首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To discover new lead compounds with anti-tumour activities, in the present study, natural diosgenin was hybridised with the reported benzoic acid mustard pharmacophore. The in vitro cytotoxicity of the resulting newly synthesised hybrids (8–10, 14a–14f, and 15a–15f) was then evaluated in three tumour cells (HepG2, MCF-7, and HeLa) as well as normal GES-1 cells. Among them, 14f possessed the most potential anti-proliferative activity against HepG2 cells, with an IC50 value of 2.26 µM, which was 14.4-fold higher than that of diosgenin (IC50 = 32.63 µM). Furthermore, it showed weak cytotoxicity against GES-1 cells (IC50 > 100 µM), thus exhibiting good antiproliferative selectivity between normal and tumour cells. Moreover, 14f could induce G0/G1 arrest and apoptosis of HepG2 cells. From a mechanistic perspective, 14f regulated cell cycle-related proteins (CDK2, CDK4, CDK6, cyclin D1 and cyclin E1) as well mitochondrial apoptosis pathway-related proteins (Bax, Bcl-2, caspase 9, and caspase 3). These findings suggested that hybrid 14f serves as a promising anti-hepatoma lead compound that deserves further research.  相似文献   

2.
P53 inactivation is often observed in Burkitt''s lymphoma (BL) cells due to mutations in the p53 gene or overexpression of its negative regulator, murine double minute-2 (MDM2). This event is now considered an essential part of the oncogenic process. Epstein–Barr virus (EBV) is strongly associated with BL and is a cofactor in its development. We previously showed that nutlin-3, an antagonist of MDM2, activates the p53 pathway in BL cell lines harboring wild-type p53. However, nutlin-3 strongly induced apoptosis in EBV (−) or latency I EBV (+) cells, whereas latency III EBV (+) cells were much more resistant. We show here that this resistance to apoptosis is also observed in latency III EBV (+) lymphoblastoid cell lines. We also show that, in latency III EBV (+) cells, B-cell lymphona 2 (Bcl-2) is selectively overproduced and interacts with Bcl-2-associated X protein (Bax), preventing its activation. The treatment of these cells with the Bcl-2-homology domain 3 mimetic ABT-737 disrupts Bax/Bcl-2 interaction and allows Bax activation by nutlin-3. Furthermore, treatment with these two compounds strongly induces apoptosis. Thus, a combination of Mdm2 and Bcl-2 inhibitors might be a useful anti-cancer strategy for diseases linked to EBV infection.  相似文献   

3.
4.
We have recently found that 𝒟(−)lentiginosine, a synthetic iminosugar exerting glucosidase inhibitory activity, but not its natural enantiomer lentiginosine, is endowed with an unexpected, pro-apoptotic activity. Here, we investigated mechanisms involved in apoptosis induced by 𝒟−)lentiginosine in MOLT-3, HT-29 and SH-SY5Y tumour cell lines. The results showed that 𝒟−)lentiginosine increased caspase 9 expression at 18 h in all the cell lines from 1.5–3.1 folds. Cytochrome c in the cytoplasm was found to be increased from 2.3–2.6 folds in treated cells with respect to control cells. These effects were accompanied by a remarkable collapse of the mitochondrial membrane potential and by the downregulation of anti-apoptotic genes, as well as the upregulation of pro-apoptotic genes of the Bcl-2 family. U937Bcl-2 transfectants, highly expressing Bcl-2, were reluctant to undergo apoptosis even following treatment with 500 μM 𝒟−)lentiginosine, whereas apoptosis by 𝒟−)lentiginosine was induced also in U937 cells, naturally deficient in P53. Thus, our study establishes that the enantiomer of a natural iminosugar is endowed with a possible anti-tumorigenic effect that might be ascribed not only to their capacity to inhibit glycosidases but also to other unknown mechanisms. These data encourage further investigation on similar compounds to make them an interesting platform for the generation of new anticancer drugs.  相似文献   

