首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature-responsive microsomes of the ciliate protozoan Tetrahymena have been originally fractionated by step centrifugation on two-layered, Mg2+-containing sucrose gradients. Three fractions have been obtained, which are termed smooth I, smooth II and rough according to the appearance of the membrane vesicles upon electron-microscopy. Smooth I, smooth II, and rough microsomes exhibit RNA/protein ratios of 0.09, 0.20, and 0.34; their phospholipid/protein ratios and their neutral lipid/phospholipid ratios were 0.52, 0.43 and 0.25, and 0.17, 0.18 and 0.13, respectively. All three fractions contain equivalent, low succinic dehydrogenase and 5'-nucleotidase activities. Glucose-6-phosphatase and acid phosphatase are more concentrated in smooth I membranes than in rough membranes. The reverse is true for ATPase. The smooth II membranes occupy an intermediate position except that their ATPase activity is the lowest of the three fractions. The specific activities of these enzymes of the three microsomal fractions are compared to those of homogenates of whole cells. Thin-layer chromatography reveals a very similar polar and nonpolar lipid pattern of the three microsomal fractions. The major phospholipid compounds are phosphatidlethanolamine, glycerideaminoethylphosphonate and phosphatidylcholine, while diglycerides, an unknown NL-compound, and triglycerides are the major apolar lipids. Gas liquid chromatography shows that the fatty acids are mainly even-numbered ranging between C12 and C18. The smooth I, smooth II and rough membranes contain 65.2, 69.3 and 72.7% unsaturated fatty acids in their polar lipids, whereas only 52.7, 49.7 and 48.3% unsaturated acids are found in their apolar lipids, respectively. The fatty acids are more unevenly distributed among the individual polar lipids than in the apolar ones.  相似文献   

2.
The simple apolar C-mycosides, i.e., structurally well-defined hydrophobic glycopeptidolipids of several Mycobacterium species (see diagram below), were earlier shown to behave as receptors for adsorption of mycobacteriophage D4. This phage is usually virulent for Mycobacterium smegmatis. More complex, polar C-mycosides with additional carbohydrate substituents attached solely to the deoxytalose have recently been described. They are the highly specific serotyping antigens discovered by W. B. Schaefer--lipids which characterize members of the Mycobacterium avium-Mycobacterium intracellulare-Mycobacterium scrofulaceum (MAIS) complex. Both kinds are depicted in the structure below: (Formula: see text) where X equals H (for simple, apolar C-mycosides) and X equals small oligosaccharides (for antigenic forms; more complex, polar C-mycosides). The present investigations showed that the purified polar antigenic lipids exhibit considerably less adsorptive activity for D4 than do the apolar C-mycosides. Thus, the haptenic oligosaccharides are believed to shield the site in the molecule that the phage recognizes, and the blocking is reinforced by the specific antibodies that the antigens elicit. Although the MAIS serovars usually also produce the phage-reactive apolar C-mycosides, they are not permissive hosts for D4, nor do whole cells adsorb the phage. We suggest that in these species the apolar forms are probably "covered" at the cell surface by the antigenic lipids. Therefore, these antigenic mycosides may play a putative role in virulence of the MAIS members by protecting these mycobacteria from their own potential pathogen. The results of chemical transformations at specific sites of the mycoside core coupled with studies of simple synthetic lipid glycosides indicated that the principal phage receptor activity resides in the terminal methylated rhamnose (see diagram). It is this sugar which is evidently masked by the (seemingly remote) haptenic oligosaccharides.  相似文献   

3.
Phosphatidylinositol (PI) is an abundant phospholipid in the cytoplasmic membrane of mycobacteria and the precursor for more complex glycolipids, such as the PI mannosides (PIMs) and lipoarabinomannan (LAM). To investigate whether the large steady-state pools of PI and apolar PIMs are required for mycobacterial growth, we have generated a Mycobacterium smegmatis inositol auxotroph by disruption of the ino1 gene. The ino1 mutant displayed wild-type growth rates and steady-state levels of PI, PIM, and LAM when grown in the presence of 1 mM inositol. The non-dividing ino1 mutant was highly resistant to inositol starvation, reflecting the slow turnover of inositol lipids in this stage. In contrast, dilution of growing or stationary-phase ino1 mutant in inositol-free medium resulted in the rapid depletion of PI and apolar PIMs. Whereas depletion of these lipids was not associated with loss of viability, subsequent depletion of polar PIMs coincided with loss of major cell wall components and cell viability. Metabolic labeling experiments confirmed that the large pools of PI and apolar PIMs were used to sustain polar PIM and LAM biosynthesis during inositol limitation. They also showed that under non-limiting conditions, PI is catabolized via lyso-PI. These data suggest that large pools of PI and apolar PIMs are not essential for membrane integrity but are required to sustain polar PIM biosynthesis, which is essential for mycobacterial growth.  相似文献   

