首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two distinct complexes between seryl-tRNA synthetase and tRNA(Ser) from Thermus thermophilus have been crystallized using ammonium sulphate as a precipitant. Form III crystals grow from solutions containing a 1:2.5 stoichiometry of synthetase dimer to tRNA. They are of monoclinic space group C2 with unit cell dimensions a = 211.6 A, b = 126.8 A, c = 197.1 A, beta = 132.4 degrees and diffract to about 3.5 A. Preliminary crystallographic results show that the crystallographic asymmetric unit contains two synthetase dimers. Form IV crystals grow from solutions containing a 1:1.5 stoichiometry of synthetase dimer to tRNA. They are of orthorhombic space group P2(1)2(1)2(1) with unit cell dimensions a = 124.5 A, b = 128.9 A, c = 121.2 A and diffract to 2.8 A resolution. Preliminary crystallographic results show that these crystals contain only one tRNA molecule bound to a synthetase dimer.  相似文献   

2.
The atomic coordinates of yeast tRNA(Phe) in the monoclinic crystal form have been determined by an independent analysis from a model built into a 3 A MIR map. The overall molecular structure is found to be in agreement with those reported for the same crystal form by Ladner et al. (1975) and for the orthorhombic form by Quigley et al. (1975) and Kim et al. (1975). However, significant differences between any two of the four models are found in certain local regions of the molecule. The structure is analyzed in terms of the nucleotide stereochemistry and internucleotide phosphodiesters. A striking observation is that the majority of the nucleotide moieties occur in the conformation preferred by the constituent mononucleotides themselves. The internucleotide P-O bonds afford the primary source of flexibility for the folding of the polynucleotide backbone while the sugar pucker and C(4')-C(5') torsions provide the secondary source of flexibility.  相似文献   

3.
To ascertain the sites that are available for strong binding between magnesium ions and phosphate groups in yeast phenylalanine transfer RNA, all distances below 5.5 A separating the phosphoryl oxygens (Op) of the 76 nucleotide residues have been computed from the latest atomic coordinates for the monoclinic form of the tRNA crystallized in the presence of magnesium chloride. The 5.5 A distance is chosen as the upper limit expected for Op....Op distances involved in strong magnesium-phosphate binding, on the basis of studies on a model magnesium phosphodiester hydrate, taking into account the quoted standard deviation in the tRNA atomic coordinates. It is concluded that there are four possible sites for strong magnesium binding in the tRNA molecule, in addition to the three sites previously reported. One of the hypothetical sites: m2G10-OL, U47-OR, could be involved in the first stage of melting of the tRNA molecule, and may be relevant to tertiary structure stabilization, since it links the dihydrouridine arm with the extra (V) loop.  相似文献   

4.
Yeast phenylalanine transfer RNA has been found to crystallize in five different crystal systems involving eight different space groups. The X-ray diffraction characteristics of these forms are described. One of the orthorhombic forms yields a diffraction pattern with higher resolution than either the hexagonal, the cubic or the monoclinic forms. One region of this orthorhombic diffraction pattern is particularly sensitive to X-ray exposure and to changes in the concentration of various solutes. The diffraction pattern from the cubic crystal form extends to a resolution of 3 Å, and there are a number of strong reflections in the 3 to 4 Å region which suggest that double-helical segments of the tRNA molecules are oriented along the 4-fold axes. Some comments are made regarding the nature of the polymorphism in the transfer RNA crystals.  相似文献   

5.
Lead ion binding and RNA chain hydrolysis in phenylalanine tRNA   总被引:7,自引:0,他引:7  
Crystalline complexes of yeast phenylalanine tRNA and Lead (II) ion were prepared by soaking pregrown orthorhombic crystals of tRNA in saturated lead chloride solutions. The locations of tightly bound lead ions on the tRNA were determined by difference Fourier methods. There are three major lead binding sites; two of these replace tightly bound magnesium ions in the native tRNA structure. Site I is located in the dihydrouridine loop of the molecule adjacent to phosphate P18 which is specifically cleaved by lead. This is evident from changes observed in the Pb-native difference electron density maps. A possible mechanism for lead ion hydrolysis of the polynucleotide chain is proposed.  相似文献   

6.
Abstract

Crystalline complexes of yeast phenylalanine tRNA and Lead (II) ion were prepared by soaking pregrown orthorhombic crystals of tRNA in saturated lead chloride solutions. The locations of tightly bound lead ions on the tRNA were determined by difference Fourier methods. There are three major lead binding sites; two of these replace tightly bound magnesium ions in the native tRNA structure. Site I is located in the dihydrouridine loop of the molecule adjacent to phosphate P18 which is specifically cleaved by lead. This is evident from changes observed in the Pb-native difference electron density maps. A possible mechanism for lead ion hydrolysis of the polynucleotide chain is proposed.  相似文献   

