首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Methylmalonate semialdehyde dehydrogenase purified to homogeneity from rat liver possesses, in addition to its coupled aldehyde dehydrogenase and CoA ester synthetic activity, the ability to hydrolyze p-nitrophenyl acetate. The following observations suggest that this activity is an active site phenomenon: (a) p-nitrophenyl acetate hydrolysis was inhibited by malonate semialdehyde, substrate for the dehydrogenase reaction; (b) p-nitrophenyl acetate was a strong competitive inhibitor of the dehydrogenase activity; (c) NAD+ and NADH activated the esterase activity; (d) coenzyme A, acceptor of acyl groups in the dehydrogenase reaction, accelerated the esterase activity; and (e) the product of the esterase reaction proceeding in the presence of coenzyme A was acetyl-CoA. These findings suggest that an S-acyl enzyme (thioester intermediate) is likely common to both the esterase reaction and the aldehyde dehydrogenase/CoA ester synthetic reaction.  相似文献   

3.
Homotetrameric MSDH (methylmalonate semialdehyde dehydrogenase) from Bacillus subtilis catalyses the NAD-dependent oxidation of MMSA (methylmalonate semialdehyde) and MSA (malonate semialdehyde) into PPCoA (propionyl-CoA) and acetyl-CoA respectively via a two-step mechanism. In the present study, a detailed mechanistic characterization of the MSDH-catalysed reaction has been carried out. The results suggest that NAD binding elicits a structural imprinting of the apoenzyme, which explains the marked lag-phase observed in the activity assay. The enzyme also exhibits a half-of-the-sites reactivity, with two subunits being active per tetramer. This result correlates well with the presence of two populations of catalytic Cys302 in both the apo- and holo-enzymes. Binding of NAD causes a decrease in reactivity of the two Cys302 residues belonging to the two active subunits and a pKapp shift from approx. 8.8 to 8.0. A study of the rate of acylation as a function of pH revealed a decrease in the pKapp of the two active Cys302 residues to approx. 5.5. Taken to-gether, these results support a sequential Cys302 activation process with a pKapp shift from approx. 8.8 in the apo-form to 8.0 in the binary complex and finally to approx. 5.5 in the ternary complex. The rate-limiting step is associated with the b-decarboxylation process which occurs on the thioacylenzyme intermediate after NADH release and before transthioesterification. These data also indicate that bicarbonate, the formation of which is enzyme-catalysed, is the end-product of the reaction.  相似文献   

4.
5.
Succinic semialdehyde dehydrogenase (EC 1.2.1.16) was purified 74-fold from wheat grain (Triticum durum Desf.). The enzyme appears quite specific for succinic semialdehyde (SSA). Both NAD and NADP support the oxidation of the substrate, but the former is 7-fold more active than the latter. The optimum pH for activity is around 9; the enzyme is stable in the pH range 6–9 and retains its whole activity up to 40°C. The enzyme activity is strongly dependent on the presence of mercaptoethanol, other thiol compounds being much less effective. Kinetic data support the formation of a ternary complex between enzyme, substrate and coenzyme. The K m for SSA and for NAD are 7.4x10-6 M and 2x10-4 M, respectively. The molecular weight of the enzyme protein was estimated by gel-filtration to be about 130,000.Abbreviations GABA -aminobutyric acid - GABA-T -aminobutyric acid transaminase - ME mercaptoethanol - SSA succinic semialdehyde - SSA-DH succinic semialdehyde dehydrogenase  相似文献   

