首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In the past decade, encouraging results have been obtained in extraction and analysis of proteins from formalin‐fixed, paraffin‐embedded (FFPE) tissues. However, 2‐D PAGE protein maps with satisfactory proteomic information and comparability to fresh tissues have never been described to date. In the present study, we report 2‐D PAGE separation and MS identification of full‐length proteins extracted from FFPE skeletal muscle tissue. The 2‐D protein profiles obtained from FFPE tissues could be matched to those achieved from frozen tissues replicates. Up to 250 spots were clearly detected in 2‐D maps of proteins from FFPE tissue following standard mass‐compatible silver staining. Protein spots from both FFPE and frozen tissue 2‐D gels were excised, subjected to in situ hydrolysis, and identified by MS analysis. Matched spots produced matched protein identifications. Moreover, 2‐D protein maps from FFPE tissues were successfully subjected to Western immunoblotting, producing comparable results to fresh‐frozen tissues. In conclusion, this study provides evidence that, when adequately extracted, full‐length proteins from FFPE tissues might be suitable to 2‐D PAGE‐MS analysis, allowing differential proteomic studies on the vast existing archives of healthy and pathological‐fixed tissues.  相似文献   

2.
Formalin-fixed paraffin-embedded (FFPE) tissue specimens comprise a potentially valuable resource for retrospective biomarker discovery studies, and recent work indicates the feasibility of using shotgun proteomics to characterize FFPE tissue proteins. A critical question in the field is whether proteomes characterized in FFPE specimens are equivalent to proteomes in corresponding fresh or frozen tissue specimens. Here we compared shotgun proteomic analyses of frozen and FFPE specimens prepared from the same colon adenoma tissues. Following deparaffinization, rehydration, and tryptic digestion under mild conditions, FFPE specimens corresponding to 200 μg of protein yielded ∼400 confident protein identifications in a one-dimensional reverse phase liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The major difference between frozen and FFPE proteomes was a decrease in the proportions of lysine C-terminal to arginine C-terminal peptides observed, but these differences had little effect on the proteins identified. No covalent peptide modifications attributable to formaldehyde chemistry were detected by analyses of the MS/MS datasets, which suggests that undetected, cross-linked peptides comprise the major class of modifications in FFPE tissues. Fixation of tissue for up to 2 days in neutral buffered formalin did not adversely impact protein identifications. Analysis of archival colon adenoma FFPE specimens indicated equivalent numbers of MS/MS spectral counts and protein group identifications from specimens stored for 1, 3, 5, and 10 years. Combination of peptide isoelectric focusing-based separation with reverse phase LC-MS/MS identified 2554 protein groups in 600 ng of protein from frozen tissue and 2302 protein groups from FFPE tissue with at least two distinct peptide identifications per protein. Analysis of the combined frozen and FFPE data showed a 92% overlap in the protein groups identified. Comparison of gene ontology categories of identified proteins revealed no bias in protein identification based on subcellular localization. Although the status of posttranslational modifications was not examined in this study, archival samples displayed a modest increase in methionine oxidation, from ∼17% after one year of storage to ∼25% after 10 years. These data demonstrate the equivalence of proteome inventories obtained from FFPE and frozen tissue specimens and provide support for retrospective proteomic analysis of FFPE tissues for biomarker discovery.Formalin-fixed paraffin-embedded (FFPE)1 tissue samples are routinely prepared during the pathological characterization of clinical specimens and are abundantly available in pathology archives worldwide. The fixation process yields clinically relevant samples that can be stored at ambient temperature and are suitable for pathological examination by light microscopy even after years in storage. Given the wealth of clinical data associated with specimens collected over a span of decades, such as patient treatment regimens and outcomes, FFPE tissue represents a potentially valuable resource for biomarker discovery through retrospective analysis (1, 2).However, fixation of tissue in formalin leads to significant cross-linking among proteins and other biomolecules, rendering the samples incompatible with many biochemical analyses. Immunohistochemical (IHC) analysis of FFPE tissue has been conducted since the 1970s using either proteolysis or protein denaturants to expose antigenic regions of proteins (3, 4). Since the 1990s, detection of antigens in FFPE tissue has been improved through the development of so-called antigen retrieval techniques (5, 6). These