7.
8.
Three-dimensional single crystals of wild-type and mutated 50 S ribosomal subunits from Bacillus stearothermophilus, as well as crystals of reconstituted subunits containing heavy-atom clusters and complexes of these subunits with tRNA and a short nascent polypeptide chain, were grown from polyethylene glycol in the presence of salts at low concentrations. Within experimental error, all these crystals are isomorphous, packed with monoclinic symmetry (C2) in unit cells of a = 300 A, b = 546 A, c = 377 (+/- 1%) A and beta = 112 degrees. Using synchrotron radiation at 85 to 100 K they diffract to 11 A resolution and can be irradiated for hours without disintegrating, so that a complete data set could be collected from a single crystal.  相似文献   

9.
Hydration of transfer RNA molecules: a crystallographic study   总被引:3,自引:0,他引:3  
E Westhof  P Dumas  D Moras 《Biochimie》1988,70(2):145-165
Four crystal structures of transfer RNA molecules were refined at 3 A resolution with the inclusion of the solvent molecules found in the difference maps: yeast tRNA-phe in the orthorhombic form, yeast tRNA-phe in the monoclinic form and yeast tRNA-asp in the A and B forms. Over 100 solvent molecules were located in each tRNA crystal. Several hydration schemes are found repeatedly in the 4 crystals. The tertiary interactions in the corner of the L-shaped molecule attract numerous solvent molecules which bridge the ribose hydroxyl O(2') atoms, base exocyclic atoms and phosphate anionic oxygen atoms. Conservation of bases leads to conservative localized hydration patterns. Several solvent molecules are found stabilizing unusual base pairs like the G-U pairs and those involving the pseudouridine base. Water bridges between the O(2') and the exocyclic atom O2 of pyrimidines or the N3 atom of purines are common. Water bridges occur frequently between successive anionic oxygen atoms of each strand as well as between N7 or other exocyclic atoms of successive bases in the major groove. Magnesium ions or spermine molecules are found to bind in the major groove of tRNA helices without specific interactions.  相似文献   

10.
The crystal structure of the Type IIP restriction endonuclease MspI bound to DNA containing its cognate recognition sequence has been determined in both monoclinic and orthorhombic space groups. Significantly, these two independent crystal forms present an identical structure of a novel monomer-DNA complex, suggesting a functional role for this novel enzyme-DNA complex. In both crystals, MspI interacts with the CCGG DNA recognition sequence as a monomer, using an asymmetric mode of recognition by two different structural motifs in a single polypeptide. In the crystallographic asymmetric unit, the two DNA molecules in the two MspI-DNA complexes appear to stack with each other forming an end-to-end pseudo-continuous 19-mer duplex. They are primarily B-form and no major bends or kinks are observed. For DNA recognition, most of the specific contacts between the enzyme and the DNA are preserved in the orthorhombic structure compared with the monoclinic structure. A cation is observed near the catalytic center in the monoclinic structure at a position homologous to the 74/45 metal site of EcoRV, and the orthorhombic structure also shows signs of this same cation. However, the coordination ligands of the metal are somewhat different from those of the 74/45 metal site of EcoRV. Combined with structural information from other solved structures of Type II restriction enzymes, the possible relationship between the structures of the enzymes and their cleavage behaviors is discussed.  相似文献   

11.
The structure of wild-type bacteriophage T4 glutaredoxin (earlier called thioredoxin) in its oxidized form has been refined in a monoclinic crystal form at 2.0 A resolution to a crystallographic R-factor of 0.209. A mutant T4 glutaredoxin gives orthorhombic crystals of better quality. The structure of this mutant has been solved by molecular replacement methods and refined at 1.45 A to an R-value of 0.175. In this mutant glutaredoxin, the active site residues Val15 and Tyr16 have been substituted by Gly and Pro, respectively, to mimic that of Escherichia coli thioredoxin. The main-chain conformation of the wild-type protein is similar in the two independently determined molecules in the asymmetric unit of the monoclinic crystals. On the other hand, side-chain conformations differ considerably between the two molecules due to heterologous packing interactions in the crystals. The structure of the mutant protein is very similar to the wild-type protein, except at mutated positions and at parts involved in crystal contacts. The active site disulfide bridge between Cys14 and Cys17 is located at the first turn of helix alpha 1. The torsion angles of these residues are similar to those of Escherichia coli thioredoxin. The torsion angle around the S-S bond is smaller than that normally observed for disulfides: 58 degrees, 67 degrees and 67 degrees for wild-type glutaredoxin molecule A and B and mutant glutaredoxin, respectively. Each sulfur atom of the disulfide cysteines in T4 glutaredoxin forms a hydrogen bond to one main-chain nitrogen atom. The active site is shielded from solvent on one side by the beta-carbon atoms of the cysteine residues plus side-chains of residues 7, 9, 21 and 33. From the opposite side, there is a cleft where the sulfur atom of Cys14 is accessible and can be attacked by a nucleophilic thiolate ion in the initial step of the reduction reaction.  相似文献   

