首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Epigenetics》2013,8(4):241-247
A subset of mammalian genes exhibits genomic imprinting, whereby one parental allele is preferentially expressed. Differential DNA methylation at imprinted loci serves both to mark the parental origin of the alleles and to regulate their expression. In mouse, the imprinted gene Rasgrf1 is associated with a paternally methylated imprinting control region which functions as an enhancer blocker in its unmethylated state. Because Rasgrf1 is imprinted in a tissue-specific manner, we investigated the methylation pattern in monoallelic and biallelic tissues to determine if methylation of this region is required for both imprinted and non-imprinted expression. Our analysis indicates that DNA methylation is restricted to the paternal allele in both monoallelic and biallelic tissues of somatic and extraembryonic lineages. Therefore, methylation serves to mark the paternal Rasgrf1 allele throughout development, but additional factors are required for appropriate tissue-specific regulation of expression at this locus.  相似文献   

2.
In mammals, both the maternal and paternal genomes are necessary for normal embryogenesis due to parent-specific epigenetic modification of the genome during gametogenesis, which leads to non-equivalent expression of imprinted genes from the maternal and paternal alleles. In this study, we identified a paternally expressed imprinted gene, Zdbf2, by microarray-based screening using parthenogenetic and normal embryos. Expression analyses showed that Zdbf2 was paternally expressed in various embryonic and adult tissues, except for the placenta and adult testis, which showed biallelic expression of the gene. We also identified a differentially methylated region (DMR) at 10 kb upstream of exon 1 of the Zdbf2 gene and this differential methylation was derived from the germline. Furthermore, we also identified that the human homolog (ZDBF2) of the mouse Zdbf2 gene showed paternal allele-specific expression in human lymphocytes but not in the human placenta. Thus, our findings defined mouse chromosome 1 and human chromosome 2 as the loci for imprinted genes.  相似文献   

3.
Genomic imprinting, the parent-of-origin-specific expression of genes, plays an important role in the seed development of flowering plants. As different sets of genes are imprinted and hence silenced in maternal and paternal gametophyte genomes, the contributions of the parental genomes to the offspring are not equal. Imbalance between paternally and maternally imprinted genes, for instance as a result of interploidy crosses, or in seeds in which imprinting has been manipulated, results in aberrant seed development. It is predominantly the endosperm, and not or to a far lesser extent the embryo, that is affected by such imbalance. Deviation from the normal 2m:1p ratio in the endosperm genome has a severe effect on endosperm development, and often leads to seed abortion. Molecular expression data for imprinted genes suggest that genomic imprinting takes place only in the endosperm of the developing seed. Although far from complete, a picture of how imprinting operates in flowering plants has begun to emerge. Imprinted genes on either the maternal or paternal side are marked and silenced in a process involving DNA methylation and chromatin condensation. In addition, on the maternal side, imprinted genes are most probably under control of the polycomb FIS genes.  相似文献   

4.
Genomic imprinting is widespread in eutherian mammals. Marsupial mammals also have genomic imprinting, but in fewer loci. It has long been thought that genomic imprinting is somehow related to placentation and/or viviparity in mammals, although neither is restricted to mammals. Most imprinted genes are expressed in the placenta. There is no evidence for genomic imprinting in the egg-laying monotreme mammals, despite their short-lived placenta that transfers nutrients from mother to embryo. Post natal genomic imprinting also occurs, especially in the brain. However, little attention has been paid to the primary source of nutrition in the neonate in all mammals, the mammary gland. Differentially methylated regions (DMRs) play an important role as imprinting control centres in each imprinted region which usually comprises both paternally and maternally expressed genes (PEGs and MEGs). The DMR is established in the male or female germline (the gDMR). Comprehensive comparative genome studies demonstrated that two imprinted regions, PEG10 and IGF2-H19, are conserved in both marsupials and eutherians and that PEG10 and H19 DMRs emerged in the therian ancestor at least 160 Ma, indicating the ancestral origin of genomic imprinting during therian mammal evolution. Importantly, these regions are known to be deeply involved in placental and embryonic growth. It appears that most maternal gDMRs are always associated with imprinting in eutherian mammals, but emerged at differing times during mammalian evolution. Thus, genomic imprinting could evolve from a defence mechanism against transposable elements that depended on DNA methylation established in germ cells.  相似文献   