5.
Disruption of Mdm2-p53 interaction activates p53 signaling, disrupts the balance ofantiapoptotic and proapoptotic Bcl-2 family proteins and induces apoptosis in acutemyeloid leukemia (AML). Overexpression of Bcl-2 may inhibit this effect. Thus,functional inactivation of antiapoptotic Bcl-2 proteins may enhance apoptogenic effects ofMdm2 inhibition. We here investigate the potential therapeutic utility of combinedtargeting of Mdm2 by Nutlin-3a and Bcl-2 by ABT-737, recently developed inhibitors ofprotein-protein interactions. Nutlin-3a and ABT-737 induced Bax conformational changeand mitochondrial apoptosis in AML cells in a strikingly synergistic fashion. Nutlin-3ainduced p53-mediated apoptosis predominantly in S and G2/M cells, while cells in G1 were protected through induction of p21. In contrast, ABT-737 induced apoptosis predominantly in G1 , the cell cycle phase with the lowest Bcl-2 protein levels and Bcl-2/Bax ratios. In addition, Bcl-2 phosphorylation on Ser70 was absent in G1 but detectable in G2/M, thus lower Bcl-2 levels and absence of Bcl-2 phosphorylation appeared to facilitate ABT-737-induced apoptosis of G1 cells. The complementary effects of Nutlin-3a and ABT-737 in different cell cycle phases could, in part, account for their synergistic activity. Our data suggest that combined targeting of Mdm2 and Bcl-2 proteins could offer considerable therapeutic promise in AML.  相似文献   

6.
OBJECTIVE: To assess the mechanisms of action of phenylbutyrate (PB), an investigational chemotherapeutic agent for prostate cancer (PCa), in apoptosis induction in PCa cell lines in vitro. STUDY DESIGN: We analyzed the differential expression of different apoptosis modulators, Bcl-2, Bax, p53 and Fas, for their potential role in PB-induced apoptosis using relative quantitative flow cytometry (FCM). Both androgen-dependent (LNCaP) and androgen-independent (C-4-2, PC-3-PF and DU145) human PCa cell lines were examined. RESULTS: PB induced apoptosis in PCa cell lines in a dose-dependent manner. Fifty percent apoptosis could be induced by 5-10 mM PB. Bcl-2 was down-regulated 30-75% and the Bax:Bcl-2 ratio elevated in apoptotic PCa cell lines regardless of their androgen dependency or p53 status. FCM revealed a heterogeneous stimulatory effect on the expression of Bax and Bcl-2 in PC3-PF cells at 0.5-2.5 mM PB. In a p53-positive cell line (DU145), p53 was repressed by 70% and Fas elevated sixfold with 10 mM PB. CONCLUSION: Our data show that PB-induced PCa apoptosis is associated with the relative repression of Bcl-2 and with up-regulation of Bax and Fas proteins and that this PB-induced apoptosis is independent of p53 and androgen-dependency status of PCa cell lines.  相似文献   

7.
Human small intestine accounts for 75% of the gastrointestinal (GI) length but for only 1–5% of GI tumors. The reason remains as yet unclearly understood. Our study was designed to examine whether increased apoptosis and expression of related genes/proteins, especially those of the Bcl-2 family, contribute to this difference. For this purpose, 77 samples from patients were examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and immunohistochemistry, including 40 cases from normal small intestine (jejunum), 7 cases from jejunum and ileum adenocarcinomas, and 30 cases from normal colon. The results showed that a significantly higher level of enterocyte apoptosis was observed in normal small intestine compared with small intestinal adenocarcinomas and normal colon (median of apoptotic index, 15.2% vs 0.1% and 1.6%, p<0.01). A similar pattern was observed for Bax (expression-positive, 77.5% vs 28.6% and 53.3%, p<0.05) but not for Bcl-2 (42.5% vs 42.9% and 46.7%, p>0.05) or Bax/Bcl-2 ratio (percent of samples having a ratio ≥1, 45.0% vs 14.3% and 36.7%, p>0.05). In conclusion, increased apoptosis and expression of Bax, not Bcl-2 or the Bax/Bcl-2 ratio, may play some role in the relatively lower incidence of human small intestinal carcinomas. However, more studies are required for a better understanding of these changes. (J Histochem Cytochem 57:1139–1148, 2009)  相似文献   