12.
We describe the genetically engineered overproduction of Escherichia coli tRNA(2Gln), its purification by high pressure liquid chromatography (HPLC), and its subsequent use in the growth of crystals of the E. coli glutaminyl-tRNA synthetase-tRNA(Gln) complex. The overproduced tRNA represents 60 to 70% of the total tRNA extracted from the engineered strain. A single anion exchange HPLC column is then sufficient to increase the purity of this isoacceptor to 90 to 95%. Crystals of this material complexed with the monomeric E. coli glutaminyl-tRNA synthetase enzyme were obtained by vapor diffusion from solutions containing sodium citrate as the precipitating agent. The crystals diffract to beyond 2.8 A resolution (1 A = 0.1 nm) and are of the orthorhombic space group C222(1) with unit cell parameters a = 240.5 A, b = 93.9 A, c = 115.7 A. Gel electrophoresis of dissolved crystals demonstrates the presence of both protein and tRNA.  相似文献   

13.
Malate dehydrogenase from Escherichia coli has been crystallized with polyethylene glycol and citrate buffer at pH 5.7. The enzyme was obtained from an E. coli strain in which the chromosomal malate dehydrogenase gene was contained on a pBR322 vector. Two types of crystals have been observed; a monoclinic C2 form and an orthorhombic C222(1) form, which is found infrequently. Monoclinic crystals were used as seeds in several rounds of crystallization until large crystals suitable for diffraction analysis were available. A complete X-ray data set to 2.0 A has been collected.  相似文献   

14.
Gaillard C  Bedouelle H 《Biochemistry》2001,40(24):7192-7199
Tyrosyl-tRNA synthetase (TyrRS) from Bacillus stearothermophilus comprises three sequential domains: an N-terminal catalytic domain, an alpha-helical domain with unknown function, and a C-terminal tRNA binding domain (residues 320-419). The properties of the polypeptide segment that links the alpha-helical and C-terminal domains, were analyzed by measuring the effects of sequence changes on the aminoacylation of tRNA(Tyr) with tyrosine. Mutations F323A (Phe323 into Ala), S324A, and G325A showed that the side chain of Phe323 was essential but not those of Ser324 and Gly325. Insertions of Gly residues between Leu322 and Phe323 and the point mutation L322P showed that the position and precise orientation of Phe323 relative to the alpha-helical domain were important. Insertions of Gly residues between Gly325 and Asp326 and deletion of residues 330-339 showed that the length and flexibility of the sequence downstream from Gly325 were unimportant but that this sequence could not be deleted. Mutations F323A, -L, -Y, and -W showed that the essential property of Phe323 was its aromaticity. The Phe323 side chain contributed to the stability of the initial complex between TyrRS and tRNA(Tyr) for 2.0 +/- 0.2 kcal x mol(-1) and to the stability of their transition state complex for 4.2 +/- 0.1 kcal x mol(-1), even though it is located far from the catalytic site. The results indicate that the disorder of the C-terminal domain in the crystals of TyrRS is due to the flexibility of the peptide that links it to the helical domain. They identified Phe323 as an essential residue for the recognition of tRNA(Tyr).  相似文献   