5.
Studies in the mouse have established that both parental genomes are essential for normal embryonic development. Parthenogenetic mouse embryos (which have two maternal genomes and no paternal genome), for example, are growth-retarded and die at early postimplantation stages. The distinct maternal and paternal contributions are mediated by genomic imprinting, an epigenetic mechanism by which the expression of certain genes is dependent on whether they are inherited from mother or father. Although comparative studies have established that many imprinted mouse (and rat) genes are allele-specifically expressed in humans as well (and vice versa), so far imprinting studies have not been performed in other mammalian species. When considering evolutionary theories of genomic imprinting, it would be important to know how widely it is conserved among placental mammals. We have investigated its conservation in a bovid ruminant, the domestic sheep, by comparing parthenogenetic and normal control embryos. Our study establishes that, like in the mouse, parthenogenetic development in sheep is associated with growth-retardation and does not proceed beyond early fetal stages. These developmental abnormalities are most likely caused by imprinted genes. We demonstrate that, indeed, like in mice and humans, the growth-related PEG1/MEST and Insulin-like Growth Factor 2 (IGF2) genes are expressed from the paternal chromosome in sheep. These observations suggest that genomic imprinting is conserved in a third, evolutionarily rather diverged group of placental mammals, the ruminants. Received: 13 May 1998 / Accepted: 16 July 1998  相似文献   

6.
The mammalian genome contains over 30 genes whose expression is dependent upon their parent-of-origin. Of these imprinted genes the majority are involved in regulating the rate of fetal growth. In this report we show that in the deer mouse Peromyscusthe placental lactogen-1-variant ( pPl1-v) gene is paternally expressed throughout fetal development, whereas the linked and closely related pPl1gene is expressed in a biallelic manner. Neither the more distantly related pPl2Agene, nor the Mus Pl1gene displays any preferential expression of the paternal allele, suggesting that the acquisition of imprinting of pPl1-v is a relatively recent event in evolution. Although pPl1 expression is temporally mis-regulated in the dysplastic placentae of hybrids between two Peromyscus species, its over-expression cannot account for the aberrant phenotypes of these placentae. We argue that the species-specific imprinting of pPl1-v, encoding a growth factor that regulates nutrient transfer from mothers to their offspring, is consistent with the parent-offspring conflict model that has been proposed to explain the evolution of genomic imprinting.  相似文献   

7.
《Epigenetics》2013,8(12):1341-1348
More than a hundred protein-coding genes are controlled by genomic imprinting in humans. These atypical genes are organized in chromosomal domains, each of which is controlled by a differentially methylated "imprinting control region" (ICR). How ICRs mediate the parental allele-specific expression of close-by genes is now becoming understood. At several imprinted domains, this epigenetic mechanism involves the action of long non-coding RNAs. It is less well appreciated that imprinted gene domains also transcribe hundreds of microRNA and small nucleolar RNA genes and that these represent the densest clusters of small RNA genes in mammalian genomes. The evolutionary reasons for this remarkable enrichment of small regulatory RNAs at imprinted domains remain unclear. However, recent studies show that imprinted small RNAs modulate specific functions in development and metabolism and also are frequently perturbed in cancer. Here, we review our current understanding of imprinted small RNAs in the human genome and discuss how perturbation of their expression contributes to disease.  相似文献   

8.
Mammalian development to adulthood typically requires both maternal and paternal genomes, because genomic imprinting places stringent limitations on mammalian development, strictly precluding parthenogenesis. Here we report the generation of bi-maternal embryos that develop at a high success rate equivalent to the rate obtained with in vitro fertilization of normal embryos. These bi-maternal mice developed into viable and fertile female adults. The bi-maternal embryos, distinct from parthenogenetic or gynogenetic conceptuses, were produced by the construction of oocytes from fully grown oocytes and nongrowing oocytes that contain double deletions in the H19 differentially methylated region (DMR) and the Dlk1-Dio3 intergenic germline-derived DMR. The results provide conclusive evidence that imprinted genes regulated by these two paternally methylated imprinting-control regions are the only paternal barrier that prevents the normal development of bi-maternal mouse fetuses to term.  相似文献   

9.
More than a hundred protein-coding genes are controlled by genomic imprinting in humans. These atypical genes are organized in chromosomal domains, each of which is controlled by a differentially methylated "imprinting control region" (ICR). How ICRs mediate the parental allele-specific expression of close-by genes is now becoming understood. At several imprinted domains, this epigenetic mechanism involves the action of long non-coding RNAs. It is less well appreciated that imprinted gene domains also transcribe hundreds of microRNA and small nucleolar RNA genes and that these represent the densest clusters of small RNA genes in mammalian genomes. The evolutionary reasons for this remarkable enrichment of small regulatory RNAs at imprinted domains remain unclear. However, recent studies show that imprinted small RNAs modulate specific functions in development and metabolism and also are frequently perturbed in cancer. Here, we review our current understanding of imprinted small RNAs in the human genome and discuss how perturbation of their expression contributes to disease.  相似文献   

