首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
microRNAs (miRNAs) are 21-22-nucleotide noncoding RNAs that are widely believed to regulate complementary mRNA targets. However, due to the modest amount of pairing involved, only a few out of the hundreds of known animal miRNAs have thus far been connected to mRNA targets. Here, we considered the possibility that miRNAs might regulate non-mRNA targets, namely other miRNAs. To do so, we conducted a systematic assessment of the nearly complete catalogs of animal miRNAs for potential miRNA:miRNA complements. Our analysis uncovered several compelling examples that strongly suggest a function for miRNA duplexes, thus adding a potential layer of regulatory sophistication to the small RNA world. Interestingly, the most striking examples involve miRNAs complementary to members of the K-box family and Brd-box family, two classes of miRNAs previously implicated in regulation of Notch target genes. We emphasize that patterns of nucleotide constraint indicate that miRNA complementarity is not a simple consequence of miRNA:miRNA* complementarity; however, our findings do suggest that the potential regulatory consequences of the latter also deserve investigation.  相似文献   

2.
MicroRNAs (miRNAs) play important roles in global gene regulation. Researchers in recombinant protein production have proposed miRNAs as biomarkers and cell engineering targets. However, miRNA expression remains understudied in Chinese Hamster Ovary cells, one of the most commonly used host cell systems for therapeutic protein production. To profile highly conserved miRNA expression, we used the miRCURY? miRNA array for screening miRNAs in CHO cells. The selection criteria for further miRNA profiling included positive hybridization signals and experimentally validated predicted regulatory targets. On the basis of screening, we selected 16 miRNAs for quantitative RT‐PCR profiling. We profiled miR expression in parental CHO DG44 and CHO K1 cell lines as well as four recombinant DG44‐derived CHO lines producing a recombinant human IgG. We observed that miR‐221 and miR‐222 were significantly downregulated in all IgG‐producing cell lines when compared with parental DG44, whereas miR‐125b was significantly downregulated in one IgG‐producing line. In another IgG‐producing line, miR‐19a was significantly upregulated. miRNA expression was also profiled in two of these lines that were amplified by stepwise increase of methotrexate. In both amplified cell lines, let‐7b and miR‐221 were significantly downregulated. In parental CHO K1, let‐7b, miR‐15b, and miR‐17 were significantly downregulated when compared with DG44. The results reported here are the first steps toward profiling highly conserved miRNAs and studying the clonal difference in miRNA expression in CHO cells and may shed light on using miRNAs in cell engineering. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

3.
MicroRNAs (miRNAs) are ~22-nt small non-coding RNAs that regulate the expression of specific target genes in many eukaryotes. miRNAs have been shown to play important roles in stem cell maintenance, cell fate determination, and differentiation. Planarians are capable of regenerating entire body plans from tiny fragments; this regenerative capacity is facilitated by a population of pluripotent stem cells known as neoblasts. Planarians have been a classic model system for the study of many aspects of stem cell biology. However, very limited knowledge on miRNA involved in this regulatory mechanism exists. This study profiles the expression of miRNAs in the normal and regenerative tissues of planarians using miRCURY LNA array technology. Thirteen miRNAs showed significant differences in expression between these two tissues. To further confirm our results, we examined the expression of two miRNAs by qRT-PCR. Results show that some known miRNAs may play key roles in the regulatory mechanisms of regeneration. Our findings can be utilized in future research on miRNA function.  相似文献   

4.
Ma L  Huang Y  Zhu W  Zhou S  Zhou J  Zeng F  Liu X  Zhang Y  Yu J 《PloS one》2011,6(10):e26502
Using DNA microarrays, we generated both mRNA and miRNA expression data from 6 non-small cell lung cancer (NSCLC) tissues and their matching normal control from adjacent tissues to identify potential miRNA markers for diagnostics. We demonstrated that hsa-miR-96 is significantly and consistently up-regulated in all 6 NSCLCs. We validated this result in an independent set of 35 paired tumors and their adjacent normal tissues, as well as their sera that are collected before surgical resection or chemotherapy, and the results suggested that hsa-miR-96 may play an important role in NSCLC development and has great potential to be used as a noninvasive marker for diagnosing NSCLC. We predicted potential miRNA target mRNAs based on different methods (TargetScan and miRanda). Further classification of miRNA regulated genes based on their relationship with miRNAs revealed that hsa-miR-96 and certain other miRNAs tend to down-regulate their target mRNAs in NSCLC development, which have expression levels permissive to direct interaction between miRNAs and their target mRNAs. In addition, we identified a significant correlation of miRNA regulation with genes coincide with high density of CpG islands, which suggests that miRNA may represent a primary regulatory mechanism governing basic cellular functions and cell differentiations, and such mechanism may be complementary to DNA methylation in repressing or activating gene expression.  相似文献   

