首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Large studies on severe imported malaria in non-endemic industrialized countries are lacking. We sought to describe the clinical spectrum of severe imported malaria in French adults and to identify risk factors for mortality at admission to the intensive care unit.

Methodology and Principal Findings

Retrospective review of severe Plasmodium falciparum malaria episodes according to the 2000 World Health Organization definition and requiring admission to the intensive care unit. Data were collected from medical charts using standardised case-report forms, in 45 French intensive care units in 2000–2006. Risk factors for in-hospital mortality were identified by univariate and multivariate analyses.Data from 400 adults admitted to the intensive care unit were analysed, representing the largest series of severe imported malaria to date. Median age was 45 years; 60% of patients were white, 96% acquired the disease in sub-Saharan Africa, and 65% had not taken antimalarial chemoprophylaxis. Curative quinine treatment was used in 97% of patients. Intensive care unit mortality was 10.5% (42 deaths). By multivariate analysis, three variables at intensive care unit admission were independently associated with hospital death: older age (per 10-year increment, odds ratio [OR], 1.72; 95% confidence interval [95%CI], 1.28–2.32; P = 0.0004), Glasgow Coma Scale score (per 1-point decrease, OR, 1.32; 95%CI, 1.20–1.45; P<0.0001), and higher parasitemia (per 5% increment, OR, 1.41; 95%CI, 1.22–1.62; P<0.0001).

Conclusions and Significance

In a large population of adults treated in a non-endemic industrialized country, severe malaria still carried a high mortality rate. Our data, including predictors of death, can probably be generalized to other non-endemic countries where high-quality healthcare is available.  相似文献   

2.
While imported falciparum malaria has been increasingly reported in recent years in Korea, clinicians have difficulties in making a clinical diagnosis as well as in having accessibility to effective anti-malarial agents. Here we describe an unusual case of imported falciparum malaria with severe hemolytic anemia lasting over 2 weeks, clinically mimicking a coinfection with babesiosis. A 48-year old Korean man was diagnosed with severe falciparum malaria in France after traveling to the Republic of Benin, West Africa. He received a 1-day course of intravenous artesunate and a 7-day course of Malarone (atovaquone/proguanil) with supportive hemodialysis. Coming back to Korea 5 days after discharge, he was readmitted due to recurrent fever, and further treated with Malarone for 3 days. Both the peripheral blood smears and PCR test were positive for Plasmodium falciparum. However, he had prolonged severe hemolytic anemia (Hb 5.6 g/dl). Therefore, 10 days after the hospitalization, Babesia was considered to be potentially coinfected. A 7-day course of Malarone and azithromycin was empirically started. He became afebrile within 3 days of this babesiosis treatment, and hemolytic anemia profiles began to improve at the completion of the treatment. He has remained stable since his discharge. Unexpectedly, the PCR assays failed to detect DNA of Babesia spp. from blood. In addition, during the retrospective review of the case, the artesunate-induced delayed hemolytic anemia was considered as an alternative cause of the unexplained hemolytic anemia.  相似文献   

3.
Malaria is a parasitic infection caused by Plasmodium species. Most of the imported malaria in Korea are due to Plasmodium vivax and Plasmodium falciparum, and Plasmodium ovale infections are very rare. Here, we report a case of a 24-year-old American woman who acquired P. ovale while staying in Ghana, West Africa for 5 months in 2010. The patient was diagnosed with P. ovale malaria based on a Wright-Giemsa stained peripheral blood smear, Plasmodium genus-specific real-time PCR, Plasmodium species-specific nested PCR, and sequencing targeting 18S rRNA gene. The strain identified had a very long incubation period of 19-24 months. Blood donors who have malaria with a very long incubation period could be a potential danger for propagating malaria. Therefore, we should identify imported P. ovale infections not only by morphological findings but also by molecular methods for preventing propagation and appropriate treatment.  相似文献   

4.
A 57-year old man who was admitted to an emergency room of a tertiary hospital with hemoptysis developed malarial fever 19 days later and then died from severe falciparum malaria 2 days later. He had not traveled outside of Korea for over 30 years. Through intensive interviews and epidemiological surveys, we found that a foreign patient with a recent history of travel to Africa was transferred to the same hospital with severe falciparum malaria. We confirmed through molecular genotyping of the MSP-1 gene that Plasmodium falciparum genotypes of the 2 patients were identical. It is suggested that a breach of standard infection control precautions resulted in this P. falciparum transmission between 2 patients in a hospital environment. This is the first report of a nosocomial transmission of falciparum malaria in Korea.  相似文献   