10.
Ogawa H  Wu Q  Komiyama J  Obata Y  Kono T 《FEBS letters》2006,580(22):5377-5384
In mammals, imprinted genes show parental origin-dependent expression based on epigenetic modifications called genomic imprinting (GI), which are established independently during spermatogenesis or oogenesis. Due to GI, uniparental fetuses never develop to term. To determine whether such expression of imprinted genes is maintained in uniparental mouse fetuses, we analyzed the expression of 20 paternally and 11 maternally expressed genes in androgenetic and parthenogenetic fetuses. Four genes of each type were expressed in both groups of fetuses. Furthermore, quantitative analysis showed that expression levels deviated from the presumed levels for some imprinted genes. These results suggest that mechanisms acting in trans between paternal and maternal alleles are involved in the appropriate expression of some imprinted genes.  相似文献   

11.
In mammals and in plants, parental genome dosage imbalance deregulates embryo growth and might be involved in reproductive isolation between emerging new species. Increased dosage of maternal genomes represses growth while an increased dosage of paternal genomes has the opposite effect. These observations led to the discovery of imprinted genes, which are expressed by a single parental allele. It was further proposed in the frame of the parental conflict theory that parental genome imbalances are directly mirrored by antagonistic regulations of imprinted genes encoding maternal growth inhibitors and paternal growth enhancers. However these hypotheses were never tested directly. Here, we investigated the effect of parental genome imbalance on the expression of Arabidopsis imprinted genes FERTILIZATION INDEPENDENT SEED2 (FIS2) and FLOWERING WAGENINGEN (FWA) controlled by DNA methylation, and MEDEA (MEA) and PHERES1 (PHE1) controlled by histone methylation. Genome dosage imbalance deregulated the expression of FIS2 and PHE1 in an antagonistic manner. In addition increased dosage of inactive alleles caused a loss of imprinting of FIS2 and MEA. Although FIS2 controls histone methylation, which represses MEA and PHE1 expression, the changes of PHE1 and MEA expression could not be fully accounted for by the corresponding fluctuations of FIS2 expression. Our results show that parental genome dosage imbalance deregulates imprinting using mechanisms, which are independent from known regulators of imprinting. The complexity of the network of regulations between expressed and silenced alleles of imprinted genes activated in response to parental dosage imbalance does not support simple models derived from the parental conflict hypothesis.  相似文献   

12.
Wu MY  Jiang M  Zhai X  Beaudet AL  Wu RC 《PloS one》2012,7(4):e34348
Genomic imprinting is a phenomenon that some genes are expressed differentially according to the parent of origin. Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurobehavioral disorders caused by deficiency of imprinted gene expression from paternal and maternal chromosome 15q11-q13, respectively. Imprinted genes at the PWS/AS domain are regulated through a bipartite imprinting center, the PWS-IC and AS-IC. The PWS-IC activates paternal-specific gene expression and is responsible for the paternal imprint, whereas the AS-IC functions in the maternal imprint by allele-specific repression of the PWS-IC to prevent the paternal imprinting program. Although mouse chromosome 7C has a conserved PWS/AS imprinted domain, the mouse equivalent of the human AS-IC element has not yet been identified. Here, we suggest another dimension that the PWS-IC also functions in maternal imprinting by negatively regulating the paternally expressed imprinted genes in mice, in contrast to its known function as a positive regulator for paternal-specific gene expression. Using a mouse model carrying a 4.8-kb deletion at the PWS-IC, we demonstrated that maternal transmission of the PWS-IC deletion resulted in a maternal imprinting defect with activation of the paternally expressed imprinted genes and decreased expression of the maternally expressed imprinted gene on the maternal chromosome, accompanied by alteration of the maternal epigenotype toward a paternal state spread over the PWS/AS domain. The functional significance of this acquired paternal pattern of gene expression was demonstrated by the ability to complement PWS phenotypes by maternal inheritance of the PWS-IC deletion, which is in stark contrast to paternal inheritance of the PWS-IC deletion that resulted in the PWS phenotypes. Importantly, low levels of expression of the paternally expressed imprinted genes are sufficient to rescue postnatal lethality and growth retardation in two PWS mouse models. These findings open the opportunity for a novel approach to the treatment of PWS.  相似文献   