4.
The stratified water column of the Black Sea produces a vertical succession of redox zones, stimulating microbial activity at the interfaces. Our study of intact polar membrane lipids (IPLs) in suspended particulate matter and sediments highlights their potential as biomarkers for assessing the taxonomic composition of live microbial biomass. Intact polar membrane lipids in oxic waters above the chemocline represent contributions of bacterial and eukaryotic photosynthetic algae, while anoxygenic phototrophic bacteria and sulfate-reducing bacteria comprise a substantial amount of microbial biomass in deeper suboxic and anoxic layers. Intact polar membrane lipids such as betaine lipids and glycosidic ceramides suggest unspecified anaerobic bacteria in the anoxic zone. Distributions of polar head groups and core lipids show planktonic archaea below the oxic zone; methanotrophic archaea are only a minor fraction of archaeal biomass in the anoxic zone, contrasting previous observations based on the apolar derivatives of archaeal lipids. Sediments contain algal and bacterial IPLs from the water column, but transport to the sediment is selective; bacterial and archaeal IPLs are also produced within the sediments. Intact polar membrane lipid distributions in the Black Sea are stratified in accordance with geochemical profiles and provide information on vertical successions of major microbial groups contributing to suspended biomass. This study vastly extends our knowledge of the distribution of complex microbial lipids in the ocean.  相似文献   

5.
In the second part of this series, previous solvent limitations in infrared studies are discussed and novel polar solvent systems for the analysis of nonpolar and polar lipids described. Limitation of potassium bromide windows for infrared cells are discussed. The use of calcium fluoride cells with crude lipids is discussed. Problems related to hydrogen bonding of lipid solutes in various solvent systems are discussed as well as hydrogen-deuterium exchange in biologically important lipids.  相似文献   

6.
Outer membrane protein A (OmpA) of Escherichia coli is a beta-barrel membrane protein that unfolds in 8 M urea to a random coil. OmpA refolds upon urea dilution in the presence of certain detergents or lipids. To examine the minimal requirements for secondary and tertiary structure formation in beta-barrel membrane proteins, folding of OmpA was studied as a function of the hydrophobic chain length, the chemical structure of the polar headgroup, and the concentration of a large array of amphiphiles. OmpA folded in the presence of detergents only above a critical minimal chain length of the apolar chain as determined by circular dichroism spectroscopy and a SDS-PAGE assay that measures tertiary structure formation. Details of the chemical structure of the polar headgroup were unimportant for folding. The minimal chain length required for folding correlated with the critical micelle concentration in each detergent series. Therefore, OmpA requires preformed detergent micelles for folding and does not adsorb monomeric detergent to its perimeter after folding. Formation of secondary and tertiary structure is thermodynamically coupled and strictly dependent on the interaction with aggregated amphiphiles.  相似文献   

7.
S Köhler  AR Bausch 《PloS one》2012,7(7):e39869
Simplified in vitro systems are ideally suited for studying the principle mechanisms of the contraction of cytoskeletal actin systems. To shed light on the dependence of the contraction mechanism on the nature of the crosslinking proteins, we study reconstituted in vitro active actin networks on different length scales ranging from the molecular organization to the macroscopic contraction. Distinct contraction mechanisms are observed in polar and apolar crosslinked active gels whereas composite active gels crosslinked in a polar and apolar fashion at the same time exhibit both mechanisms simultaneously. In polar active actin/fascin networks initially bundles are formed which are then rearranged. In contrast, apolar cortexillin-I crosslinked active gels are bundled only after reorganization of actin filaments by myosin-II motor filaments.  相似文献   

