components of many extracellular matrices. Their N-terminal globular domain binds to hyaluronan, but the function of their C-terminal region containing a C-type lectin domain is less clear. We now report that a 90-kDa protein copurifies with recombinant lectin domains from aggrecan and versican, but not from the brain-specific neurocan and brevican. Amino acid sequencing of tryptic peptides from this protein identified it as fibulin-1. This extracellular matrix glycoprotein is strongly expressed in tissues where versican is expressed (blood vessels, skin, and developing heart), and also expressed in developing cartilage and bone. It is thus likely to interact with these proteoglycans in vivo. Surface plasmon resonance measurements confirmed that aggrecan and versican lectin domains bind fibulin-1, whereas brevican and neurocan do not. As expected for a C-type lectin, the interactions with fibulin-1 are Ca2+-dependent, with KD values in the low nanomolar range. Using various deletion mutants, the binding site for aggrecan and versican lectin domains was mapped to the epidermal growth factor-like repeats in domain II of fibulin-1. No difference in affinity was found for deglycosylated fibulin-1, indicating that the proteoglycan C-type lectin domains bind to the protein part of fibulin-1.  相似文献   

5.
We developed a method to extract differentially chondroitin sulfate proteoglycans (CSPGs) that are diffusely present in the central nervous system (CNS) matrix and CSPGs that are present in the condensed matrix of perineuronal nets (PNNs). Adult rat brain was sequentially extracted with Tris-buffered saline (TBS), TBS-containing detergent, 1 m NaCl, and 6 m urea. Extracting tissue sections with these buffers showed that the diffuse and membrane-bound CSPGs were extracted in the first three buffers, but PNN-associated CSPGs remained and were only removed by 6 m urea. Most of the CSPGs were extracted to some degree with all the buffers, with neurocan, brevican, aggrecan, and versican particularly associated with the stable urea-extractable PNNs. The CSPGs in stable complexes only extractable in urea buffer are found from postnatal day 7-14 coinciding with PNN formation. Disaccharide composition analysis indicated a different glycosaminoglycan (GAG) composition for PGs strongly associated with extracellular matrix (ECM). For CS/dermatan sulfate (DS)-GAG the content of nonsulfated, 6-O-sulfated, 2,6-O-disulfated, and 4,6-O-disulfated disaccharides were higher and for heparan sulfate (HS)-GAG, the content of 6-O-sulfated, 2-N-, 6-O-disulfated, 2-O-, 2-N-disulfated, and 2-O-, 2-N-, 6-O-trisulfated disaccharides were higher in urea extract compared with other buffer extracts. Digestions with chondroitinase ABC and hyaluronidase indicated that aggrecan, versican, neurocan, brevican, and phosphacan are retained in PNNs through binding to hyaluronan (HA). A comparison of the brain and spinal cord ECM with respect to CSPGs indicated that the PNNs in both parts of the CNS have the same composition.  相似文献   

6.

Background

A major class of axon growth-repulsive molecules associated with CNS scar tissue is the family of chondroitin sulphate proteoglycans (CSPGs). Experimental spinal cord injury (SCI) has demonstrated rapid re-expression of CSPGs at and around the lesion site. The pharmacological digestion of CSPGs in such lesion models results in substantially enhanced axonal regeneration and a significant functional recovery. The potential therapeutic relevance of interfering with CSPG expression or function following experimental injuries seems clear, however, the spatio-temporal pattern of expression of individual members of the CSPG family following human spinal cord injury is only poorly defined. In the present correlative investigation, the expression pattern of CSPG family members NG2, neurocan, versican and phosphacan was studied in the human spinal cord.

Methods

An immunohistochemical investigation in post mortem samples of control and lesioned human spinal cords was performed. All patients with traumatic SCI had been clinically diagnosed as having "complete" injuries and presented lesions of the maceration type.

Results

In sections from control spinal cord, NG2 immunoreactivity was restricted to stellate-shaped cells corresponding to oligodendrocyte precursor cells. The distribution patterns of phosphacan, neurocan and versican in control human spinal cord parenchyma were similar, with a fine reticular pattern being observed in white matter (but also located in gray matter for phosphacan). Neurocan staining was also associated with blood vessel walls. Furthermore, phosphacan, neurocan and versican were present in the myelin sheaths of ventral and dorsal nerve roots axons. After human SCI, NG2 and phosphacan were both detected in the evolving astroglial scar. Neurocan and versican were detected exclusively in the lesion epicentre, being associated with infiltrating Schwann cells in the myelin sheaths of invading peripheral nerve fibres from lesioned dorsal roots.