methods involve application of heat in the presence of any of a variety of buffers resulting in the cleavage of methylene bridges formed during the course of fixation (2).Despite their utilization for IHC analysis, FFPE tissue samples have been largely overlooked in proteomics studies, due to the assumption that tissue fixation would make proteomic analysis intractable. Recent work appears to refute this notion. In 2005, Hood et al. (7) first described the successful application of shotgun proteome analysis to FFPE tissue. Using laser capture microdissected cells and an optimized extraction method, hundreds of proteins were identified from a cancerous prostate lesion and benign prostate hyperplasia, thus opening the door to comparative proteomic analyses of FFPE tissue. Moreover, the same study showed that the numbers and identities of proteins observed were remarkably similar when applying the method to frozen and FFPE mouse liver, thus lending support to the use of FFPE tissue in biomarker discovery studies. Since the initial demonstration of its feasibility, FFPE tissues from diverse origins including breast, liver, kidney, lymphoma, and bone successfully have been subjected to proteomic analyses (814).Although this work suggests the feasibility of biomarker discovery from FFPE tissue, most of these previous studies have been performed on small amounts of material with one-dimensional reverse phase liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. The use of multidimensional peptide separations can extend the dynamic range of the LC-MS/MS analyses to detect lower abundance proteins. Recently, the use of capillary isotachophoresis as the first dimension in a multidimensional peptide separation strategy for analyzing FFPE tissue was described (8). In this study, thousands of proteins were identified out of <4 μg of digest from FFPE human liver sections. However, the apparatus used was an in-house, custom-designed system, not readily accessible to other laboratories. In several of these studies, proteins identified by a single peptide were accepted as valid identifications. Use of single peptide-based identifications elevates the probability of false positive protein identifications, and these identifications often constitute the majority of protein identifications (15).The equivalence of fresh/frozen and FFPE tissue proteomes is a critical issue in evaluating the suitability of employing FFPE tissues for biomarker discovery by comparative proteomic analyses. Hood et al. (7) and Guo et al. (14) reported comparisons from analyses of paired fresh and frozen tissue specimens. Guo et al. (14) reported an apparent overlap of 83% in protein identifications between FFPE and frozen brain tissue specimens, whereas Hood et al. (7) did not report the degree of overlap, but found that FFPE mouse liver tissue yielded about 88% of the identifications determined for frozen mouse liver tissue. The majority of protein identifications in both studies were based on single peptide assignments. These investigations did not explicitly address the effect of formaldehyde-derived modifications on the inventories of identified peptides.An unexplored question with FFPE tissue specimens is the extent to which normal variability in fixation process and storage duration affect the proteomes observed. The duration of tissue fixation is not highly standardized and may vary from hours to several days. One of the most attractive features of FFPE specimens is the opportunity for retrospective biomarker discovery, but the effects of storage for many years on tissue proteomes remains unknown.Here, we address these questions through detailed comparative studies of the analysis of fresh frozen and FFPE tissues by LC-MS/MS-based shotgun proteomics. We used the same fresh tissue specimens to prepare both frozen and FFPE samples for paired comparisons. We evaluated conditions for tissue lysis and digestion and the effects of fixation time and storage duration on the number of protein IDs obtained during shotgun proteomic analysis of FFPE tissue. We also characterized the differences in peptides observed between fixed and frozen specimens in an effort to understand the effect of fixation from a practical biomarker discovery standpoint. Furthermore, we compared analyses of fresh frozen and FFPE colon adenoma tissue by multidimensional LC-MS/MS using gel-based isoelectric focusing of peptides (Fig. 1). The results demonstrate a remarkable overlap in the number and identities of proteins between the fixed and frozen tissue and indicate that variations in duration of fixation and storage have a minimal effect on protein inventories obtained by shotgun proteomic analysis. The data indicate essential equivalence between protein inventories obtained from fresh frozen and FFPE tissue specimens by shotgun proteomics and validate the use of FFPE tissue specimens for biomarker discovery.Open in a separate windowFig. 1.Strategy for multidimensional LC-MS/MS analysis of FFPE tissue.  相似文献   