8.
Yeast and mycelial forms of Candida albicans ATCC 10231, growing together in 12 h and in 96 h cultures, were separated and their lipids were extracted and characterized. The total lipid content of the yeast forms was always lower than that of the mycelial forms. In 12 h cultures the lipids from the two morphological forms consisted mainly of polar compounds, viz, phospholipids and glycolipids. In 96 h cultures both the yeast and mycelial forms accumulated substantial amounts of apolar compounds, mainly steryl esters and triacylglycerols. The mycelial forms were more active than the yeast forms in this respect. Major differences in the lipid composition between the two morphological forms involved the contents of sterols and complex lipids that contain sterols. As a rule, the yeast lipids contained much larger proportions of free sterols than the mycelial lipids. However, the mycelial lipids contained several times more sterols than the yeast forms but bound as steryl glycosides, esterified steryl glycosides and steryl esters. Steryl glycosides and esterified steryl glycosides occurred in yeast lipids only in traces, if at all. The major steryl glycoside in the mycelial forms was unequivocally identified as cholesteryl mannoside. At both phases of growth the apolar and polar lipid fractions from the mycelial forms contained higher levels of polyunsaturated fatty acids (18:2 and 18:3) but lower levels of oleic acid (18:1) than the corresponding fractions from the yeast forms. The lipid content and composition of 12 h and 96 h yeast and mycelial forms of C. albicans KCCC 14172, a clinical isolate, were almost identical with those of C. albicans ATCC 10231.  相似文献   

9.
Solid model compounds and the thermodynamics of protein unfolding.   总被引:7,自引:0,他引:7  
Analysis of thermodynamic data on the dissolution of solid cyclic dipeptides into water in terms of group additivity provides a rationale for the enthalpy and entropy convergence temperatures observed for small globular protein denaturation and the dissolution of model compounds into water. Convergence temperatures are temperatures at which the extrapolated enthalpy or entropy changes for a series of related compounds take on a common value. At these temperatures (TH* and TS*) the apolar contributions to the corresponding thermodynamic values (delta H degrees and delta S degrees) are shown to be zero. Other contributions such as hydrogen bonding and configurational effects can then be evaluated and their quantitative effects on the stability of globular proteins assessed. It is shown that the denaturational heat capacity is composed of a large positive contribution from the exposure of apolar groups and a significant negative contribution from the exposure of polar groups in agreement with previous results. The large apolar contribution suggests that a liquid hydrocarbon model of the hydrophobic effect does not accurately represent the apolar contribution to delta H degrees of denaturation. Rather, significant enthalpic stabilizing contributions are found to arise from peptide groups (hydrogen bonding). Combining the average structural features of globular proteins (i.e. number of residues, fraction of buried apolar groups and fraction of hydrogen bonds) with their specific group contributions permits a first-order prediction of the thermodynamic properties of proteins. The predicted values compare well with literature values for cytochrome c, myoglobin, ribonuclease A and lysozyme. The major thermodynamic features are described by the number of peptide and apolar groups in a given protein.  相似文献   

10.
Lipid-specific fluorescent probes are natural lipids carrying an apolar fluorophore in one of the hydrocarbon chains. Since such probes retain the head groups and resemble the molecular shape of native membrane lipids, they largely mimic the behaviour of their natural prototypes in biological membranes. Information provided by the lipid-specific probes is more differentiated and easier to interpret than that obtained from non-lipid probes. The principles of design of lipid-specific probes are formulated and the relative advantages and disadvantages of various fluorophores are discussed. In order to reduce ambiguities caused by perturbation of the probe environment, it is proposed to use, in a comparative manner, two or more lipid-specific probes resembling each other in all aspects except the polar head groups (the 'two probes' concept). Two types of fluorophores, the anthrylvinyl group and the perylenoyl group, were found to be well suited for the synthesis of lipid-specific probes. Use of both types of probes 'in tandem' opens new possibilities for studying lipid-protein and lipid-lipid interactions in biological membranes. The anthrylvinyl- and perylenoyl-labeled lipids were applied in studies of serum lipoproteins and erythrocyte membranes. A new highly sensitive ligand-receptor binding assay and a new approach to biological signal amplifying based on the use of lipid-specific probes are described.  相似文献   

11.
Newly formed polar and apolar 1/16 blastomeres were isolated and cultured singly, or in various combinations, through division to form 32-cell blastomeres. The morphology of the resulting cell cluster appeared to depend upon the nature and composition of the cell combination used. In most polar + apolar couplets, the polar cell enveloped the apolar cell, and following division, a 4/32 cluster was thereby generated containing two trophectoderm-like external cells derived from the polar cell and two ICM-like internal cells derived from the apolar cells. A polar cell cultured in isolation divided to give either two trophectoderm-like external cells or a trophectoderm-like cell and an ICM-like cell. Two polar cells cultured together generated clusters in which the ratio of trophectoderm-like:ICM-like cells was 4:0 or 3:1. Most apolar cells cultured together in couplets polarized, and generated 4/32 clusters containing either purely trophectoderm-like or a mixture of trophectoderm- and ICM-like cells. The results are consistent with the notion that continuing interactions between polar and apolar cells are necessary to maintain their respective fates as trophectoderm and ICM, and that in the absence of these interactions polar cells can generate ICM cells by a differentiative division and apolar cells can generate trophectoderm cells by polarizing in response to asymmetric cell contacts.  相似文献   

