首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
Primer extension experiments showed that the argR gene, encoding the arginine repressor in Salmonella typhimurium, is transcribed from a single promoter that is negatively regulated by arginine. A repressor overproducing strain was constructed and the repressor was purified to homogeneity. Gel filtration, sedimentation and cross-linking studies established that the native repressor is a hexamer of identical 17,000 Mr subunits. Gel retardation experiments indicate that the apparent dissociation constant for repressor/carAB operator is 6 x 10(-12) M. These experiments showed that arginine is essential for binding of the repressor to the DNA and that pyrimidine nucleotides have no significant effect on this binding. These results indicate that the effect of pyrimidines on expression of the arginine sensitive "downstream" carAB promoter is not directly mediated by the arginine repressor. These experiments also suggest that a single hexamer binds to the carAB operator, which carries two previously defined "ARG box" sequences that characterize operators for arg genes. Gel retardation experiments with DNA fragments carrying the individual ARG boxes showed that both boxes are required for effective binding of the hexameric repressor to the operator, indicating that the ARG boxes comprise a single binding site for the repressor. Analysis of the potential secondary structure of the arginine repressor does not reveal any of the recognizable structural motifs common to a number of DNA-binding proteins. A combination of DNase I, premethylation interference, depurination and hydroxyl radical footprinting techniques were employed to characterize the interactions of the repressor with the carAB operator, with the results suggesting that the repressor predominantly interacts with A.T residues in this region. Comparative DNA sequence analysis of the known arginine operators of enteric bacteria further indicates that the specificity of interaction may be based more on the precise distance between two defined A.T-rich regions rather than on the specific nucleotide sequence.  相似文献   

8.
9.
10.
Previous work has shown that the carAB operon of Salmonella typhimurium is transcribed from tandem promoters, P1 and P2, that are negatively controlled by pyrimidines and arginine, respectively. The results reported here show that purines also negatively control expression of carAB and that this effect is absent in a purR ::Tn 10 derivative. Primer-extension experiments established that the purine effect is exerted at P1, thus redefining this promoter as sensitive to both purines and pyrimidines. The results of gel-retardation experiments as well as DNase I and premethylation footprintings indicate that the purine repressor interacts with a PUR box 85 bp upstream of P1. Modification of this PUR box by site-directed mutagenesis abolishes the repression by purines in a carA :: lacZ fusion, confirming that this box functions in vivo in purine control of carAB expression.  相似文献   

11.
12.
Diffusible signal factor (DSF) is a fatty acid signal molecule involved in regulation of virulence in several Xanthomonas species as well as Xylella fastidiosa. In this study, we identified a variety of bacteria that could disrupt DSF-mediated induction of virulence factors in Xanthomonas campestris pv. campestris. While many bacteria had the ability to degrade DSF, several bacterial strains belonging to genera Bacillus, Paenibacillus, Microbacterium, Staphylococcus, and Pseudomonas were identified that were capable of particularly rapid degradation of DSF. The molecular determinants for rapid degradation of DSF in Pseudomonas spp. strain G were elucidated. Random transposon mutants of strain G lacking the ability to degrade DSF were isolated. Cloning and characterization of disrupted genes in these strains revealed that carAB, required for the synthesis of carbamoylphosphate, a precursor for pyrimidine and arginine biosynthesis is required for rapid degradation of DSF in strain G. Complementation of carAB mutants restored both pyrimidine prototrophy and DSF degradation ability of the strain G mutant. An Escherichia coli strain harboring carAB of Pseudomonas spp. strain G degrades DSF more rapidly than the parental strain, and overexpression of carAB in trans increased the ability of Pseudomonas spp. strain G to degrade as compared with the parental strain. Coinoculation of X. campestris pv. campestris with DSF-degrading bacteria into mustard and cabbage leaves reduced disease severity up to twofold compared with plants inoculated only with the pathogen. Likewise, disease incidence and severity in grape stems coinoculated with Xylella fastidiosa and DSF-degrading strains were significantly reduced compared with plants inoculated with the pathogen alone. Coinoculation of grape plants with a carAB mutant of Pseudomonas spp. strain G complemented with carAB in trans reduced disease severity as well or better than the parental strain. These results indicate that overexpression of carAB in other endophytes could be a useful strategy of biocontrol for the control of diseases caused by plant pathogens that produce DSF.  相似文献   