6.
7.
Busch K  Piehler J  Fromm H 《Biochemistry》2000,39(33):10110-10117
Recent kinetic studies revealed distinct modes of inhibition of mitochondrial Arabidopsis thaliana succinic semialdehyde dehydrogenase (At-SSADH1) by AMP and ATP. Inhibition of SSADH by ATP may represent an important mechanism of feedback regulation of the GABA shunt by the respiratory chain. Here we used two approaches to investigate the interaction of ATP with At-SSADH1. Cofactor displacement studies based on the reduced fluorescence intensity of free NADH versus that of enzyme-bound NADH revealed that both AMP and ATP decreased NADH-At-SSADH1 complex formation. The competitive inhibitor AMP displaced all bound NADH, while ATP, a noncompetitive inhibitor, could not, even in great excess, release all NADH from its binding site. To assess the effect of ATP on NAD-At-SSADH, we employed surface plasmon resonance to monitor nucleotide binding to immobilized At-SSADH1. For this, we used a Strep-tag II modified derivative of At-SSADH1 (designated ST-At-SSADH1). The tagged enzyme was tightly and reversibly captured by StrepTactin, which was covalently immobilized on a CM5 chip. The binding constants for NAD(+) and ATP were determined from titration curves and were in good agreement with the constants obtained from enzyme kinetics. Surface plasmon resonance measurements confirmed that ATP binds to a site different from the binding site for NAD(+). GTP competed with ATP. However, only ATP increased the dissociation constant of NAD(+) from SSADH. This explains the reduced affinity of NAD(+)/NADH to At-SSADH1 in the presence of ATP, as revealed by enzymatic kinetics, and supports our model of feedback regulation of SSADH and the GABA shunt by ATP.  相似文献   

8.
Deng H  Zhadin N  Callender R 《Biochemistry》2001,40(13):3767-3773
Although the importance of atomic motion to how proteins function has been conjectured for several decades, the characterization of protein dynamics on multiple time scales is scant. This is because of severe experimental and theoretical difficulties, particularly characterizing the nanosecond to millisecond time scales. Here, we apply advanced laser-induced temperature-jump relaxation spectroscopic techniques to examine the kinetics of NADH binding to lactate dehydrogenase over this time scale. The bimolecular rate process, at about 290 micros, is easily observed as are multiple faster events (with relaxation times of 200 ns, 3.5 micros, and 24 micros), revealing a rich dynamical nature of the binding step. The results show that there are multiple structures of bound enzyme-ligand complexes, some of which are likely to be far from the catalytically productive structure. The results have important implications for interpretations of the binding thermodynamics of ligands to LDH and, by extension, to other proteins. The observed processes likely play a role in the dynamics of the chemistry that is catalyzed by lactate dehydrogenase.  相似文献   

9.
The kinetics of ligand binding to heme proteins studied by flash photolysis display an algebraic time dependence at low temperatures in contrast exponential recombination observed under physiological conditions. This result shows that protein structures should be viewed as a time average of interconverting microstates which are frozen in at low temperatures. We propose a quasi-one-dimensional model of heterogeneous structural diffusion coupled to ligand binding which describes freezing transition as an inherent property of protein fluctuations. The structural hopping rates are derived from a temperature invariant spectrum of activation energies. The model predicts power law kinetics of the form t - at long times. The exponent is constant (0.5) at high temperatures but decreases below a critical temperature in the frozen regime. These results are compared to experiments performed with myoglobin and -chains of hemoglobin.  相似文献   

10.
11.
The enzyme succinic semialdehyde dehydrogenase from pig brain has been 2000-fold purified by a combination of DEAE-cellulose, hydroxyapatite, and AMP-Sepharose chromatography. This preparation has a molecular weight of 160,000 and a specific activity of 5.3 mumol/min.mg at 25 degrees C. The inhibition of succinic semialdehyde dehydrogenase by carbonyl compounds, i.e. P-pyridoxal and o-phthalaldehyde was investigated in detail. The enzyme is reversible, inhibited by preincubation with P-pyridoxal (mixing molar ratio, 300:1) at either 25 degrees or 37 degrees C. Reduction with NaBH1 results in the incorporation of approximately 4 mol of P-pyridoxyl residues/mol of enzyme. NAD+ protects the enzyme against inactivation by P-pyridoxal, whereas the substrate succinic semialdehyde failed to prevent the reaction of P-pyridoxal with lysine residues of the protein. The binding of approximately 10 mol of o-phthalaldehyde/mol of enzyme results in irreversible loss of catalytic activity. The reaction is fast and easily monitored by absorption and fluorescence spectroscopy.  相似文献   