15.
The crystal and molecular structure of a dextran hydrate has been determined through combined electron and X-ray diffraction analysis, aided by stereochemical model refinement. A total of 65 hk0 electron diffraction intensities were measured on frozen single crystals held at the temperature of liquid nitrogen, to a resolution limit of 1.6 A. The X-ray intensities were measured from powder patterns recorded from collections of the single crystals. The structure crystallizes in a monoclinic unit cell with parameters a = 25.71 A, b = 10.21 A, c (chain axis) = 7.76 A and beta = 91.3 degrees. The space group is P2(1) with b axis unique. The unit cell contains six chains and eight water molecules, with three chains of the same polarity and four water molecules constituting the asymmetric unit. Along the chain direction the asymmetric unit is a dimer residue; however, the individual glucopyranose residues are very nearly related by a molecular 2-fold screw axis. The conformation of the chain is very similar to that in the anhydrous structure, but the chain packing differs in the two structures in that the rotational positions of the chains about the helix axes (the chain setting angles) are considerably different. The chains still pack in the form of sheets that are separated by water molecules. The difference in the chain setting angles between the anhydrous and hydrate structures corresponds to the angle between like unit cell axes observed in the diffraction diagrams recorded from hybrid crystals containing both polymorphs. Despite some beam damage effects, the structure was determined to a satisfactory degree of agreement, with the residuals R'(electron diffraction) = 0.258 and R(X-ray) = 0.127.  相似文献   

16.
Both recombinant blood coagulation factor XIII alpha-chain and factor XIII isolated from human placenta have been crystallized using a novel robotic system for the automatic screening of crystallization conditions. The monoclinic and orthorhombic crystals obtained are suitable for X-ray analysis.  相似文献   

17.
Crystals of the dimeric aspartyl-tRNA synthetase from Escherichia coli (molecular mass 132,000 Da) complexed with its cognate tRNA (molecular mass 25,000 Da) have been grown using ammonium sulfate as precipitant. The crystals belong to the orthorhombic space group C222(1) with unit cell parameters a = 102.75 A, b = 128.11 A, c = 231.70 A and diffract to 3 A. The asymmetric unit contains one monomer of the aspartyl-tRNA synthetase and one tRNA molecule.  相似文献   

18.
Crystalline complexes of yeast tRNA(phe) and the oligopeptide antibiotics netropsin and distamycin A were prepared by diffusing drugs into crystals of tRNA. X-ray structure analyses of these complexes reveal a single common binding site for both drugs which is located in the major or deep groove of the tRNA T-stem. The netropsin-tRNA complex is stabilized by specific hydrogen bonds between the amide groups of the drug and the tRNA bases G51 O(6), U52 O(4) and G53 N(7) on one strand, and is further stabilized by electrostatic interactions between the positively charges guanidino side chain of the drug and the tRNA phosphate P53 on the same strand and the positively charged amidino propyl side chain and the phosphates P61, P62 and P63 on the opposite strand of the double helix. These results are in contrast to the implicated minor groove binding of these drugs to non-guanine sequences in DNA. The binding to the GUG sequence in tRNA implies that major groove binding to certain DNA sequences is possible.  相似文献   

19.
Three crystal forms of the dimeric form of the enzyme ribulose-1,5-bisphosphate carboxylase from the photosynthetic bacterium Rhodospirillum rubrum have been obtained from the gene product expressed in Escherichia coli. Form A crystals formed from the quaternary complex comprising enzyme-activator carbamate-Mg2+-2'-carboxyarabinitol-1,5-bisphosphate are shown here to be devoid of ligands. In contrast, crystals of the quaternary complex formed with the hexadecameric L8S8 enzyme from spinach contain both the activator carbamate and 2'-carboxyarabinitol-1,5-bisphosphate. Form B crystals of the R. rubrum enzyme are monoclinic, space group P2(1) with cell dimensions a = 65.5 A, b = 70.6 A, c = 104.1 A and beta = 92.1 degrees, with two subunits per asymmetric unit. Rotation function calculations show a non-crystallographic 2-fold axis perpendicular to the monoclinic b-axis. Form C crystals are orthorhombic (space group P2(1)2(1)2(1)) with cell dimensions a = 79.4 A, b = 100.1 A and c = 131.0 A. The monoclinic crystal form diffracts to at least 2.0 A resolution on a conventional X-ray source.  相似文献   

20.
The legume lectins are an important class of polysaccharide-binding proteins with a wide range of biochemical and immunological applications. Two high-resolution crystal forms are obtained for the lentil (Lens culinaris) lectin: a monoclinic P21 and an orthorhombic P212121. The unit cell dimensions for the monoclinic form are a = 58.0 A, b = 56.0 A, c = 82.1 A, beta = 104.4 degrees, while for the orthorhombic form a = 56.4 A, b = 74.6 A, c = 124.9 A. The asymmetric unit contains one dimer in both cases. The crystals diffract to 1.7 A resolution using synchrotron radiation. Preliminary data have been collected to 2.3 A on both crystal forms using a conventional X-ray source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号