8.
Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, is associated with a broad range of biological properties including antitumor activity. However, the effect of DHA on gastric cancer has not been clearly clarified. The aim of this study was to investigate the role and mechanism of DHA in human gastric cancer cell line BGC-823. Cell viability was assessed by MTT assay. Cell apoptosis was analyzed with flow cytometry. The expressions of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38 MAPK) and their phosphorylated forms as well as apoptosis related proteins were examined by western blot analysis. The results demonstrated that DHA inhibited cell viability of BGC-823 cells in a dose- and time-dependent manner. DHA treatment upregulated the expression of Bax, cleaved caspase-3 and -9, and degraded form of PARP, and downregulated the Bcl-2 expression and Bcl-2/Bax ratio. Meanwhile, DHA increased the phosphorylation of ERK1/2, JNK1/2 and p38 MAPK. Synthetic inhibitors of JNK1/2 or p38 MAPK kinase activity, but not inhibitor of ERK1/2, significantly abolished the DHA-induced activation of caspase-3 and -9. In vivo tumor-suppression assay further indicated that DHA displayed significant inhibitory effect on BGC-823 xenografts in tumor growth. These results indicate that DHA induces apoptosis of BGC-823 cells through JNK1/2 and p38 MAPK signaling pathways and DHA could serve as a potential additional chemotherapeutic agent for treatment of gastric cancer.  相似文献   

9.
10.
Genotoxic stimuli, including anticancer drugs, induce apoptosis in cancer cells through increase of p53, p21WAF1/CIP1 , at least in part. Bcl-2 and Bax modify this pathway or directly regulated by p53. Here we studied Adriamycin (ADM)-induced apoptosis in four human bladder cancer cell lines in respect of p53, p21WAF1/CIP1 and Bcl-2 family proteins. After ADM, treatment bladder cancer cells underwent dose-dependent cell death with typical morphologic features of apoptosis. Among four cell lines RT4 with wt p53, low ratio of Bcl-2 to Bax and induction of p21WAF1/CIP1 after ADM treatment, was the most sensitive to induction of apoptosis. Thus, p53, p21WAF1/CIP1 , Bcl-2 and Bax status might determine susceptibility of bladder cancer cells to ADM induced apoptosis.  相似文献   

11.
12.
Cytochrome c release is a central step in the apoptosis induced by many death stimuli. Bcl-2 plays a critical role in controlling this step. In this study, we investigated the upstream mechanism of cytochrome c release induced by ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (HA14-1), a recently discovered small molecule inhibitor of Bcl-2. HA14-1 was found to induce cytochrome c release from the mitochondria of intact cells but not from isolated mitochondria. Cytochrome c release from isolated mitochondria requires the presence of both HA14-1 and exogenous Ca(2+). This suggests that both mitochondrial and extramitochondrial signals are important. In intact cells, treatment with HA14-1 caused Ca(2+) spike, change in mitochondrial membrane potential (Delta psi(m)) transition, Bax translocation, and reactive oxygen species (ROS) generation prior to cytochrome c release. Pretreatment with either EGTA acetoxymethyl ester or vitamin E resulted in a significant decrease in cytochrome c release and cell death induced by HA14-1. Furthermore pretreatment with RU-360, an inhibitor of the mitochondrial Ca(2+) uniporter, or with EGTA acetoxymethyl ester, but not with vitamin E, prevented the HA14-1-induced Delta psi(m) transition and Bax translocation. This suggests that ROS generation is an event that occurs after the Delta psi(m) transition and Bax translocation. Together these data demonstrate that the Ca(2+) spike, mitochondrial Bcl-2 presensitization, and subsequent Delta psi(m) transition, Bax translocation, and ROS generation are important upstream signals for cytochrome c release upon HA14-1 stimulation. The involvement of endoplasmic reticulum and mitochondrial signals suggests both organelles are crucial for HA14-1-induced apoptosis.  相似文献   