5.
6.
7.
8.
We sought to evaluate the extent of the contribution of transposable elements (TEs) to human microRNA (miRNA) genes along with the evolutionary dynamics of TE-derived human miRNAs. We found 55 experimentally characterized human miRNA genes that are derived from TEs, and these TE-derived miRNAs have the potential to regulate thousands of human genes. Sequence comparisons revealed that TE-derived human miRNAs are less conserved, on average, than non-TE-derived miRNAs. However, there are 18 TE-derived miRNAs that are relatively conserved, and 14 of these are related to the ancient L2 and MIR families. Comparison of miRNA vs. mRNA expression patterns for TE-derived miRNAs and their putative target genes showed numerous cases of anti-correlated expression that are consistent with regulation via mRNA degradation. In addition to the known human miRNAs that we show to be derived from TE sequences, we predict an additional 85 novel TE-derived miRNA genes. TE sequences are typically disregarded in genomic surveys for miRNA genes and target sites; this is a mistake. Our results indicate that TEs provide a natural mechanism for the origination miRNAs that can contribute to regulatory divergence between species as well as a rich source for the discovery of as yet unknown miRNA genes.  相似文献   

9.
10.
11.
Human embryonic stem cells express a unique set of microRNAs   总被引:41,自引:0,他引:41  
  相似文献   

12.
In this review, we summarize the current understanding of microRNA (miRNA)-mediated modulation of the gene expression in the fatty liver as well as related signaling pathways. Because of the breadth and diversity of miRNAs, miRNAs may have a very wide variety of biological functions, and much evidence has confirmed that miRNAs are involved in the pathogenesis of fatty liver. In the pathophysiological mechanism of fatty liver, miRNAs may be regulated by upstream regulators, and have their own regulatory targets. miRNAs display important roles in the pathological mechanisms of alcoholic liver disease and non-alcoholic fatty liver disease. At present, most of the miRNA studies are focused on cell and tissue levels, and in vivo studies will help us elucidate the regulation of miRNAs and help us evaluate the potential of miRNAs as diagnostic markers and therapeutic targets. Furthermore, there is evidence that miRNAs are involved in the mechanism of natural medicine treatment in fatty liver. Given the important roles of miRNAs in the pathogenesis of fatty liver, we predict that studies of miRNAs in the pathogenesis of fatty liver will contribute to the elucidation of fatty liver pathology and the treatment of fatty liver patients.  相似文献   

13.
14.
张璐  张燕军  苏蕊  王瑞军  李金泉 《遗传》2014,36(7):655-660
MicroRNA是参与转录后水平表达调控的重要因子, 在病理上成为药物作用的潜在靶点, 在生理上成为表型调控的潜在位点。目前, 对于microRNA的功能已有一定了解, 但其在皮肤毛囊发育中的作用机制还不完全清楚。近年来, 高通量测序技术为microRNA的鉴定提供了更准确、快速的途径, 研究发现一些microRNA能够影响皮肤毛囊细胞的分化和增殖, 其相关靶基因在调控毛囊周期性生长的过程中充当重要角色。文章综述了近年来microRNA在皮肤毛囊生长发育调控机制研究领域所取得的成果, 以期为后续开展绒山羊毛囊生长相关microRNA作用机制研究提供借鉴。  相似文献   