3.
Proteomics analysis is important for characterizing tissues to gain biological and pathological insights, which could lead to the identification of disease-associated proteins for disease diagnostics or targeted therapy. However, tissues are commonly embedded in optimal cutting temperature medium (OCT) or are formalin-fixed and paraffin-embedded (FFPE) in order to maintain tissue morphology for histology evaluation. Although several tissue proteomic analyses have been performed on FFPE tissues using advanced mass spectrometry (MS) technologies, high-throughput proteomic analysis of OCT-embedded tissues has been difficult due to the interference of OCT in the MS analysis. In addition, molecules other than proteins present in tissues further complicate tissue proteomic analysis. Here, we report the development of a method using chemical immobilization of proteins for peptide extraction (CIPPE). In this method, proteins are chemically immobilized onto a solid support; interferences from tissues and OCT embedding are removed by extensive washing of proteins conjugated on the solid support. Peptides are then released from the solid phase by proteolysis, enabling MS analysis. This method was first validated by eliminating OCT interference from a standard protein, human serum albumin, where all of the unique peaks contributed by OCT contamination were eradicated. Finally, this method was applied for the proteomic analysis of frozen and OCT-embedded tissues using iTRAQ (isobaric tag for relative and absolute quantitation) labeling and two-dimensional liquid chromatography tandem mass spectrometry. The data showed reproducible extraction and quantitation of 10,284 proteins from 3996 protein groups and a minimal impact of OCT embedding on the analysis of the global proteome of the stored tissue samples.  相似文献   

4.
Formalin‐fixed paraffin‐embedded (FFPE) tissues are the primary and preferred medium for archiving patients' samples. Here we demonstrate relative quantifications of protein biomarkers in extracts of laser microdissected epithelial cells from FFPE endometrial carcinoma tissues versus those from normal proliferative endometria by means of targeted proteomic analyses using LC–multiple reaction monitoring (MRM) MS with MRM Tags for Relative and Absolute Quantitation (mTRAQ) labeling. Comparable results of differential expressions for pyruvate kinase isoform M2 (PK‐M2) and polymeric Ig receptor were observed between analyses on laser microdissected epithelial cells from FFPE tissues and corresponding homogenates from frozen tissues of the same individuals that had previously been analyzed and reported. We also identified PK‐M2 in the normal proliferative phase of the endometrium. Other biomarkers in addition to PK‐M2 and polymeric Ig receptor were also observed but not consistently and/or were at levels below the threshold for quantification.  相似文献   

5.
A number of reports have recently emerged with focus on extraction of proteins from formalin‐fixed paraffin‐embedded (FFPE) tissues for MS analysis; however, reproducibility and robustness as compared to flash frozen controls is generally overlooked. The goal of this study was to identify and validate a practical and highly robust approach for the proteomics analysis of FFPE tissues. FFPE and matched frozen pancreatic tissues obtained from mice (n = 8) were analyzed using 1D‐nanoLC‐MS(MS)2 following work up with commercially available kits. The chosen approach for FFPE tissues was found to be highly comparable to that of frozen. In addition, the total number of unique peptides identified between the two groups was highly similar, with 958 identified for FFPE and 1070 identified for frozen, with protein identifications that corresponded by approximately 80%. This approach was then applied to archived human FFPE pancreatic cancer specimens (n = 11) as compared to uninvolved tissues (n = 8), where 47 potential pancreatic ductal adenocarcinoma markers were identified as significantly increased, of which 28 were previously reported. Further, these proteins share strongly overlapping pathway associations to pancreatic cancer that include estrogen receptor α. Together, these data support the validation of an approach for the proteomic analysis of FFPE tissues that is straightforward and highly robust, which can also be effectively applied toward translational studies of disease.  相似文献   