Conclusion

NG2 and phosphacan were both present in the evolving astroglial scar and, therefore, might play an important role in the blockade of successful CNS regeneration. Neurocan and versican, however, were located at the lesion epicentre, associated with Schwann cell myelin on regenerating peripheral nerve fibres, a distribution that was unlikely to contribute to failed CNS axon regeneration. The present data points to the importance of such correlative investigations for demonstrating the clinical relevance of experimental data.  相似文献   

7.
A complete cDNA encoding the Xenopus laevis homologue of the aggrecan/versican family member, brevican (Xbcan) was cloned from an embryonic stage 42 cDNA library. In the deduced amino acid sequence, 1152 in length, similarity to the hyaluronan-binding (link) domains of brevicans from other species were present in the N-terminal region as well as EGF-, lectin- and complement regulatory protein-like domains in the C-terminal part, the latter three being characteristic for brevican found within the extracellular matrix (J. Biol. Chem. 269 (1994) 10119). Indeed, Xbcan was secreted into the extracellular space as a soluble protein when expressed in oocytes. No cDNAs encoding a GPI-anchored bcan variant could be isolated from that cDNA library. During embryonic development, the expression of this gene was first observed in the notochord of neurula stage embryos. In addition to this, in tailbuds, Xbcan was also found to be expressed within the fifth and sixth rhombomere of the hindbrain. In tadpole stage embryos, expression was furthermore observed in periventricular regions of the developing brain and the rostral part of the spinal cord.  相似文献   

8.
Proteoglycans (PGs) are major constituents of the extracellular matrix and have recently been proposed to contribute to synaptic plasticity. Hippocampal PGs have not yet been studied or linked to memory. The aim of the study, therefore, was to isolate and characterize rat hippocampal PGs and determine their possible role in spatial memory. PGs were extracted from rat hippocampi by anion‐exchange chromatography and analyzed by nano LC‐MS/MS. Twenty male Sprague–Dawley rats were tested in the morris water maze. PGs agrin, amyloid beta A4 protein, brevican, glypican‐1, neurocan, phosphacan, syndecan‐4, and versican were identified in the hippocampi. Brevican and versican levels in the membrane fraction were higher in the trained group, correlating with the time spent in the target quadrant. α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate receptor GluR1 was co‐precipitated with brevican and versican. Levels for a receptor complex containing GluR1 was higher in trained while GluR2 and GluR3‐containing complex levels were higher in yoked rats. The findings provide information about the PGs present in the rat hippocampus, demonstrating that versican and brevican are linked to memory retrieval in the morris water maze and that PGs interact with α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate receptor GluR1, which is linked to memory retrieval.

  相似文献   


9.
Versican: a versatile extracellular matrix proteoglycan in cell biology   总被引:21,自引:0,他引:21  
Versican is a large extracellular matrix proteoglycan that is present in a variety of tissues. Successful cloning of the gene in man, mouse, cow and chicken has revealed the existence of at least four splice variants of versican, which differ in the size of the core protein and the number of glycosaminoglycan chains. The highly interactive nature of versican provides a basis for its importance as a structural molecule, creating loose and hydrated matrices during key events in development and disease; and by interacting either directly with cells or indirectly with molecules that associate with cells to, in part, regulate cell adhesion and survival, cell proliferation, cell migration and extracellular matrix assembly. Several studies within the past two years have confirmed a significant role for versican in regulating cell phenotype.  相似文献   

10.
A general feature of the cell adhesion molecules belonging to the immunoglobulin family (Ig-CAMs) is to display a modular structure that provides a framework for multiple binding sites for other recognition molecules. Among this family, F3/contactin is a glycan phosphatidyl-inositol (GPI)-anchored molecule expressed by neurons that displays the distinctiveness to exert heterophilic but no homophilic binding activities. The Ig domains of F3/contactin were shown to interact with the L1 family of Ig-CAMs, including L1, NrCAM, and neurofascin. Binding between F3/contactin and NrCAM is known to modulate axonal elongation of the cerebellar granule cells and to control sensory axon guidance. F3/contactin mediates neuron-glial contacts through its association with extracellular matrix components (tenascin-R, tenascin-C) and RPTPbeta/phosphacan, influencing axonal growth and fasciculation. Another major role of F3/contactin is to organize axonal subdomains at the node of Ranvier of myelinated fibers in interplay with other Ig-CAMs, through its binding with caspr/paranodin at paranodes and the voltage-gated sodium channels in the nodal region. The F3/contactin deficient mice display a severe ataxia correlated with defects in axonal and dendritic projections in the cerebellum. These mice also display defects in nerve influx conduction due to the disruption of the axo-glial contacts at paranodes. Finally, the recent identification of a Drosophila homologue of F3/contactin indicated that this family of GPI-anchored CAMs plays a conserved function in axonal insulation.  相似文献   