13.
Although oligomeric β-amyloid (Aβ) has been suggested to have an important role in Alzheimer disease (AD), the mechanism(s) of how Aβ induces neuronal cell death has not been fully identified. The balance of pro- and anti-apoptotic Bcl-2 family proteins (e.g., Bcl-2 and Bcl-w versus Bad, Bim and Bax) has been known to have a role in neuronal cell death and, importantly, expression levels of these proteins are reportedly altered in the vulnerable neurons in AD. However, the roles of apoptotic proteins in oligomeric Aβ-induced cell death remain unclear in vivo or in more physiologically relevant models. In addition, no study to date has examined whether Bax is required for the toxicity of oligomeric Aβ. Here, we found that treatment with oligomeric Aβ increased Bim levels but decreased Bcl-2 levels, leading to the activation of Bax and neuronal cell death in hippocampal slice culture and in vivo. Furthermore, the inhibition of Bax activity either by Bax-inhibiting peptide or bax gene knockout significantly prevented oligomeric Aβ-induced neuronal cell death. These findings are first to demonstrate that Bax has an essential role in oligomeric Aβ-induced neuronal cell death, and that the targeting of Bax may be a therapeutic approach for AD.  相似文献   

14.
The cardiotoxicity of cyclosporine A (CsA) limits its clinical application in extensive and long-term therapies. Our group has shown that CsA induces myocardium cell apoptosis in vivo and increases calcium-sensing receptor (CaSR) expression. However, its molecular mechanism remains unknown. The purpose of this study was to determine whether CaSR plays an essential role in CsA-induced apoptosis in H9c2 cells and to investigate the role of the mitogen-activated protein kinase (MAPK) signaling cascade in this process. H9c2 cells were treated with CsA in a dose-dependent manner, and decreased Bcl-2 expression, increased Bax expression, and caspase-3 activation were observed. In a time-dependent manner, CsA increased CaSR expression, activated the extracellularly regulated kinase (ERK) and p38 MAPK pathways, and inactivated the c-Jun N-terminal kinase (JNK) MAPK signaling pathway. When H9c2 cardiomyoblast cells pretreated with gadolinium chloride (GdCl(3)), a CaSR activator, were treated with CsA, decreased phosphorylation of ERK1/2, increased phosphorylation of p38, decreased Bcl-2 expression, increased Bax expression, and activated caspase-3 were observed. Cells pretreated with the CaSR inhibitor NPS2390 inhibited this process. Furthermore, the MEK1/2 inhibitor U0126 and the p38 MAPK inhibitor SB203580 markedly blocked the effect of CsA on cell apoptosis, apoptotic-related protein expression, and caspase-3 activation. These findings showed that CsA induced apoptosis in H9c2 cells in vitro, and CaSR mediated the degradation of ERK MAPK and the upregulation of the p38 MAPK pathway involved in CsA-induced H9c2 cardiomyoblast cell apoptosis.  相似文献   

15.
Transforming growth factor-beta1 (TGF-beta1) can inhibit cell proliferation or induce apoptosis in multipotent hematopoietic cells. To study the mechanisms of TGF-beta1 action on primitive hematopoietic cells, we used the interleukin-3 (IL-3)-dependent, multipotent FDCP-Mix cell line. TGF-beta1-mediated growth inhibition was observed in high concentrations of IL-3, while at lower IL-3 concentrations TGF-beta1 induced apoptosis. The proapoptotic effects of TGF-beta1 occur via a p53-independent pathway, since p53(null) FDCP-Mix demonstrated the same responses to TGF-beta1. IL-3 has been suggested to enhance survival via an increase in (antiapoptotic) Bcl-x(L) expression. In FDCP-Mix cells, neither IL-3 nor TGF-beta1 induced any change in Bcl-x(L) protein levels or the proapoptotic proteins Bad or Bax. However, TGF-beta1 had a major effect on Bcl-2 levels, reducing them in the presence of high and low concentrations of IL-3. Overexpression of Bcl-2 in FDCP-Mix cells rescued them from TGF-beta1-induced apoptosis but was incapable of inhibiting TGF-beta1-mediated growth arrest. We conclude that TGF-beta1-induced cell death is independent of p53 and inhibited by Bcl-2, with no effect on Bcl-x(L). The significance of these results for stem cell survival in bone marrow are discussed.  相似文献   