6.
Formalin-fixed, paraffin-embedded (FFPE) tissue banks represent an invaluable resource for biomarker discovery. Recently, the combination of full-length protein extraction, GeLC-MS/MS analysis, and spectral counting quantification has been successfully applied to mine proteomic information from these tissues. However, several sources of variability affect these samples; among these, the duration of the fixation process is one of the most important and most easily controllable ones. To assess its influence on quality of GeLC-MS/MS data, the impact of fixation time on efficiency of full-length protein extraction efficiency and on quality of label-free quantitative data was evaluated. As a result, although proteins were successfully extracted from FFPE liver samples fixed for up to eight days, fixation time appeared to negatively influence both protein extraction yield and GeLC-MS/MS quantitative proteomic data. Particularly, MS identification efficiency decreased with increasing fixation times. Moreover, amino acid modifications putatively induced by formaldehyde were detected and characterized. These results demonstrate that proteomic information can be achieved also from tissue samples fixed for relatively long times, but suggest that variations in fixation time need to be carefully taken into account when performing proteomic biomarker discovery studies on fixed tissue archives.  相似文献   

7.
Formalin‐fixed paraffin‐embedded (FFPE) tissue is considered as an appropriate alternative to frozen/fresh tissue for proteomic analysis. Here we study formalin‐induced alternations on a proteome‐wide level. We compared LC‐MS/MS data of FFPE and frozen human kidney tissues by two methods. First, clustering analysis revealed that the biological variation is higher than the variation introduced by the two sample processing techniques and clusters formed in accordance with the biological tissue origin and not with the sample preservation method. Second, we combined open modification search and spectral counting to find modifications that are more abundant in FFPE samples compared to frozen samples. This analysis revealed lysine methylation (+14 Da) as the most frequent modification induced by FFPE preservation. We also detected a slight increase in methylene (+12 Da) and methylol (+30 Da) adducts as well as a putative modification of +58 Da, but they contribute less to the overall modification count. Subsequent SEQUEST analysis and X!Tandem searches of different datasets confirmed these trends. However, the modifications due to FFPE sample processing are a minor disturbance affecting 2–6% of all peptide‐spectrum matches and the peptides lists identified in FFPE and frozen tissues are still highly similar.  相似文献   

8.
Formalin‐fixed paraffin‐embedded (FFPE) tissue is a rich source of clinically relevant material that can yield important translational biomarker discovery using proteomic analysis. Protocols for analyzing FFPE tissue by LC‐MS/MS exist, but standardization of procedures and critical analysis of data quality is limited. This study compared and characterized data obtained from FFPE tissue using two methods: a urea in‐solution digestion method (UISD) versus a commercially available Qproteome FFPE Tissue Kit method (Qkit). Each method was performed independently three times on serial sections of homogenous FFPE tissue to minimize pre‐analytical variations and analyzed with three technical replicates by LC‐MS/MS. Data were evaluated for reproducibility and physiochemical distribution, which highlighted differences in the ability of each method to identify proteins of different molecular weights and isoelectric points. Each method replicate resulted in a significant number of new protein identifications, and both methods identified significantly more proteins using three technical replicates as compared to only two. UISD was cheaper, required less time, and introduced significant protein modifications as compared to the Qkit method, which provided more precise and higher protein yields. These data highlight significant variability among method replicates and type of method used, despite minimizing pre‐analytical variability. Utilization of only one method or too few replicates (both method and technical) may limit the subset of proteomic information obtained.  相似文献   