11.
Action potential propagation along myelinated nerve fibers requires high-density protein complexes that include voltage-gated Na(+) channels at the nodes of Ranvier. Several complementary mechanisms may be involved in node assembly including: (1) interaction of nodal cell adhesion molecules with the extracellular matrix; (2) restriction of membrane protein mobility by paranodal junctions; and (3) stabilization of ion channel clusters by axonal cytoskeletal scaffolds. In the peripheral nervous system, a secreted glial protein at the nodal extracellular matrix interacts with axonal cell adhesion molecules to initiate node formation. In the central nervous system, both glial soluble factors and paranodal axoglial junctions may function in a complementary manner to contribute to node formation.  相似文献   

12.
Mature human aorta contains a 70-kDa versican fragment, which reacts with a neoepitope antiserum to the C-terminal peptide sequence DPEAAE. This protein therefore appears to represent the G1 domain of versican V1 (G1-DPEAAE(441)), which has been generated in vivo by proteolytic cleavage at the Glu(441)-Ala(442) bond, within the sequence DPEAAE(441)-A(442)RRGQ. Because the equivalent aggrecan product (G1-NITEGE(341)) and brevican product (G1-EAVESE(395)) are generated by ADAMTS-mediated cleavage of the respective proteoglycans, we tested the capacity of recombinant ADAMTS-1 and ADAMTS-4 to cleave versican at Glu(441)-Ala(442). Both enzymes cleaved a recombinant versican substrate and native human versican at the Glu(441)-Ala(442) bond and the mature form of ADAMTS-4 was detected by Western analysis of extracts of aortic intima. We conclude that versican V1 proteolysis in vivo can be catalyzed by one or more members of the ADAMTS family of metalloproteinases.  相似文献   

13.
14.
Aggrecan, versican, neurocan, and brevican are important components of the extracellular matrix in various tissues. Their amino-terminal globular domains bind to hyaluronan, but the function of their carboxyl-terminal globular domains has long remained elusive. A picture is now emerging where the C-type lectin motif of this domain mediates binding to other extracellular matrix proteins. We here demonstrate that aggrecan, versican, and brevican lectin domains bind fibulin-2, whereas neurocan does not. As expected for a C-type lectin, the interactions are calcium-dependent, with K(D) values in the nanomolar range as measured by surface plasmon resonance. Solid phase competition assays with previously identified ligands demonstrated that fibulin-2 and tenascin-R bind the same site on the proteoglycan lectin domains. Fibulin-1 has affinity for the common site on versican but may bind to a different site on the aggrecan lectin domain. By using deletion mutants, the interaction sites for aggrecan and versican lectin domains were mapped to epidermal growth factor-like repeats in domain II of fibulin-2. Affinity chromatography and solid phase assays confirmed that also native full-length aggrecan and versican bind the lectin domain ligands. Electron microscopy confirmed the mapping and demonstrated that hyaluronan-aggrecan complexes can be cross-linked by the fibulins.  相似文献   

15.
BEHAB (brain-enriched hyaluronan-binding protein)/brevican is the most abundant chondroitin sulfate proteoglycan in the extracellular matrix of the adult rat brain. BEHAB/brevican expression is up-regulated coincident with glial cell proliferation and/or motility, including during early central nervous system development and in invasive glioma. An understanding of the molecular interactions that mediate BEHAB/brevican function is still in its infancy because of the existence of several BEHAB/brevican isoforms, each of which may mediate different functions. Here, we describe a novel BEHAB/brevican isoform, B/b130, and demonstrate that it is neither the glycosylphosphatidylinositol-linked splice variant of BEHAB/brevican nor a cleavage product of the full-length protein (B/b150). B/b130 is an underglycosylated isoform of BEHAB/brevican, lacking glycosaminoglycan chains as well as most of the sugars that invest B/b150. B/b130 localizes exclusively to the particulate fraction of rat brain and associates with the cell membrane by a previously undescribed calcium-independent mechanism. In addition, B/b130 is the major isoform of BEHAB/brevican that is up-regulated in a rat model of invasive glioma and may therefore contribute to the invasive ability of glioma cells. Further understanding of BEHAB/brevican isoforms will advance our knowledge of the function of this ECM component and may help identify new potential therapeutic targets for primary brain tumors.  相似文献   