16.
Mcl-1 determines the Bax dependency of Nbk/Bik-induced apoptosis   总被引:1,自引:0,他引:1       下载免费PDF全文
B cell lymphoma 2 (Bcl-2) homology domain 3 (BH3)–only proteins of the Bcl-2 family are important functional adaptors that link cell death signals to the activation of Bax and/or Bak. The BH3-only protein Nbk/Bik induces cell death via an entirely Bax-dependent/Bak-independent mechanism. In contrast, cell death induced by the short splice variant of Bcl-x depends on Bak but not Bax. This indicates that Bak is functional but fails to become activated by Nbk. Here, we show that binding of myeloid cell leukemia 1 (Mcl-1) to Bak persists after Nbk expression and inhibits Nbk-induced apoptosis in Bax-deficient cells. In contrast, the BH3-only protein Puma disrupts Mcl-1–Bak interaction and triggers cell death via both Bax and Bak. Targeted knockdown of Mcl-1 overcomes inhibition of Bak and allows for Bak activation by Nbk. Thus, Nbk is held in check by Mcl-1 that interferes with activation of Bak. The finding that different BH3-only proteins rely specifically on Bax, Bak, or both has important implications for the design of anticancer drugs targeting Bcl-2.  相似文献   

17.
p53 induces both growth arrest and apoptosis in cancer cells. To clarify whether the level of p53 expression determines the response of small cell lung carcinoma (SCLC) cells, we assessed the effect of various p53 levels on a p53-null SCLC cell line, N417, using a tetracycline (Tc)-regulated inducible p53 expression system. Apoptosis was induced in SCLC cells with high p53 expression. Although low levels of p53 induced G1 arrest accompanied by p21 expression, cells with G1 arrest seemed to undergo apoptosis after further cultivation. Expression of exogenous p21 induced G1 arrest but not apoptosis in SCLC cells, suggesting that p53-mediated G1 arrest was induced through p21 expression. Moreover, high level of p53 expression down-regulated Bcl-2 expression in SCLC cells, while Bax was consistently expressed irrespective to the level of p53 expression. These results suggest that p53-mediated apoptosis and G1 arrest depend on level of p53 expression in SCLC cells and that the relative dominancy of Bax to Bcl-2 is involved in the induction of apoptosis by high level of p53 expression.  相似文献   

18.
19.
Movement of Bax from the Cytosol to Mitochondria during Apoptosis   总被引:28,自引:0,他引:28       下载免费PDF全文
Bax, a member of the Bcl-2 protein family, accelerates apoptosis by an unknown mechanism. Bax has been recently reported to be an integral membrane protein associated with organelles or bound to organelles by Bcl-2 or a soluble protein found in the cytosol. To explore Bcl-2 family member localization in living cells, the green fluorescent protein (GFP) was fused to the NH2 termini of Bax, Bcl-2, and Bcl-XL. Confocal microscopy performed on living Cos-7 kidney epithelial cells and L929 fibroblasts revealed that GFP–Bcl-2 and GFP–Bcl-XL had a punctate distribution and colocalized with a mitochondrial marker, whereas GFP–Bax was found diffusely throughout the cytosol. Photobleaching analysis confirmed that GFP–Bax is a soluble protein, in contrast to organelle-bound GFP–Bcl-2. The diffuse localization of GFP–Bax did not change with coexpression of high levels of Bcl-2 or Bcl-XL. However, upon induction of apoptosis, GFP–Bax moved intracellularly to a punctate distribution that partially colocalized with mitochondria. Once initiated, this Bax movement was complete within 30 min, before cellular shrinkage or nuclear condensation. Removal of a COOH-terminal hydrophobic domain from GFP–Bax inhibited redistribution during apoptosis and inhibited the death-promoting activity of both Bax and GFP– Bax. These results demonstrate that in cells undergoing apoptosis, an early, dramatic change occurs in the intracellular localization of Bax, and this redistribution of soluble Bax to organelles appears important for Bax to promote cell death.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号