9.
Hospital tissue repositories possess a vast and valuable supply of disease samples with matched retrospective clinical information. Detection and characterization of disease biomarkers in formalin-fixed paraffin-embedded (FFPE) tissues will greatly aid the understanding of the diseases mechanisms and help in the development of diagnostic and prognostic markers. In this study, the possibility of using full-length proteins extracted from clinically archived FFPE tissues in two-dimensional (2-D) gel-based proteomics was evaluated. The evaluation was done based on two types of tumor tissues (breast and prostate) and two extraction protocols. The comparison of the 2-D patterns of FFPE extracts obtained by two extraction protocols with the matching frozen tissue extracts showed that only 7–10 % of proteins from frozen tissues can be matched to proteins from FFPE tissues. Most of the spots in the 2-D FFPE’s maps had pl 4–6, while the percentages of proteins with pl above 6 were 3–5 times lower in comparison to the fresh/frozen tissue. Despite the three-fold lower number of the detected spots in FFPE maps compared to matched fresh/frozen maps, 67–78 % of protein spots in FFPE could not be matched to the corresponding spots in the fresh/frozen tissue maps indicating irreversible protein modifications. In conclusion, the inability to completely reverse the cross-linked complexes and overcome protein fragmentation with the present day FFPE extraction methods stands in the way of effective use of these samples in 2-D gel based proteomics studies.  相似文献   

10.

Background

Proteomic research in the field of parathyroid tissues is limited by the very small dimension of the glands and by the low incidence of cancer lesions (1%). Formalin-fixed paraffin-embedded (FFPE) tissue specimens are a potentially valuable resource for discovering protein cancer biomarkers. In this study we have verified the applicability of a heat induced protein extraction from FFPE parathyroid adenoma tissues followed by a gel-based or gel-free proteomic approach in order to achieve protein separation and identification.

Results

The best results for high quality MS spectra and parameters, were obtained by using a gel-free approach, and up to 163 unique proteins were identified. Similar results were obtained by applying both SDS-out and SDS-out + TCA/Acetone techniques during the gel-free method. Western blot analysis carried out with specific antibodies suggested that the antigenicity was not always preserved, while specific immunoreactions were detected for calmodulin, B box and SPRY domain-containing protein (BSPRY), peroxiredoxin 6 (PRDX 6) and parvalbumin.

Conclusions

In spite of some limitations mainly due to the extensive formalin-induced covalent cross-linking, our results essentially suggest the applicability of a proteomic approach to FFPE parathyroid specimens. From our point of view, FFPE extracts might be an alternative source, especially in the validation phase of protein biomarkers when a large cohort of samples is required and the low availability of frozen tissues might be constraining.  相似文献   

11.
Prostate cancer is the most common cancer in males worldwide. Mass spectrometry-based targeted proteomics has demonstrated great potential in quantifying proteins from formalin-fixed paraffin-embedded (FFPE) and (fresh) frozen biopsy tissues. Here we provide a comprehensive tissue-specific spectral library for targeted proteomic analysis of prostate tissue samples. Benign and malignant FFPE prostate tissue samples were processed into peptide samples by pressure cycling technology (PCT)-assisted sample preparation, and fractionated with high-pH reversed phase liquid chromatography (RPLC). Based on data-dependent acquisition (DDA) MS analysis using a TripleTOF 6600, we built a library containing 108,533 precursors, 84,198 peptides and 9384 unique proteins (1% FDR). The applicability of the library was demonstrated in prostate specimens.  相似文献   

12.

Background

Mass spectrometry-based proteomics has become a powerful tool for the identification and quantification of proteins from a wide variety of biological specimens. To date, the majority of studies utilizing tissue samples have been carried out on prospectively collected fresh frozen or optimal cutting temperature (OCT) embedded specimens. However, such specimens are often difficult to obtain, in limited in supply, and clinical information and outcomes on patients are inherently delayed as compared to banked samples. Annotated formalin fixed, paraffin embedded (FFPE) tumor tissue specimens are available for research use from a variety of tissue banks, such as from the surveillance, epidemiology and end results (SEER) registries’ residual tissue repositories. Given the wealth of outcomes information associated with such samples, the reuse of archived FFPE blocks for deep proteomic characterization with mass spectrometry technologies would provide a valuable resource for population-based cancer studies. Further, due to the widespread availability of FFPE specimens, validation of specimen integrity opens the possibility for thousands of studies that can be conducted worldwide.