12.
The reaction of PQQ-dependent methanol dehydrogenase (MDH) from Methylophilus methylotrophus has been studied by steady-state and stopped-flow kinetic methods, with particular reference to multiple ligand binding and the kinetic isotope effect (KIE) for PQQ reduction. Phenazine ethosulfate (PES; an artificial electron acceptor) and cyanide (a suppressant of endogenous activity), but not ammonium (an activator of MDH), compete for binding at the catalytic methanol-binding site. Cyanide does not activate turnover in M. methylotrophus MDH, as reported previously for the Paracoccus denitrificans enzyme. Activity is dependent on activation by ammonium but is inhibited at high ammonium concentrations. PES and methanol also influence the stimulatory and inhibitory effects of ammonium through competitive binding. Reaction profiles as a function of ammonium and PES concentration differ between methanol and deuterated methanol, owing to force constant effects on the binding of methanol to the stimulatory and inhibitory ammonium binding sites. Differential binding gives rise to unusual KIEs for PQQ reduction as a function of ammonium and PES concentration. The observed KIEs at different ligand concentrations are independent of temperature, consistent with their origin in differential binding affinities of protiated and deuterated substrate at the ammonium binding sites. Stopped-flow studies indicate that enzyme oxidation is not rate-limiting at low ammonium concentrations (<4 mM) during steady-state turnover. At higher ammonium concentrations (>20 mM), the low effective concentration of PES in the active site owing to the competitive binding of ammonium lowers the second-order rate constant for enzyme oxidation, and the oxidative half-reaction becomes more rate limiting. A sequential stopped-flow method is reported that has enabled, for the first time, a detailed study of the reductive half-reaction of MDH and comparison with steady-state data. The limiting rate of PQQ reduction (0.48 s(-1)) is less than the steady-state turnover number, and the observed KIE in stopped-flow studies is unity. Although catalytically active, we propose reduction of the oxidized enzyme generated in stopped-flow analyses is gated by conformational change or ligand exchange. Slow recovery from this trapped state on mixing with methanol accounts for the slow reduction of PQQ and a KIE of 1. This study emphasizes the need for caution in using inflated KIEs, and the temperature dependence of KIEs, as a probe for hydrogen tunneling.  相似文献   

13.
Methodological aspects of the histochemical technique for the demonstration of succinate semialdehyde dehydrogenase activity (EC 1.2.1.24) (indicative of the degradative step of gamma-aminobutyric acid catabolism) have been analysed in rat Purkinje neurons, where gamma-aminobutyric acid has been shown to be a neurotransmitter, and in hepatocytes, where it is metabolized. During a histochemical incubation for the enzyme, artefacts of succinate dehydrogenase activity and the 'nothing dehydrogenase' reaction are produced. Inhibition of these artefacts by the addition of two inhibitors, malonate and p-hydroxybenzaldehyde, revealed specific reaction products. Formazan granules, which can be ascribed only to specific succinate semialdehyde dehydrogenase activity, are obtained by adding malonate to the incubation medium in order to inhibit both succinate dehydrogenase activity and nothing dehydrogenase. The formation of these granules is completely inhibited by p-hydroxybenzaldehyde, an inhibitor of succinate semialdehyde dehydrogenase activity. Different levels of succinate semialdehyde dehydrogenase activity were noted in Purkinje neurons. This activity was also found in hepatocytes, mostly in the portal area, but with a lesser degree of intensity and specificity. Indeed, non-specific formazan granules were still produced, because of the 'nothing dehydrogenase' reaction, even in the presence of malonate. Thus, a malonate-insensitive 'nothing dehydrogenase' reaction seems to be present in neural and hepatic tissues.  相似文献   

14.
Escherichia coli mutants, unable to grown on 4-hydroxyphenylacetate, have been isolated and found to be defective in the NAD-dependent succinate semialdehyde dehydrogenase. When the mutants are grown with 4-aminobutyrate as sole nitrogen source an NAD-dependent succinate semialdehyde dehydrogenase seen in the parental strain is absent but, as in the parental strain, an NADP-dependent enzyme is induced. Growth of the mutants is inhibited by 4-hydroxyphenylacetate due to the accumulation of succinate semialdehyde. The mutants are more sensitive to inhibition by exogenous succinate semialdehyde than is the parental strain. Secondary mutants able to grow in the presence of 4-hydroxyphenylacetate but still unable to use it as sole carbon source were defective in early steps of 4-hydroxyphenylacetate catabolism and so did not form succinate semialdehyde from 4-hydroxyphenylacetate. The gene encoding the NAD-dependent succinate semialdehyde dehydrogenase of Escherichia coli K-12 was located at min 34.1 on the genetic map.  相似文献   