13.
Genomic imprinting is a system of non-Mendelian inheritance that is unique to mammals. Two types of imprinted genes show parent-of-origin-specific expression patterns: the paternally expressed genes (Pegs), and the maternally expressed genes (Megs). Parental genomic imprinting memory is maintained in the somatic cell lineage and regulates the expression of Pegs and Megs, while it is erased and re-established in the germ cell lineage according to the sex of the individual. The paternal and maternal imprinting mechanisms, which regulate different sets of Pegs and Megs, are essential for establishing the parental expression profiles of imprinted genes that are observed in sperms and eggs. Based on recent evidence, we outline the relationship between parental imprinting and the expression profiles of Pegs and Megs and discuss a novel view of the regulation of genomic imprinting. We also discuss the biological significance of genomic imprinting and propose hypotheses on the essential nature of genomic imprinting and the close relationship between genomic imprinting and the acquisition of placental tissues during mammalian evolution.  相似文献   

14.
The imprinted mouse gene Meg1/Grb10 is expres sed from maternal alleles in almost all tissues and organs, except in the brain, where it is expressed biallelically, and the paternal allele is expressed preferentially in adulthood. In contrast, the human GRB10 gene shows equal biallelic expression in almost all tissues and organs, while it is almost always expressed paternally in the fetal brain. To elucidate the molecular mechanisms of the complex imprinting patterns among the different tissues and organs of humans and mice, we analyzed in detail both the genomic structures and tissue-specific expression profiles of these species. Experiments using 5′-RACE and RT–PCR demonstrated the existence in both humans and mice of novel brain- specific promoters, in which only the paternal allele was active. The promoters were located in the primary differentially methylated regions. Interest ingly, CTCF-binding sites were found only in the mouse promoter region where CTCF showed DNA methylation-sensitive binding activity. Thus, the insulator function of CTCF might cause reciprocal maternal expression of the Meg1/Grb10 gene from another upstream promoter in the mouse, whereas the human upstream promoter is active in both parental alleles due to the lack of the corresponding insulator sequence in this region.  相似文献   

15.
For most imprinted genes, a difference in expression between the maternal and paternal alleles is associated with a corresponding difference in DNA methylation that is localized to a differentially methylated domain (DMD). Removal of a gene's DMD leads to a loss of imprinting. These observations suggest that DMDs have a determinative role in genomic imprinting. To examine this possibility, we introduced sequences from the DMDs of the imprinted Igf2r, H19, and Snrpn genes into a nonimprinted derivative of the normally imprinted RSVIgmyc transgene, created by excising its own DMD. Hybrid transgenes with sequences from the Igf2r DMD2 were consistently imprinted, with the maternal allele being more methylated than the paternal allele. Only the repeated sequences within DMD2 were required for imprinting these transgenes. Hybrid transgenes containing H19 and Snrpn DMD sequences and ones containing sequences from the long terminal repeat of a murine intracisternal A particle retrotransposon were not imprinted. The Igf2r hybrid transgenes are comprised entirely of mouse genomic DNA and behave as endogenous imprinted genes in inbred wild-type and mutant mouse strains. These types of hybrid transgenes can be used to elucidate the functions of DMD sequences in genomic imprinting.  相似文献   

16.
17.
The monoallelic expression of imprinted genes is controlled by epigenetic factors including DNA methylation and histone modifications. In mouse, the imprinted gene Gtl2 is associated with two differentially methylated regions: the IG-DMR, which serves as a gametic imprinting mark at which paternal allele-specific DNA methylation is inherited from sperm, and the Gtl2-DMR, which acquires DNA methylation on the paternal allele after fertilization. The timeframe during which DNA methylation is acquired at secondary DMRs during post-fertilization development and the relationship between secondary DMRs and imprinted expression have not been well established. In order to better understand the role of secondary DMRs in imprinting, we examined the methylation status of the Gtl2-DMR in pre- and post-implantation embryos. Paternal allele-specific DNA methylation of this region correlates with imprinted expression of Gtl2 during post-implantation development but is not required to implement imprinted expression during pre-implantation development, suggesting that this secondary DMR may play a role in maintaining imprinted expression. Furthermore, our developmental profile of DNA methylation patterns at the Cdkn1c- and Gtl2-DMRs illustrates that the temporal acquisition of DNA methylation at imprinted genes during post-fertilization development is not universally controlled.Key words: genomic imprinting, DNA methylation, Gtl2, secondary DMR, epigenetics  相似文献   