Methods

To examine the suitability of the SEER repository tissues for proteomic and phosphoproteomic analysis, we analyzed 60 SEER patient samples, with time in storage ranging from 7 to 32 years; 60 samples with expression proteomics and 18 with phosphoproteomics, using isobaric labeling. Linear modeling and gene set enrichment analysis was used to evaluate the impacts of collection site and storage time.

Results

All samples, regardless of age, yielded suitable protein mass after extraction for expression analysis and 18 samples yielded sufficient mass for phosphopeptide analysis. Although peptide, protein, and phosphopeptide identifications were reduced by 50, 20 and 76% respectively, from comparable OCT specimens, we found no statistically significant differences in protein quantitation correlating with collection site or specimen age. GSEA analysis of GO-term level measurements of protein abundance differences between FFPE and OCT embedded specimens suggest that the formalin fixation process may alter representation of protein categories in the resulting dataset.

Conclusions

These studies demonstrate that residual FFPE tissue specimens, of varying age and collection site, are a promising source of protein for proteomic investigations if paired with rigorously verified mass spectrometry workflows.
  相似文献   

13.
Annotated formalin-fixed, paraffin-embedded (FFPE) tissue archives constitute a valuable resource for retrospective biomarker discovery. However, proteomic exploration of archival tissue is impeded by extensive formalin-induced covalent cross-linking. Robust methodology enabling proteomic profiling of archival resources is urgently needed. Recent work is beginning to support the feasibility of biomarker discovery in archival tissues, but further developments in extraction methods which are compatible with quantitative approaches are urgently needed. We report a cost-effective extraction methodology permitting quantitative proteomic analyses of small amounts of FFPE tissue for biomarker investigation. This surfactant/heat-based approach results in effective and reproducible protein extraction in FFPE tissue blocks. In combination with a liquid chromatography-mass spectrometry-based label-free quantitative proteomics methodology, the protocol enables the robust representative and quantitative analyses of the archival proteome. Preliminary validation studies in renal cancer tissues have identified typically 250-300 proteins per 500 ng of tissue with 1D LC-MS/MS with comparable extraction in FFPE and fresh frozen tissue blocks and preservation of tumor/normal differential expression patterns (205 proteins, r = 0.682; p < 10(-15)). The initial methodology presented here provides a quantitative approach for assessing the potential suitability of the vast FFPE tissue archives as an alternate resource for biomarker discovery and will allow exploration of methods to increase depth of coverage and investigate the impact of preanalytical factors.  相似文献   

14.
Xianyin Lai  Bryan P. Schneider 《Proteomics》2014,14(21-22):2623-2627
Because fresh‐frozen tissue samples associated with long‐term clinical data and of rare diseases are often unobtainable at the present time, formalin‐fixed paraffin‐embedded (FFPE) tissue samples are considered a highly valuable resource for researchers. However, protein extraction from FFPE tissues faces challenges of deparaffinization and cross‐link reversion. Current procedures for protein extraction from FFPE tissue require separate steps and toxic solvents, resulting in inconvenience in protein extraction. To overcome these limitations, an integrated method was developed using nontoxic solvents in four types of FFPE tissues. The average amount of proteins from three replicates of bladder, kidney, liver, and lung FFPE tissues were 442.6, 728.9, 736.4, and 694.7 μg with CVs of 7.5, 5.8, 2.4, and 4.5%, respectively. Proteomic analysis showed that 348, 417, 607, and 304 unique proteins were identified and quantified without specification of isoform by a least two peptides from bladder, kidney, liver, and lung FFPE tissue samples, respectively. The analysis of individual protein CV demonstrated that 97–99% of the proteins were quantified with a CV ≤ 30%, verifying the reproducibility of the integrated protein extraction method. In summary, the developed method is high‐yield, reproducible, convenient, simple, low cost, nonvolatile, nonflammable, and nontoxic.  相似文献   