16.
In this study, we report the immunohistochemical localization of versican in healthy porcine gingival epithelia. The monoclonal antibody (mAb), 5D5, specifically recognizes core proteins of large chondroitin sulphate proteoglycans such as versican, neurocan and brevican, but not the core protein of aggrecan. Because neurocan and brevican appear to be specific to nervous tissue, the large chondroitin sulphate proteoglycans examined in this study is most likely versican. In the keratinized layer of the attached gingival epithelium, the basal and spinous cell surfaces showed intense staining for mAb 5D5. In the parakeratinized layer of the sulcus epithelium, the localization was restricted to the basal and lower spinous layers. In the junctional epithelium, intense staining was observed in one or two cell layers near the enamel surface. Immunoelectron microscopy revealed high-density depositions of 5D5 immunoreactivity on epithelial cell surfaces. At the enamel surface, 5D5 immunoreactivity was localized to the dental cuticle of the junctional epithelium but was not present in the internal basal lamina. These results suggest that versican, a large chondroitin sulphate proteoglycan, is involved in epithelial differentiation and downgrowth.  相似文献   

17.
A characteristic feature of malignant glial tumors (gliomas) is their tendency to diffusely infiltrate the nervous system preventing their complete surgical resection. Proteases play a decisive role in this malignant process, either by degradation of brain extracellular matrix (ECM) components, adhesion molecules, or by regulating the activity of growth and chemotactic factors. Secreted matrix metalloproteinases (MMPs) and ADAMTS proteases (ADAMs with thrombospondin motifs) cleave different ECM components like the proteoglycans (lecticans) aggrecan, versican, neurocan and brevican with selective preferences; they are further regulated by endogenous inhibitors and activating metallo- and serine proteases. Cell surface proteases of the ADAM family (A Disintegrin And Metalloproteinase), but also serine proteases regulate the activity of growth factors and chemokines that act as autocrine / paracrine stimulators within gliomas. Thus, proteases play a decisive role for the spread and growth of gliomas and are prominent targets for their therapy.  相似文献   

18.
Versican is a large chondroitin sulfate proteoglycan and belongs to the family of lecticans. Versican possesses two globular domains, G1 and G3 domain, separated by a CS-attachment region. The CS-attachment region present in the middle region is divided into two spliced domains named CSalpha and beta. Alternative splicing of versican generates at least four versican isoforms named V0, V1, V2, and V3. We have successfully cloned the full-length cDNA of chick versican isoforms V1 and V2 and found that versican isoform V1 induced mesenchymal-epithelial transition in NIH3T3 cells. Mesenchymal-epithelial transition induced by V1 in NIH3T3 cells is characterized by expression of E-cadherin and occludin, two epithelial markers, and reduced expression of fibroblastic marker vimentin (Sheng et al., 2006, Mol Biol Cell. 17, 2009-2020). In the present studies, we found that versican V1 isoform not only induced cell transition, but also increased intercellular communication via gap junction channels composed of connexin proteins. Our results showed that V1 induces plasma membrane localization of connexin 43, resulting in increased cell communication. This was further confirmed by blocking assays. Gap junctions mediated the transfer of small cytoplasmic molecules and the diffusion of second messenger molecules between adjacent cells. The ability of versican in regulating gap junction implied a potential role of versican in coordinating functions.  相似文献   

19.
A characteristic feature of malignant glial tumors (gliomas) is their tendency to diffusely infiltrate the nervous system preventing their complete surgical resection. Proteases play a decisive role in this malignant process, either by degradation of brain extracellular matrix (ECM) components, adhesion molecules, or by regulating the activity of growth and chemotactic factors. Secreted matrix metalloproteinases (MMPs) and ADAMTS proteases (ADAMs with thrombospondin motifs) cleave different ECM components like the proteoglycans (lecticans) aggrecan, versican, neurocan and brevican with selective preferences; they are further regulated by endogenous inhibitors and activating metallo- and serine proteases. Cell surface proteases of the ADAM family (A Disintegrin And Metalloproteinase), but also serine proteases regulate the activity of growth factors and chemokines that act as autocrine / paracrine stimulators within gliomas. Thus, proteases play a decisive role for the spread and growth of gliomas and are prominent targets for their therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号