5.
In Uganda, artemether-lumefantrine was introduced as an artemisinin-based combination therapy (ACT) for malaria in 2006. We have previously reported a moderate decrease in ex vivo efficacy of lumefantrine in Northern Uganda, where we also detected ex vivo artemisinin-resistant Plasmodium falciparum. Therefore, it is necessary to search for candidate partner alternatives for ACT. Here, we investigated ex vivo susceptibility to four ACT partner drugs as well as quinine and chloroquine, in 321 cases between 2013 and 2018. Drug-resistant mutations in pfcrt and pfmdr1 were also determined. Ex vivo susceptibility to amodiaquine, quinine, and chloroquine was well preserved, whereas resistance to mefloquine was found in 45.8%. There were few cases of multi-drug resistance. Reduced sensitivity to mefloquine and lumefantrine was significantly associated with the pfcrt K76 wild-type allele, in contrast to the association between chloroquine resistance and the K76T allele. Pfmdr1 duplication was not detected in any of the cases. Amodiaquine, a widely used partner drug for ACT in African countries, may be the first promising alternative in case lumefantrine resistance emerges. Therapeutic use of mefloquine may not be recommended in this area. This study also emphasizes the need for sustained monitoring of antimalarial susceptibility in Northern Uganda to develop proper treatment strategies.  相似文献   

6.
The aim of the present study was to investigate antimalarial drug pressure resulting from the clinical use of different antimalarials in Thailand. The phenotypic diversity of the susceptibility profiles of antimalarials, i.e., chloroquine (CQ), quinine (QN), mefloquine (MQ), and artesunate (ARS) in Plasmodium falciparum isolates collected during the period from 1988 to 2003 were studied. P. falciparum isolates from infected patients were collected from the Thai-Cambodian border area at different time periods (1988-1989, 1991-1992, and 2003), during which 3 different patterns of drug use had been implemented: MQ + sulphadoxine (S) + pyrimethamine (P), MQ alone and MQ + ARS, respectively. The in vitro drug susceptibilities were investigated using a method based on the incorporation of [3H] hypoxanthine. A total of 50 isolates were tested for susceptibilities to CQ, QN, MQ, and ARS. Of these isolates, 19, 16, and 15 were adapted during the periods 1988-1989, 1991-1993, and 2003, respectively. P. falciparum isolates collected during the 3 periods were resistant to CQ. Sensitivities to MQ declined from 1988 to 2003. In contrast, the parasite was sensitive to QN, and similar sensitivity profile patterns were observed during the 3 time periods. There was a significantly positive but weak correlation between the IC50 values of CQ and QN, as well as between the IC50 values of QN and MQ. Drug pressure has impact on sensitivity of P. falciparum to MQ. A combination therapy of MQ and ARS is being applied to reduce the parasite resistance, and also increasing the efficacy of the drug.  相似文献   

7.
Hemoglobinopathy and malaria are commonly found worldwide particularly in malaria endemic areas. Thalassemia, the alteration of globin chain synthesis, has been reported to confer resistance against malaria. The prevalence of thalassemia was investigated in 101 malaria patients with Plasmodium falciparum and Plasmodium vivax along the Thai-Myanmar border to examine protective effect of thalassemia against severe malaria. Hemoglobin typing was performed using low pressure liquid chromatography (LPLC) and α-thalassemia was confirmed by multiplex PCR. Five types of thalassemia were observed in malaria patients. The 2 major types of thalassemia were Hb E (18.8%) and α-thalassemia-2 (11.9%). There was no association between thalassemia hemoglobinopathy and malaria parasitemia, an indicator of malaria disease severity. Thalassemia had no significant association with P. vivax infection, but the parasitemia in patients with coexistence of P. vivax and thalassemia was about 2-3 times lower than those with coexistence of P. falciparum and thalassemia and malaria without thalassemia. Furthermore, the parasitemia of P. vivax in patients with coexistence of Hb E showed lower value than coexistence with other types of thalassemia and malaria without coexistence. Parasitemia, hemoglobin, and hematocrit values in patients with coexistence of thalassemia other than Hb E were significantly lower than those without coexistence of thalassemia. Furthermore, parasitemia with coexistence of Hb E were 2 times lower than those with coexistence of thalassemia other than Hb E. In conclusion, the results may, at least in part, support the protective effect of thalassemia on the development of hyperparasitemia and severe anemia in malaria patients.  相似文献   