13.
14.
15.
The structure of the purine regulon was studied by a comparative genomic approach in seven genomes of gamma-proteobacteria: Escherichia coli, Salmonella typhi, Yersinia pestis, Haemophilus influenzae, Pasteurella multocida, Actinobacillus actinomycetemcomitans, and Vibrio cholerae. The palindromic binding site of the purine repressor (consensus ACGCAAACGTTTGCGT) is fairly well retained of genes encoding enzymes that participate in the synthesis of inosinemonophosphate from phosphoribozylpyrophosphate and in transfer of unicarbon groups, and also upstream of some transport protein genes. These genes may be regarded as the main part of the purine regulon. In terms of physiology, the regulation of the purC and gcvTHP/folD genes seems to be especially important, because the PurR site was found upstream of nonorthologous but functionally replaceable genes. However, the PurR site is poorly retained in front of orthologs of some genes belonging to the E. coli purine regulon, such as genes involved in general nitrogen metabolism, biosynthesis of pyrimidines, and synthesis of AMP and GMP from IMP, and also upstream of the purine repressor gene. It is predicted that purine regulons of the examined bacteria include the following genes: upp participating in synthesis of pyrimidines; uraA encoding an uracil transporter gene; serA involved in serine biosynthesis; folD responsible for the conversion of N5,N10-methenyl tetrahydrofolate into N10-formyltetrahydrofolate; rpiA involved in ribose metabolism; and protein genes with an unknown function (yhhQ and ydiK). The PurR site was shown to have different structure in different genomes. Thus, the tendency for a decline of the conservatism of site positions 2 and 15 was observed in genomes of bacteria belonging to the Pasteurellaceae and Vibrionaceae groups.  相似文献   

16.
Halomonas eurihalina is a moderately halophilic bacterium which produces exopolysaccharides potentially of great use in many fields of industry and ecology. Strain F2-7 of H. eurihalina synthesizes an anionic exopolysaccharide known as polymer V2-7, which not only has emulsifying activity but also becomes viscous under acidic conditions, and therefore we consider it worthwhile making a detailed study of the genetics of this strain. By insertional mutagenesis using the mini-Tn 5 Km2 transposon we isolated and characterized a mutant strain, S36 K, which requires both arginine and uracil for growth and does not excrete EPS. S36 K carries a mutation within the carB gene that encodes the synthesis of the large subunit of the carbamoylphosphate synthetase enzyme, which in turn catalyzes the synthesis of carbamoylphosphate, an important precursor of arginine and pyrimidines. We describe here the cloning and characterization of the carAB genes, which encode carbamoylphosphate synthetase in Halomonas eurihalina, and discuss this enzyme's possible role in the pathways for the synthesis of exopolysaccharides in strain F2-7.  相似文献   

17.
18.
The major pathways of ribonucleotide biosynthesis in Mycoplasma mycoides subsp. mycoides have been proposed from studies on its use of radioactive purines and pyrimidines. To interpret more fully the observed pattern of pyrimidine usage, cell extracts of this organism have been assayed for several enzymes associated with the salvage synthesis of pyrimidine nucleotides. M. mycoides possessed uracil phosphoribosyltransferase, uridine phosphorylase, uridine (cytidine) kinase, uridine 5'-monophosphate kinase, and cytidine 5'-triphosphate synthetase. No activity for phosphorolysis of cytidine was detected, and no in vitro conditions were found to give measurable deamination of cytidine. Of the two potential pathways for incorporation of uridine, our data suggest that this precursor would largely undergo initial phosphorolysis to uracil and ribose-1-phosphate. Conversely, cytidine is phosphorylated directly to cytidine 5'-monophosphate in its major utilization, although conversion of cytidine to uracil, uridine, and uridine nucleotide has been observed in vivo, at least when uracil is provided in the growth medium. Measurements of intracellular nucleotide contents and their changes on additions of pyrimidine precursors have allowed suggestions as to the operation of regulatory mechanisms on pyrimidine nucleotide biosynthesis in M. mycoides in vivo. With uracil alone or uracil plus uridine as precursors of pyrimidine ribonucleotides, the regulation of uracil phosphoribosyltransferase and cytidine 5'-triphosphate synthetase is probably most important in determining the rate of pyrimidine nucleotide synthesis. When cytidine supplements uracil in the growth medium, control of cytidine kinase activity would also be important in this regard.  相似文献   

19.
20.
Regulation of pyrimidine nucleotide biosynthesis in Pseudomonas synxantha ATCC 9890 was investigated and the pyrimidine biosynthetic pathway enzyme activities were affected by pyrimidine supplementation in cells grown on glucose or succinate as a carbon source. In pyrimidine-grown ATCC 9890 cells, the activities of four de novo enzymes could be depressed which indicated possible repression of enzyme synthesis. To learn whether the pathway was repressible, pyrimidine limitation experiments were conducted using an orotate phosphoribosyltransferase (pyrE) mutant strain identified in this study. Compared to excess uracil growth conditions for the succinate-grown mutant strain cells, pyrimidine limitation of this strain caused dihydroorotase activity to increase about 3-fold while dihydroorotate dehydrogenase and orotidine 5'-monophosphate decarboxylase activities rose about 2-fold. Regulation of de novo pathway enzyme synthesis by pyrimidines appeared to be occurring. At the level of enzyme activity, aspartate transcarbamoylase activity in P. synxantha ATCC 9890 was strongly inhibited in vitro by pyrophosphate, UTP, ADP, ATP, CTP and GTP under saturating substrate concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号