12.
Lipids that are covalently labeled with the 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) group are widely used as fluorescent analogues of native lipids in model and biological membranes to study a variety of processes. The fluorescent NBD group may be attached either to the polar or the apolar regions of a wide variety of lipid molecules. Synthetic routes for preparing the lipids, and spectroscopic and ionization properties of these probes are reviewed in this report. The orientation of various NBD-labeled lipids in membranes, as indicated by the location of the NBD group, is also discussed. The NBD group is uncharged at neutral pH in membranes, but loops up to the surface if attached to acyl chains of phospholipids. These lipids find applications in a variety of membrane-related studies which include membrane fusion, lipid motion and dynamics, organization of lipids and proteins in membranes, intracellular lipid transfer, and bilayer to hexagonal phase transition in liposomes. Use of NBD-labeled lipids as analogues of natural lipids is critically evaluated.  相似文献   

13.
A specific assay method for radiolabelled digoxin and its known apolar metabolites in plasma, urine and saliva was developed. The assay permits the delineation of the pharmacokinetics of digoxin and its metabolites after single-dose administration of the drug to humans. Column chromatographic and solvent extraction procedures were used for the separation of apolar and polar compounds. Thin-layer chromatography was applied for the individual and specific assessment of digoxin and its apolar metabolites. Apolar and polar standards were used for quantitative assessments of all the procedures used. Accuracy and precision of the assay developed were evaluated in plasma, urine and saliva using biological samples spiked with known amounts of standards and by measuring replicates of biological samples obtained from pharmacokinetic studies with digoxin administration to humans.  相似文献   

14.
Summary The surface properties of newly formed, isolated 1/16 mouse blastomeres have been analyzed over the 10–12 h period prior to their division to 2/32 cells. Two populations of cells are formed at the 8- to 16-cell transition and their surface phenotypes vary with their relative position within the morula. Outer cells are polar, relatively non-adhesive and relatively large; inner cells are apolar, adhesive and smaller. The surface phenotypes of both inner and outer 1/16 cells are stable during culture for 11 h in isolation. However, the surface phenotypes can be induced to change by culture in combination with a second 1/16 cell, in a manner that is dependent upon the identity of the second cell. Two aggregated polar cells never flatten completely against each other, and both cells retain a clearly defined polar phenotype for 11–12 h. In aggregates of two apolar cells, cell outlines are lost as a result of intercellular flattening and microvilli are displaced away from areas of cell contact. However, if the two apolar cells are subsequently separated an even distribution of microvilli is restored. In most aggregates of an apolar and a polar cell, the polar cell envelops the apolar cell completely. These results are discussed in the context of the normal fate and potential of each cell type within the morula.  相似文献   

15.
A 12-residue peptide designed to form an alpha-helix and self-associate into an antiparallel 4-alpha-helical bundle yields a 0.9 A crystal structure revealing unanticipated features. The structure was determined by direct phasing with the "Shake-and-Bake" program, and contains four crystallographically distinct 12-mer peptide molecules plus solvent for a total of 479 atoms. The crystal is formed from nearly ideal alpha-helices hydrogen bonded head-to-tail into columns, which in turn pack side-by-side into sheets spanning the width of the crystal. Within each sheet, the alpha-helices run antiparallel and are closely spaced (9-10 A center-to-center). The sheets are more loosely packed against each other (13-14 A between helix centers). Each sheet is amphiphilic: apolar leucine side chains project from one face, charged lysine and glutamate side chains from the other face. The sheets are stacked with two polar faces opposing and two apolar faces opposing. The result is a periodic biomaterial composed of packed protein bilayers, with alternating polar and apolar interfaces. All of the 30 water molecules in the unit cell lie in the polar interface or between the stacked termini of helices. A section through the sheet reveals that the helices packed at the apolar interface resemble the four-alpha-helical bundle of the design, but the helices overhang parts of the adjacent bundles, and the helix crossing angles are less steep than intended (7-11 degrees rather than 18 degrees).  相似文献   

16.
Thermodynamics related to hydrated water upon protein unfolding is studied over a broad temperature range (5-125 degrees C). The hydration effect arising from the apolar interior is modeled as an increased number of hydrogen bonds between water molecules compared with bulk water. The corresponding contribution from the polar interior is modeled as a two-step process. First, the polar interior breaks hydrogen bonds in bulk water upon unfolding. Second, due to strong bonds between the polar surface and the nearest water molecules, we assume quantization using a simplified two-state picture. The heat capacity change upon hydration is compared with model compound data evaluated previously for 20 different proteins. We obtain good correspondence with the data for both the apolar and the polar interior. We note that the effective coupling constants for both models have small variations among the proteins we have investigated.  相似文献   