8.
Fitch CD 《Life sciences》2004,74(16):1957-1972
Two subclasses of quinoline antimalarial drugs are used clinically. Both act on the endolysosomal system of malaria parasites, but in different ways. Treatment with 4-aminoquinoline drugs, such as chloroquine, causes morphologic changes and hemoglobin accumulation in endocytic vesicles. Treatment with quinoline-4-methanol drugs, such as quinine and mefloquine, also causes morphologic changes, but does not cause hemoglobin accumulation. In addition, chloroquine causes undimerized ferriprotoporphyrin IX (ferric heme) to accumulate whereas quinine and mefloquine do not. On the contrary, treatment with quinine or mefloquine prevents and reverses chloroquine-induced accumulation of hemoglobin and undimerized ferriprotoporphyrin IX. This difference is of particular interest since there is convincing evidence that undimerized ferriprotoporphyrin IX in malaria parasites would interact with and serve as a target for chloroquine. According to the ferriprotoporphyrin IX interaction hypothesis, chloroquine would bind to undimerized ferriprotoporphyrin IX, delay its detoxification, cause it to accumulate, and allow it to exert its intrinsic biological toxicities. The ferriprotoporphyrin IX interaction hypothesis appears to explain the antimalarial action of chloroquine, but a drug target in addition to ferriprotoporphyrin IX is suggested by the antimalarial actions of quinine and mefloquine. This article summarizes current knowledge of the role of ferriprotoporphyrin IX in the antimalarial actions of quinoline drugs and evaluates the currently available evidence in support of phospholipids as a second target for quinine, mefloquine and, possibly, the chloroquine-ferriprotoporphyrin IX complex.  相似文献   

9.
Complicated malaria is mainly caused by Plasmodium falciparum, but, increasingly, Plasmodium vivax is also being reported as a cause. Since the reemergence of indigenous vivax malaria in 1993, cases of severe malaria have been steadily reported in Korea. Herein, we report a case of vivax malaria complicated by adult respiratory distress syndrome (ARDS) that was successfully managed with extracorporeal membrane oxygenation (ECMO). A 59-year-old man presented at our hospital with fever and abdominal pain, which had persisted for 10 days. On admission, the patient had impaired consciousness, shock, hypoxia and haziness in both lungs, jaundice, thrombocytopenia and disseminated intravascular coagulation, metabolic acidosis, and acute kidney injury. A peripheral blood smear and a rapid diagnostic test verified P. vivax mono-infection. Ten hours after admission, hypoxia became more severe, despite providing maximal ventilatory support. The administration of antimalarial agents, ECMO, and continuous venovenous hemofiltration resulted in an improvement of his vital signs and laboratory findings. He was discharged from the hospital 7 weeks later, without any sequelae.  相似文献   

10.
In contrast to the gradual reduction in the number of locally transmitted malaria cases in China, the number of imported malaria cases has been increasing since 2008. Here, we report a case of a 39-year-old Chinese man who acquired Plasmodium ovale wallikeri infection while staying in Ghana, West Africa for 6 months in 2012. Microscopic examinations of Giemsa-stained thin and thick blood smears indicated Plasmodium vivax infection. However, the results of rapid diagnostic tests, which were conducted 3 times, were not in agreement with P. vivax. To further check the diagnosis, standard PCR analysis of the small-subunit rRNA gene was conducted, based on which a phylogeny tree was constructed. The results of gene sequencing indicated that this malaria is a variant of P. ovale (P. ovale wallikeri). The infection in this patient was not a new infection, but a relapse of the infection from the one that he had contracted in West Africa.  相似文献   