18.
《Epigenetics》2013,8(1):14-20
Genomic imprinting attracted particular attention in the 1980’s following the discovery that the parental origin of genetic information is essential for normal development of eutherians,1,2 for review see.3 The term imprinting was first introduced in the 1960s to describe the elimination of the paternal chromosomes during spermatogenesis in the Sciarid fly.4?6Today the term genomic imprinting mainly refers to parent?of?origin specific effects distinguishing each parental genome which can be regarded as memories, or “imprints”.7,8 Breaking the rules of Mendel, genomic imprinting is an epigenetic phenomenon per se. Epigenetics is currently defined as the study of mitotically or meiotically heritable changes in gene expression without any change in DNA sequence9,10 and it is intimately linked to the study of inheritance of chromatin states.11 Gene imprinting currently refers to differential expression of autosomal genes according to their parent of origin.12The phenomenon of genomic imprinting explains several cases of parent?specific human disorders.13 To date over 80 imprinted genes have been described in mammals14 and their parent?of?origin specific expression can correlate with changes in DNA methylation patterns, antisense noncoding RNAs and chromatin folding.3 Epigenetic imprints can either activate or silence the “imprinted” allele, and hence imprinting can be associated with either an expressed or silenced allele.15 In mammals, the number of paternally expressed imprinted genes is almost equivalent to the number of maternally expressed genes and the imprinted status can differs according to tissue, developmental stage and species. It is then crucial for our understanding to clearly indicate the status of imprinting (i.e., paternally or maternally expressed) and the context (e.g., species, developmental stage, tissue).  相似文献   

19.
《Genomics》1999,55(2):194-201
Genomic imprinting is an epigenetic modification that can lead to parental-specific monoallelic expression of specific autosomal genes. While methylation of CpG dinucleotides is thought to be a strong candidate for this epigenetic modification, little is known about the establishment or maintenance of parental origin-specific methylation patterns. We have recently identified a portion of mouse chromosome 9 containing a paternally methylated region associated with a paternally expressed imprinted gene, Ras protein-specific guanine nucleotide-releasing factor 1 (Rasgrf1). This area of chromosome 9 also contains a short, direct tandem repeat in close proximity to a paternally methylatedNotI site 30 kb upstream ofRasgrf1.Short, direct tandem repeats have been found associated with other imprinted genes and may act as important regulatory structures. Here we demonstrate that two rodent species (MusandRattus) contain a similar direct repeat structure associated with a region of paternal-specific methylation. In both species, theRasgrf1gene shows paternal-specific monoallelic expression in neonatal brain. A more divergent rodent species (Peromyscus) appears to lack a similar repeat structure based on Southern Blot analysis.Peromyscusanimals show biallelic expression ofRasgrf1in neonatal brain. These results suggest that direct repeat elements may play an important role in the imprinting process.  相似文献   

20.
Endosperm is an angiosperm innovation central to their reproduction whose development, and thus seed viability, is controlled by genomic imprinting, where expression from certain genes is parent-specific. Unsuccessful imprinting has been linked to failed inter-specific and inter-ploidy hybridization. Despite their importance in plant speciation, the underlying mechanisms behind these endosperm-based barriers remain poorly understood. Here, we describe one such barrier between diploid Mimulus guttatus and tetraploid Mimulus luteus. The two parents differ in endosperm DNA methylation, expression dynamics, and imprinted genes. Hybrid seeds suffer from underdeveloped endosperm, reducing viability, or arrested endosperm and seed abortion when M. guttatus or M. luteus is seed parent, respectively, and transgressive methylation and expression patterns emerge. The two inherited M. luteus subgenomes, genetically distinct but epigenetically similar, are expressionally dominant over the M. guttatus genome in hybrid embryos and especially their endosperm, where paternal imprints are perturbed. In aborted seeds, de novo methylation is inhibited, potentially owing to incompatible paternal instructions of imbalanced dosage from M. guttatus imprints. We suggest that diverged epigenetic/regulatory landscapes between parental genomes induce epigenetic repatterning and global shifts in expression, which, in endosperm, may uniquely facilitate incompatible interactions between divergent imprinting schemes, potentially driving rapid barriers.

Diverged epigenetic/regulatory landscapes between parental genomes result in epigenetic repatterning in hybrids that drive global shifts in endosperm gene expression patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号