15.
Laser‐capture microdissection (LCM) offers a reliable cell population enrichment tool and has been successfully coupled to MS analysis. Despite this, most proteomic studies employ whole tissue lysate (WTL) analysis in the discovery of disease biomarkers and in profiling analyses. Furthermore, the influence of tissue heterogeneity in WTL analysis, nor its impact in biomarker discovery studies have been completely elucidated. In order to address this, we compared previously obtained high resolution MS data from a cohort of 38 breast cancer tissues, of which both LCM enriched tumor epithelial cells and WTL samples were analyzed. Label‐free quantification (LFQ) analysis through MaxQuant software showed a significantly higher number of identified and quantified proteins in LCM enriched samples (3404) compared to WTLs (2837). Furthermore, WTL samples displayed a higher amount of missing data compared to LCM both at peptide and protein levels (p‐value < 0.001). 2D analysis on co‐expressed proteins revealed discrepant expression of immune system and lipid metabolisms related proteins between LCM and WTL samples. We hereby show that LCM better dissected the biology of breast tumor epithelial cells, possibly due to lower interference from surrounding tissues and highly abundant proteins. All data have been deposited in the ProteomeXchange with the dataset identifier PXD002381 ( http://proteomecentral.proteomexchange.org/dataset/PXD002381 ).  相似文献   

16.

Background

Proteomic studies of formalin-fixed paraffin-embedded (FFPE) tissues are frustrated by the inability to extract proteins from archival tissue in a form suitable for analysis by 2-D gel electrophoresis or mass spectrometry. This inability arises from the difficulty of reversing formaldehyde-induced protein adducts and cross-links within FFPE tissues. We previously reported the use of elevated hydrostatic pressure as a method for efficient protein recovery from a hen egg-white lysozyme tissue surrogate, a model system developed to study formalin fixation and histochemical processing.

Principal Findings

In this study, we demonstrate the utility of elevated hydrostatic pressure as a method for efficient protein recovery from FFPE mouse liver tissue and a complex multi-protein FFPE tissue surrogate comprised of hen egg-white lysozyme, bovine carbonic anhydrase, bovine ribonuclease A, bovine serum albumin, and equine myoglobin (55∶15∶15∶10∶5 wt%). Mass spectrometry of the FFPE tissue surrogates retrieved under elevated pressure showed that both the low and high-abundance proteins were identified with sequence coverage comparable to that of the surrogate mixture prior to formaldehyde treatment. In contrast, non-pressure-extracted tissue surrogate samples yielded few positive and many false peptide identifications. Studies with soluble formalin-treated bovine ribonuclease A demonstrated that pressure modestly inhibited the rate of reversal (hydrolysis) of formaldehyde-induced protein cross-links. Dynamic light scattering studies suggest that elevated hydrostatic pressure and heat facilitate the recovery of proteins free of formaldehyde adducts and cross-links by promoting protein unfolding and hydration with a concomitant reduction in the average size of the protein aggregates.

Conclusions

These studies demonstrate that elevated hydrostatic pressure treatment is a promising approach for improving the recovery of proteins from FFPE tissues in a form suitable for proteomic analysis.  相似文献   

17.
Laser capture microdissection (LCM) is a powerful tool that enables the isolation of specific cell types from tissue sections, overcoming the problem of tissue heterogeneity and contamination. This study combined the LCM with isotope-coded affinity tag (ICAT) technology and two-dimensional liquid chromatography to investigate the qualitative and quantitative proteomes of hepatocellular carcinoma (HCC). The effects of three different histochemical stains on tissue sections have been compared, and toluidine blue stain was proved as the most suitable stain for LCM followed by proteomic analysis. The solubilized proteins from microdissected HCC and non-HCC hepatocytes were qualitatively and quantitatively analyzed with two-dimensional liquid chromatography tandem mass spectrometry (2D-LC-MS/MS) alone or coupled with cleavable ICAT labeling technology. A total of 644 proteins were qualitative identified, and 261 proteins were unambiguously quantitated. These results show that the clinical proteomic method using LCM coupled with ICAT and 2D-LC-MS/MS can carry out not only large-scale but also accurate qualitative and quantitative analysis.  相似文献   