11.
Malaria is a worldwide disease that leads to 1 million deaths per year. Plasmodium falciparum is the species responsible for the most severe form of malaria leading to different complications. Beyond the development of cerebral malaria, impairment of renal function is a mortality indicator in infected patients. Treatment with antimalarial drugs can increase survival, however the long-term effects of malaria on renal disease, even after treatment with antimalarials, are unknown. The aim of this study was to evaluate the effect of antimalarial drug treatment on renal function in a murine model of severe malaria and then evaluate kidney susceptibility to a second renal insult. Initially, mice infected with Plasmodium berghei ANKA achieved 20% parasitemia on day 5 post infection, which was completely abolished after treatment with 25 mg/kg artesunate and 40 mg/kg mefloquine. The treatment also decreased plasma creatinine levels by 43% and partially reversed the reduction in the glomerular filtration rate induced by infection. The urinary protein/creatinine ratio, collagen deposition, and size of the interstitial space decreased by 75%, 40%, and 20%, respectively, with drugs compared with untreated infected animals. In infected-treated mice that underwent a second renal insult, the plasma creatinine level decreased by 60% and the glomerular filtration rate increased compared with infected animals treated only with antimalarials. The number of glomerular cells, collagen deposition and the size of the interstitial space decreased by 20%, 39.4%, and 41.3%, respectively, in the infected group that underwent a second renal insult compared with the infected-treated groups. These functional and structural data show that renal injury observed in a murine model of severe malaria is partially reversed after antimalarial drug treatment, making the kidney less susceptible to a second renal insult.  相似文献   

12.
Pyronaridine and artesunate have been shown to be effective in falciparum malaria treatment. However, pyronaridine is rarely used in Hainan Island clinically, and artesunate is not widely used as a therapeutic agent. Instead, conventional antimalarial drugs, chloroquine and piperaquine, are used, explaining the emergence of chloroquine-resistant Plasmodium falciparum. In this article, we investigated the sensitivity of P. falciparum to antimalarial drugs used in Hainan Island for rational drug therapy. We performed in vivo (28 days) and in vitro tests to determine the sensitivity of P. falciparum to antimalarial drugs. Total 46 patients with falciparum malaria were treated with dihydroartemisinin/piperaquine phosphate (DUO-COTECXIN) and followed up for 28 day. The cure rate was 97.8%. The mean fever clearance time (22.5±10.6 hr) and the mean parasite clearance time (27.3±12.2 hr) showed no statistical significance with different genders, ages, temperatures, or parasite density (P>0.05). The resistance rates of chloroquine, piperaquine, pyronarididine, and artesunate detected in vitro were 71.9%, 40.6%, 12.5%, and 0%, respectively (P<0.0001). The resistance intensities decreased as follows: chloroquine>piperaquine>pyronarididine>artesunate. The inhibitory dose 50 (IC50) was 3.77×10-6 mol/L, 2.09×10-6 mol/L, 0.09×10-6 mol/L, and 0.05×10-6 mol/L, and the mean concentrations for complete inhibition (CIMC) of schizont formation were 5.60×10-6 mol/L, 9.26×10-6 mol/L, 0.55×10-6 mol/L, and 0.07×10-6 mol/L, respectively. Dihydroartemisinin showed a strong therapeutic effect against falciparum malaria with a low toxicity.  相似文献   

13.
Mixed infections of Plasmodium falciparum and Plasmodium vivax is high (~30%) in some malaria hypoendemic areas where the patients present with P. falciparum malaria diagnosed by microscopy. Conventional treatment of P. falciparum with concurrent chloroquine and 14 days of primaquine for all falciparum malaria patients may be useful in areas where mixed falciparum and vivax infections are high and common and also with mild or moderate G6PD deficiency in the population even with or without subpatent vivax mixed infection. It will be possibly cost-effective to reduce subsequent vivax illness if the patients have mixed vivax infection. Further study to prove this hypothesis may be warranted.  相似文献   

14.

Background

Resistance to anti-malarial drugs hampers control efforts and increases the risk of morbidity and mortality from malaria. The efficacy of standard therapies for uncomplicated Plasmodium falciparum and Plasmodium vivax malaria was assessed in Chumkiri, Kampot Province, Cambodia.

Methods

One hundred fifty-one subjects with uncomplicated falciparum malaria received directly observed therapy with 12 mg/kg artesunate (over three days) and 25 mg/kg mefloquine, up to a maximum dose of 600 mg artesunate/1,000 mg mefloquine. One hundred nine subjects with uncomplicated vivax malaria received a total of 25 mg/kg chloroquine, up to a maximum dose of 1,500 mg, over three days. Subjects were followed for 42 days or until recurrent parasitaemia was observed. For P. falciparum infected subjects, PCR genotyping of msp1, msp2, and glurp was used to distinguish treatment failures from new infections. Treatment failure rates at days 28 and 42 were analyzed using both per protocol and Kaplan-Meier survival analysis. Real Time PCR was used to measure the copy number of the pfmdr1 gene and standard 48-hour isotopic hypoxanthine incorporation assays were used to measure IC50 for anti-malarial drugs.