17.
We have compared ligand effects between polar and apolar anesthetic molecules upon water transport across phospholipid membranes by kinetic analysis of the osmotic swelling rate, using a stopped-flow technique. Chloroform and 1-hexanol were used as interfacial ligands, and carbon tetrachloride and n-hexane were used as their counterparts, representing lipid core action. Because anesthetics transform the solid-gel membrane into a liquid-crystalline state, and because phospholipid membranes display an anomaly in permeability at the phase transition, dimyristoylphosphatidylcholine vesicles were studied at temperatures above the main phase transition to avoid this anomaly. All these molecules increased the osmotic swelling rate. However, a significant difference was observed in the activation energy, delta Ep, between polar and apolar molecules; delta Ep was almost unaltered by the addition of polar molecules (chloroform and 1-hexanol), whereas it was decreased by apolar molecules (carbon tetrachloride and n-hexane). The obtained results were analyzed in terms of the dissolution-diffusion mechanism for water permeation across the lipid membrane. It is suggested that polar molecules affect water permeability by altering the partition of water between the membrane interior and water phase, and apolar molecules affect it by altering both the partition and the diffusion of water within the membrane interior.  相似文献   

18.
Topogenic signals in integral membrane proteins   总被引:65,自引:0,他引:65  
Integral membrane proteins are characterized by long apolar segments that cross the lipid bilayer. Polar domains flanking these apolar segments have a more balanced amino acid composition, typical for soluble proteins. We show that the apolar segments from three different kinds of membrane-assembly signals do not differ significantly in amino acid content, but that the inside/outside location of the polar domains correlates strongly with their content of arginyl and lysyl residues, not only for bacterial inner-membrane proteins, but also for eukaryotic.proteins from the endoplasmic reticulum, the plasma membrane, the inner mitochondrial membrane, and the chloroplast thylakoid membrane. A positive-inside rule thus seems to apply universally to all integral membrane proteins, with apolar regions targeting for membrane integration and charged residues providing the topological information.  相似文献   

19.
A new classification of amino acids according to their polarity and symmetric location in the spatial structure of the genetic code is suggested. The polar amino acids are: R, S (codons AGC and AGU), K, N, Q, H, W, C, Y, G, E, D; apolar ones are: T, M, I, P, L, S (codons UCN). Polar and apolar amino acids are grouped into three families whose members possess complementarity with respect to the symmetric structure of the genetic code. Interaction of these complementary polar and apolar amino acids encodes formation of the space structures and ligand-receptor complexes of proteins. Correlation between the polar and hydropathic properties of amino acids is investigated. Normalization of 38 hydrophobicity scales of natural amino acids is carried out. A discrepancy between structures of polar/hydrophilic and apolar/hydrophobic groups of amino acids is demonstrated. According to the signature principle this discrepancy is due to different properties of amino acid side radicals which, in turn, depend on the second component of the reaction and on environmental conditions.  相似文献   

20.
As a continuation of an X-ray scattering study of the tetraether lipids extracted from the thermophilic archaebacterium Sulfolobus solfataricus, the phase behaviour of four fractions of the complex polar lipid extract (PLE) is described. Each molecule of two of these fractions (P1 and GL) carries an unsubstituted glycerol headgroup, those of another (P2) no such group; the fourth fraction (WPLE) is obtained by water-washing PLE, thus reducing its P2 content from approximately 48% to approximately 24% and increasing the average number of molecules bearing an unsubstituted glycerol headgroup from approximately 0.4 to approximately 0.6. The main result is a striking correlation between the phase behaviour and the average ratio of unsubstituted glycerol headgroups to the total number of headgroups: the fractions P1, GL and WPLE, in which that number is respectively 0.5, 0.5 and 0.3, form rod-containing phases; the fraction P2, in which that number is zero, yields a lamellar phase throughout the phase diagram. An analysis of the dimensions of the structure elements confirms our previous conclusion that, in the presence of a sufficient amount of water, the unsubstituted glycerol headgroups partition preferentially in the hydrocarbon regions rather than at the polar/apolar interfaces. These results, moreover, corroborate our previous conjectures regarding the correlations between the structure of the plasma membrane, the phase behaviour of the lipid extract and life at high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号