18.
Formalin-fixed, paraffin-embedded (FFPE) tissue specimens represent a potentially valuable resource for protein biomarker investigations. In this study, proteins were extracted by a heat-induced antigen retrieval technique combined with a retrieval solution containing 2% SDS from FFPE tissues of normal nasopharyngeal epithelial tissues (NNET) and three histological types of nasopharyngeal carcinoma (NPC) with diverse differentiation degrees. Then two-dimensional liquid chromatography-tandem mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ) labeling was employed to quantitatively identify the differentially expressed proteins among the types of NPC FFPE tissues. Our study resulted in the identification of 730 unique proteins, the distributions of subcellular localizations and molecular functions of which were similar to those of the proteomic database of human NPC and NNET that we had set up based on the frozen tissues. Additionally, the relative expression levels of cathepsin D, keratin8, SFN, and stathmin1 identified and quantified in this report were consistent with the immunohistochemistry results acquired in our previous study. In conclusion, we have developed an effective approach to identifying protein changes in FFPE NPC tissues utilizing iTRAQ technology in conjunction with an economical and easily accessible sample preparation method. (J Histochem Cytochem 58:517–527, 2010)  相似文献   

19.
Hospital tissue repositories host an invaluable supply of diseased samples with matched retrospective clinical information. In this work, a recently optimized method for extracting full-length proteins from formalin-fixed, paraffin-embedded (FFPE) tissues was evaluated on lung neuroendocrine tumor (LNET) samples collected from hospital repositories. LNETs comprise a heterogeneous spectrum of diseases, for which subtype-specific diagnostic markers are lacking. Six archival samples diagnosed as typical carcinoid (TC) or small cell lung carcinoma (SCLC) were subjected to a full-length protein extraction followed by a GeLC-MS/MS analysis, enabling the identification of over 300 distinct proteins per tumor subtype. All identified proteins were categorized through DAVID software, revealing a differential distribution of functional classes, such as those involved in RNA processing, response to oxidative stress and ion homeostasis. Moreover, using spectral counting for protein abundance estimation and beta-binomial test as statistical filter, a list of 28 differentially expressed proteins was generated and submitted to pathway analysis by means of Ingenuity Pathway Analysis software. Differential expression of chromogranin-A (more expressed in TCs) and stathmin (more expressed in SCLCs) was consistently confirmed by immunohistochemistry. Therefore, FFPE hospital archival samples can be successfully subjected to proteomic investigations aimed to biomarker discovery following a GeLC-MS/MS label-free approach.  相似文献   

20.
Clinically relevant formalin-fixed and paraffin-embedded (FFPE) tissues have not been widely used in neuroproteomic studies because many proteins are presumed to be degraded during tissue preservation. Recent improvements in proteomics technologies, from the 2D gel analysis of intact proteins to the "shotgun" quantification of peptides and the use of isobaric tags for absolute and relative quantification (iTRAQ) method, have made the analysis of FFPE tissues possible. In recent years, iTRAQ has been one of the main methods of choice for high throughput quantitative proteomics analysis, which enables simultaneous comparison of up to eight samples in one experiment. Our objective was to assess the relative merits of iTRAQ analysis of fresh frozen versus FFPE nervous tissues by comparing experimental autoimmune encephalomyelitis (EAE)-induced proteomic changes in FFPE rat spinal cords and frozen tissues. EAE-induced proteomic changes in FFPE tissues were positively correlated with those found in the frozen tissues, albeit with ~50% less proteome coverage. Subsequent validation of the enrichment of immunoproteasome (IP) activator 1 in EAE spinal cords led us to evaluate other proteasome and IP-specific proteins. We discovered that many IP-specific (as opposed to constitutive) proteasomal proteins were enriched in EAE rat spinal cords, and EAE-induced IP accumulation also occurred in the spinal cords of an independent mouse EAE model in a disability score-dependent manner. Therefore, we conclude that it is feasible to generate useful information from iTRAQ-based neuroproteomics analysis of archived FFPE tissues for studying neurological disease tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号