Results

Among P. falciparum infected subjects, 47.0% were still parasitemic on day 2 and 11.3% on day 3. The PCR corrected treatment failure rates determined by survival analysis at 28 and 42 days were 13.1% and 18.8%, respectively. Treatment failure was associated with increased pfmdr1 copy number, higher initial parasitaemia, higher mefloquine IC50, and longer time to parasite clearance. One P. falciparum isolate, from a treatment failure, had markedly elevated IC50 for both mefloquine (130 nM) and artesunate (6.7 nM). Among P. vivax infected subjects, 42.1% suffered recurrent P. vivax parasitaemia. None acquired new P. falciparum infection.

Conclusion

The results suggest that artesunate-mefloquine combination therapy is beginning to fail in southern Cambodia and that resistance is not confined to the provinces at the Thai-Cambodian border. It is unclear whether the treatment failures are due solely to mefloquine resistance or to artesunate resistance as well. The findings of delayed clearance times and elevated artesunate IC50 suggest that artesunate resistance may be emerging on a background of mefloquine resistance.  相似文献   

15.

Background

Recent multi-centre trials showed that dihydroartemisinin-piperaquine (DP) was as efficacious and safe as artemether-lumefantrine (AL) for treatment of young children with uncomplicated P. falciparum malaria across diverse transmission settings in Africa. Longitudinal follow-up of patients in these trials supported previous findings that DP had a longer post-treatment prophylactic effect than AL, reducing the risk of reinfection and conferring additional health benefits to patients, particularly in areas with moderate to high malaria transmission.

Methods

We developed a Markov model to assess the cost-effectiveness of DP versus AL for first-line treatment of uncomplicated malaria in young children from the provider perspective, taking into consideration the post-treatment prophylactic effects of the drugs as reported by a recent multi-centre trial in Africa and using the maximum manufacturer drug prices for artemisinin-based combination therapies set by the Global Fund in 2013. We estimated the price per course of treatment threshold above which DP would cease to be a cost-saving alternative to AL as a first-line antimalarial drug.

Results

First-line treatment with DP compared to AL averted 0.03 DALYs (95% CI: 0.006–0.07) and 0.001 deaths (95% CI: 0.00–0.002) and saved $0.96 (95% CI: 0.33–2.46) per child over one year. The results of the threshold analysis showed that DP remained cost-saving over AL for any DP cost below $1.23 per course of treatment.

Conclusions

DP is superior to AL from both the clinical and economic perspectives for treatment of uncomplicated P. falciparum malaria in young children. A paediatric dispersible formulation of DP is under development and should facilitate a targeted deployment of this antimalarial drug. The use of DP as first-line antimalarial drug in paediatric malaria patients in moderate to high transmission areas of Africa merits serious consideration by health policymakers.  相似文献   

16.
Astrocytes are the most abundant cells in the central nervous system that play roles in maintaining the blood-brain-barrier and in neural injury, including cerebral malaria, a severe complication of Plasmodium falciparum infection. Prostaglandin (PG) D2 is abundantly produced in the brain and regulates the sleep response. Moreover, PGD2 is a potential factor derived from P. falciparum within erythrocytes. Heme oxygenase-1 (HO-1) is catalyzing enzyme in heme breakdown process to release iron, carbon monoxide, and biliverdin/bilirubin, and may influence iron supply to the P. falciparum parasites. Here, we showed that treatment of a human astrocyte cell line, CCF-STTG1, with PGD2 significantly increased the expression levels of HO-1 mRNA by RT-PCR. Western blot analysis showed that PGD2 treatment increased the level of HO-1 protein, in a dose- and time-dependent manner. Thus, PGD2 may be involved in the pathogenesis of cerebral malaria by inducing HO-1 expression in malaria patients.  相似文献   

17.
In recent years, rapid diagnostic tests (RDTs) have been widely used for malaria detection, primarily because of their simple operation, fast results, and straightforward interpretation. The Asan EasyTest™ Malaria Pf/Pan Ag is one of the most commonly used malaria RDTs in several countries, including Korea and India. In this study, we tested the diagnostic performance of this RDT in Uganda to evaluate its usefulness for field diagnosis of malaria in this country. Microscopic and PCR analyses, and the Asan EasyTest™ Malaria Pf/Pan Ag rapid diagnostic test, were performed on blood samples from 185 individuals with suspected malaria in several villages in Uganda. Compared to the microscopic analysis, the sensitivity of the RDT to detect malaria infection was 95.8% and 83.3% for Plasmodium falciparum and non-P. falciparum, respectively. Although the diagnostic sensitivity of the RDT decreased when parasitemia was ≤500 parasites/µl, it showed 96.8% sensitivity (98.4% for P. falciparum and 93.8% for non-P. falciparum) in blood samples with parasitemia ≥100 parasites/µl. The specificity of the RDT was 97.3% for P. falciparum and 97.3% for non-P. falciparum. These results collectively suggest that the accuracy of the Asan EasyTest™ Malaria Pf/Pan Ag makes it an effective point-of-care diagnostic tool for malaria in Uganda.  相似文献   