15.
The tetrameric molecule of pig skeletal muscle lactate dehydrogenase binds a cationic fluorescent probe, auramine O, at four equal non-interacting sites with a dissociation constant of (1.25 +/- 0.2) X 10(-4) M. Fluorescence of the dye/enzyme mixture is strongly pH-dependent, with a maximum at pH 6.3-6.8. Auramine O-binding sites are located outside the active center of the enzyme. The microenvironment of the bound dye changes upon interaction of lactate dehydrogenase with NAD+, NADH, ADP and pyruvate. The binding of specific ligands induces an increase in fluorescence of auramine O-enzyme complex. This effect was used to determine the dissociation constants of the complexes of lactate dehydrogenase with specific ligands. Pyruvate was demonstrated to bind to the apoenzyme-auramine O complex with a dissociation constant of 5.2 X 10(-4) M. With the use of auramine O, it became possible to reveal subunit interactions within the tetrameric molecule of lactate dehydrogenase. They are manifested in the changes of the microenvironment of a dye-binding site located on one of the subunits induced by the binding of ligands in the active center of a neighboring subunit.  相似文献   

16.
The putative Drosophila (D.) melanogaster gene ortholog of mammalian succinic semialdehyde dehydrogenase (SSADH, EC1.2.1.24; NM_143151) that is involved in the degradation of the neurotransmitter GABA, and the putative D. melanogaster aldehyde dehydrogenase gene Aldh (NM_135441) were cloned and expressed as enzymatically active maltose binding protein (MalE) fusion products in Escherichia coli. The identities of the NM_143151 gene product as NAD+-dependent SSADH and of the Aldh gene product as NAD+-dependent non-specific aldehyde dehydrogenase (ALDH, EC1.2.1.3) were established by substrate specificity studies using 30 different aldehydes. In the case of D. melanogaster MalE-SSADH, the Michaelis constants (K(M)s) for the specific substrates succinic semialdehyde and NAD+ was 4.7 and 90.9 microM, respectively. For D. melanogaster MalE-ALDH the K(M) of the putative in vivo substrate acetaldehyde was 0.9 microM while for NAD+, a K(M) of 62.7 microM was determined. Site-directed mutagenesis studies on D. melanogaster MalE-SSADH suggest that cysteine 311 and glutamic acid 277 of this enzyme are likely candidates for the active site residues directly involved in catalysis.  相似文献   

17.
18.
The effect of proteolytic enzymes on the troponin complex   总被引:4,自引:0,他引:4  
  相似文献   

19.
5-Carboxymethyl-2-hydroxymuconic semialdehyde dehydrogenase in the 4-hydroxyphenylacetate meta-cleavage pathway has been purified to 96% homogeneity. The native enzyme, which appears to be a tetramer, has an apparent molecular weight of 210000. The purified enzyme shows a narrow pH optimum at pH 7.8 and does not require ions for its catalytic activity. Under standard assay conditions the enzyme acts preferentially with NAD but reduces NADP at 11% of the rate observed for NAD, primarily because of a difference in Km. Apparent Km values are 6.4 μM for 5-carboxymethyl-2-hydroxymuconic semialdehyde and 52.2 μM for NAD.  相似文献   

20.
Aspartate-beta-semialdehyde dehydrogenase (ASADH) lies at the first branch point in the biosynthetic pathway through which bacteria, fungi, and the higher plants synthesize amino acids, including lysine and methionine and the cell wall component diaminopimelate from aspartate. Blocks in this biosynthetic pathway, which is absent in mammals, are lethal, and inhibitors of ASADH may therefore serve as useful antibacterial, fungicidal, or herbicidal agents. We have determined the structure of ASADH from Escherichia coli by crystallography in the presence of its coenzyme and a substrate analogue that acts as a covalent inhibitor. This structure is comparable to that of the covalent intermediate that forms during the reaction catalyzed by ASADH. The key catalytic residues are confirmed as cysteine 135, which is covalently linked to the intermediate during the reaction, and histidine 274, which acts as an acid/base catalyst. The substrate and coenzyme binding residues are also identified, and these active site residues are conserved throughout all of the ASADH sequences. Comparison of the previously determined apo-enzyme structure [Hadfield et al. J. Mol. Biol. (1999) 289, 991-1002] and the complex presented here reveals a conformational change that occurs on binding of NADP that creates a binding site for the amino acid substrate. These results provide a structural explanation for the preferred order of substrate binding that is observed kinetically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号