15.
A new class of RNA regulatory genes known as microRNAs (miRNAs) has been found to introduce a whole new layer of gene regulation in eukaryotes. The intensive studies of the past several years have demonstrated that miRNAs are not only found intracellularly, but are also detectable outside cells, including in various body fluids (e.g. serum, plasma, saliva, urine and milk). This phenomenon raises questions about the biological function of such extracellular miRNAs. Substantial amounts of extracellular miRNAs are enclosed in small membranous vesicles (e.g. exosomes, shedding vesicles and apoptotic bodies) or packaged with RNA-binding proteins (e.g. high-density lipoprotein, Argonaute 2 and nucleophosmin 1). These miRNAs may function as secreted signaling molecules to influence the recipient cell phenotypes. Furthermore, secreted extracellular miRNAs may reflect molecular changes in the cells from which they are derived and can therefore potentially serve as diagnostic indicators of disease. Several studies also point to the potential application of siRNA/miRNA delivery as a new therapeutic strategy for treating diseases. In this review, we summarize what is known about the mechanism of miRNA secretion. In addition, we describe the pathophysiological roles of secreted miRNAs and their clinical potential as diagnostic biomarkers and therapeutic drugs. We believe that miRNA transfer between cells will have a significant impact on biological research in the coming years.  相似文献   

16.
microRNA(miRNA)是一类广泛存在于真核生物中长度为20~24 nt的内源非编码小RNA,它们通过对靶基因mRNA进行切割或翻译抑制,在转录后水平调控靶基因的表达。近期研究表明,miRNA参与植物生长发育与逆境胁迫响应的多个重要生物学过程,对作物的农艺性状也起到重要的调控作用。玉米作为重要的粮食、饲料和工业原料,提高其产量和品质对于保障世界粮食安全至关重要,然而与模式植物拟南芥和水稻相比,玉米中miRNA的研究仍然相对较少,理解miRNA在玉米中的功能和调控机理有助于通过分子育种对关键农艺性状进行遗传改良。本文综述了玉米中miRNA的发现与鉴定,系统总结了参与玉米miRNA代谢途径的关键蛋白DCL、AGO和HEN1的研究进展,重点阐述了在玉米生长发育和非生物胁迫响应过程中已开展功能研究miRNA的调控作用,并对玉米miRNA研究当前存在的问题和未来的发展趋势进行了讨论。  相似文献   

17.
The global insight into the relationships between miRNAs and their regulatory influences remains poorly understood. And most of complex diseases may be attributed to certain local areas of pathway (subpathway) instead of the entire pathway. Here, we reviewed the studies on miRNA regulations to pathways and constructed a bipartite miRNAs and subpathways network for systematic analyzing the miRNA regulatory influences to subpathways. We found that a small fraction of miRNAs were global regulators, environmental information processing pathways were preferentially regulated by miRNAs, and miRNAs had synergistic effect on regulating group of subpathways with similar function. Integrating the disease states of miRNAs, we also found that disease miRNAs regulated more subpathways than nondisease miRNAs, and for all miRNAs, the number of regulated subpathways was not in proportion to the number of the related diseases. Therefore, the study not only provided a global view on the relationships among disease, miRNA and subpathway, but also uncovered the function aspects of miRNA regulations and potential pathogenesis of complex diseases. A web server to query, visualize and download for all the data can be freely accessed at http://bioinfo.hrbmu.edu.cn/miR2Subpath.  相似文献   

18.
MOTIVATION: MicroRNAs (miRNAs) are small non-coding RNAs that cause mRNA degradation and translational inhibition. They are important regulators of development and cellular homeostasis through their control of diverse processes. Recently, great efforts have been made to elucidate their regulatory mechanism, but the functions of most miRNAs and their precise regulatory mechanisms remain elusive. With more and more matched expression profiles of miRNAs and mRNAs having been made available, it is of great interest to utilize both expression profiles to discover the functional regulatory networks of miRNAs and their target mRNAs for potential biological processes that they may participate in. RESULTS: We present a probabilistic graphical model to discover functional miRNA regulatory modules at potential biological levels by integrating heterogeneous datasets, including expression profiles of miRNAs and mRNAs, with or without the prior target binding information. We applied this model to a mouse mammary dataset. It effectively captured several biological process specific modules involving miRNAs and their target mRNAs. Furthermore, without using prior target binding information, the identified miRNAs and mRNAs in each module show a large proportion of overlap with predicted miRNA target relationships, suggesting that expression profiles are crucial for both target identification and discovery of regulatory modules.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号