18.
Emerging resistance to first‐line antimalarial combination therapies threatens malaria treatment and the global elimination campaign. Improved therapeutic strategies are required to protect existing drugs and enhance treatment efficacy. We report that the piperazine‐containing compound ACT‐451840 exhibits single‐digit nanomolar inhibition of the Plasmodium falciparum asexual blood stages and transmissible gametocyte forms. Genome sequence analyses of in vitro‐derived ACT‐451840‐resistant parasites revealed single nucleotide polymorphisms in pfmdr1, which encodes a digestive vacuole membrane‐bound ATP‐binding cassette transporter known to alter P. falciparum susceptibility to multiple first‐line antimalarials. CRISPR‐Cas9 based gene editing confirmed that PfMDR1 point mutations mediated ACT‐451840 resistance. Resistant parasites demonstrated increased susceptibility to the clinical drugs lumefantrine, mefloquine, quinine and amodiaquine. Stage V gametocytes harboring Cas9‐introduced pfmdr1 mutations also acquired ACT‐451840 resistance. These findings reveal that PfMDR1 mutations can impart resistance to compounds active against asexual blood stages and mature gametocytes. Exploiting PfMDR1 resistance mechanisms provides new opportunities for developing disease‐relieving and transmission‐blocking antimalarials.  相似文献   

19.
Objective To examine temporal, geographic, and sociodemographic trends in case reporting and case fatality of malaria in the United Kingdom.Setting National malaria reference laboratory surveillance data in the UK.Design Observational study using prospectively gathered surveillance data and data on destinations from the international passenger survey.Participants 39 300 cases of proved malaria in the UK between 1987 and 2006.Main outcome measures Plasmodium species; sociodemographic details (including age, sex, and country of birth and residence); mortality; destination, duration, and purpose of international travel; and use of chemoprophylaxis.Results Reported cases of imported malaria increased significantly over the 20 years of the study; an increasing proportion was attributable to Plasmodium falciparum (P falciparum/P vivax reporting ratio 1.3:1 in 1987-91 and 5.4:1 in 2002-6). P vivax reports declined from 3954 in 1987-91 to 1244 in 2002-6. Case fatality of reported P falciparum malaria did not change over this period (7.4 deaths per 1000 reported cases). Travellers visiting friends and relatives, usually in a country in Africa or Asia from which members of their family migrated, accounted for 13 215/20 488 (64.5%) of all malaria reported, and reports were geographically concentrated in areas where migrants from Africa and South Asia to the UK have settled. People travelling for this purpose were at significantly higher risk of malaria than other travellers and were less likely to report the use of any chemoprophylaxis (odds ratio of reported chemoprophylaxis use 0.23, 95% confidence interval 0.21 to 0.25).Conclusions Despite the availability of highly effective preventive measures, the preventable burden from falciparum malaria has steadily increased in the UK while vivax malaria has decreased. Provision of targeted and appropriately delivered preventive messages and services for travellers from migrant families visiting friends and relatives should be a priority.  相似文献   

20.
Patients with falciparum malaria were studied in Thailand, an area of known chloroquine resistance. The patients were unselected and some had severe malaria, and they were randomly assigned to one of two sequential regimes. A short course of quinine (average 4 doses, equivalent to 2 g base) followed by a single dose of pyrimethamine-sulfadoxine (Fansidar) cured 92% of patients (36 out of 39), while a short course of quinine followed by a single 1-5-dose of mefloquine cured all of the 35 patients who could be followed up. Gastrointestinal side effects were minimal if at least 12 hours elapsed between the last dose of quinine and the mefloquine. Sequential quinine and mefloquine is the most effective treatment for patients with chloroquine-resistant falciparum malaria, including those with severe or complicated disease. Mefloquine, however, is not commercially available, and the similar regimen using Fansidar is almost as effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号